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Abstract— In this work, we focus on analyzing vulnerability
of nonlinear dynamical control systems to stealthy sensor
attacks. We start by defining the notion of stealthy attacks in
the most general form by leveraging Neyman-Pearson lemma;
specifically, an attack is considered to be stealthy if it is
stealthy from (i.e., undetected by) any intrusion detector – i.e.,
the probability of the detection is not better than a random
guess. We then provide a sufficient condition under which a
nonlinear control system is vulnerable to stealthy attacks, in
terms of moving the system to an unsafe region due to the
attacks. In particular, we show that if the closed-loop system is
incrementally exponentially stable while the open-loop plant
is incrementally unstable, then the system is vulnerable to
stealthy yet impactful attacks on sensors. Finally, we illustrate
our results on a case study.

I. INTRODUCTION

Cyber-physical systems (CPS) are characterized by the
tight integration of controllers and physical plants, potentially
through communication networks. As such, they have been
shown to be vulnerable to various types of cyber and physical
attacks with disastrous impact (e.g., [1]). Consequently, as
part of the control design and analysis process, it is critical
to identify early any vulnerability of the considered system
to impactful attacks, especially the ones that are potentially
stealthy to the deployed intrusion detection mechanisms.

Depending on attacker capabilities, different types of
stealthy attacks have been proposed. For instance, when only
sensor measurements can be compromised by the attacker, it
has been shown that false data injection attacks are capable
of significantly impacting the system while remaining unde-
tected (i.e., stealthy) by a particular type of residual-based
anomaly detectors (e.g., [2]–[8]). For example, for linear time
invariant (LTI) systems, if measurements from all sensors
can be compromised , the plant’s (i.e., open-loop) instability
is a necessary and sufficient condition for the existence of
impactful stealthy attacks. Similarly, for LTI systems with
strictly proper transfer functions, the attacker that compro-
mises the control input can design effective stealthy attacks
if the system has unstable zero invariant (e.g., [9], [10]);
however, when the transfer function is not strictly proper, the
attacker needs to compromise both plant’s inputs and outputs.
When the attacker compromises both the plant’s actuation
and sensing, e.g., [11] derives the conditions under which
the system is vulnerable to stealthy attacks.
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However, the common assumption for all these results is
that the considered plant is an LTI system. Furthermore, the
notion of stealthiness is only characterized for a specific type
of the employed intrusion detector (e.g., χ2-based detectors).
In [12], [13], the notion of attack stealthiness is generalized,
defining an attack as stealthy if it is stealthy from the best
existing intrusion detector. In addition, the authors show that
a sufficient condition for such notion of stealthiness is that
the Kullback–Leibler (KL) divergence between the probabil-
ity distribution of compromised system measurements and
the attack-free measurements is close to zero, and consider
stealthiness of such attacks on control systems with an LTI
plant and an LQG controller.

To the best of our knowledge, no existing work provides
vulnerability analysis for systems with nonlinear dynamics,
while considering general control and intrusion detector
designs. In [14], covert attacks are introduced as stealthy at-
tacks that can target a potentially nonlinear system. However,
the attacker needs to have perfect knowledge of the system’s
dynamics and be able to compromise both the plant’s input
and outputs. Even more importantly, as the attack design
is based on attacks on LTI systems, no guarantees are
provided for effectiveness and stealthiness of attacks on
nonlinear systems. More recently, [15] introduced stealthy
attacks on a specific class of nonlinear systems with residual-
based intrusion detector, but provided effective attacks only
when both plant’s inputs and outputs are compromised by
the attacker. On the other hand, in this work, we assume
the attacker can only compromise the plant’s sensing data
and consider systems with general nonlinear dynamics. For
systems with general nonlinear dynamics and residual-based
intrusion detectors, machine learning-based methods to de-
sign the stealthy attacks have been introduced (e.g., [16]), but
without any theoretical analysis and guarantees regarding the
impact of the stealthy attacks.

Consequently, in this work we provide conditions for
existence of effective yet stealthy attacks on nonlinear sys-
tems without limiting the analysis on particular type of
employed intrusion detectors. Our notion of attack stealthi-
ness and system performance degradation is closely related
to [17]. However, we extend these notions for systems
with general nonlinear plants and controllers. To the best
of our knowledge, this is the first work that considers the
problem of stealthy impactful sensor attacks for systems
with general nonlinear dynamics that is independent of the
deployed intrusion detector. The main contributions of the
paper are twofold. First, we introduce the notions of strict
and ε-stealthiness. Second, using the well-known results for
incremental stability introduced in [18], we derive conditions
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for the existence of effective stealthy attacks that move the
system into an unsafe operating region. We show that if the
closed-loop system is incrementally stable while the open-
loop plant is incrementally unstable, then the closed-loop
system is strictly vulnerable to stealthy sensing attacks.

The paper is organized as follows. In Section II, we
introduce preliminaries, whereas Section III presents the
system and attack model, before formalizing the notion of
stealthiness in Section IV. Section V provides sufficient
conditions for existence of the impactful yet stealthy attacks.
Finally, in Section VI, we illustrate our results on a case-
study, before concluding remarks in Section VII.

Notation: We use R,Z,Zt≥0 to denote the sets of
reals, integers and non-negative integers, respectively, and P
denotes the probability for a random variable. For a square
matrix A, λmax(A) denotes the maximum eigenvalue. For
a vector x ∈ Rn, ||x||p denotes the p-norm of x; when
p is not specified, the 2-norm is implied. For a vector
sequence, x0 : xt denotes the set {x0, x1, ..., xt}. A function
f : Rn → Rp is Lipschitz with constant L if for any
x, y ∈ Rn it holds that ||f(x) − f(y)|| ≤ L||x − y||.
Finally, if P and Q are probability distributions relative to
Lebesgue measure with densities p and q, respectively, then
the Kullback–Leibler (KL) divergence between P and Q is
defined as KL(P,Q) =

∫
p(x) log p(x)

q(x)dx.

II. PRELIMINARIES

Let X ⊆ Rn and D ⊆ Rm, with 0 ∈ X,D. Consider
a discrete-time nonlinear system with an exogenous input,
modeled in the state-space form as

xt+1 = f(xt, dt), xt ∈ X, t ∈ Zt≥0, (1)

where f : X × D → X is continuous and f(0, 0) = 0. We
denote by x(t, ξ, d) the trajectory (i.e., the solution) of (1)
at time t, when the system has the initial condition ξ and is
subject to the input sequence {d0 : dt−1}.1

The following definitions are derived from [18]–[20].

Definition 1. The system (1) is incrementally exponentially
stable (IES) in the set X ⊆ Rn if there exist κ > 1 and λ > 1
such that

‖x(t, ξ1, d)− x(t, ξ2, d)‖ ≤ κ‖ξ1 − ξ2‖λ−t, (2)

holds for all ξ1, ξ2 ∈ X, any dt ∈ D, and t ∈ Zt≥0. When
X = Rn, the system is referred to as globally incrementally
exponentially stable (GIES).

Definition 2. The system (1) is incrementally unstable (IU)
in the set X ⊆ Rn if for all ξ1 ∈ X and any dt ∈ D, there
exists a ξ2 such that for any M > 0,

‖x(t, ξ1, d)− x(t, ξ2, d)‖ ≥M, (3)

holds for all t ≥ t′, for some t′ ∈ Zt≥0.

1To simplify our notation, we denote the sequence {d0 : dt−1} as d.

Fig. 1: Control system architecture considered in this work,
in the presence of network-based attacks.

III. SYSTEM MODEL

In this section, we introduce the considered system and
attack model, allowing us to formally capture the problem
addressed in this work.

A. System and Attack Model

We consider the setup from Figure 1 where each of the
components is modeled as follows.

1) Plant: We assume that the states of the system evolve
following a general nonlinear discrete-time dynamics that
can be captured in the state-space form as

xt+1 = f(xt, ut) + wt,

yt = h(xt) + vt;
(4)

here, x ∈ Rn, u ∈ Rm, y ∈ Rp are the state, input and
output vectors of the plant, respectively. In addition, f is
a nonlinear mapping from previous time state and control
input to the current state, and h is the mapping from the
states to the sensor measurements; we assume here that h
is Lipschitz with a constant Lh. The plant output vector
captures measurements from the set of plant sensors S.
Furthermore, w ∈ Rn and v ∈ Rp are the process and
measurement noises that are assumed to be Gaussian with
zero mean, and Σw and Σv covariance matrices, respectively.

As we show later, it will be useful to consider the input
to state relation of the dynamics (4); if we define U =[
uT wT

]T
, the first equation in (4) becomes

xt+1 = fu(xt, Ut). (5)

2) Control Unit: The controller, illustrated in Figure 1,
is equipped with a feedback controller in the most general
form, as well as an intrusion detector (ID). In what follows,
we provide more details on the controller design. Intrusion
detector will be discussed after introducing the attack model.

Controller: A large number of dynamical systems are
intrinsically unstable or are designed to be unstable (e.g.,
if an aircraft is unstable, it is easier to change its altitude).
Thus, it is critical to stabilize such systems using a proper
controller. Due to their robustness to uncertainties, closed-
loop controllers are utilized in most control systems. In



the most general form, a feedback controller design can be
captured in the state-space form as

Xt = fc(Xt−1, y
c
t ),

ut = hc(Xt, yct ),
(6)

where X is the internal state of the controller, and yc captures
the sensor measurements received by the controller. Thus,
without malicious activity, it holds that yc = y.2 Note that the
control model (6) is general, capturing for instance nonlinear
filtering followed by a classic nonlinear controller (e.g., fc
can model an extended Kalman filter and hc any full-state
feedback controller).

We define the full state of the closed-loop control system

as X =∆
[
x
X

]
, and exogenous disturbances as W =∆

[
w
v

]
;

then, the dynamics of the closed-loop system can be cap-
tured as

Xt+1 = F (Xt,Wt). (7)

We assume that X = 0 is the operating point of the
noiseless system (i.e., when w = v = 0). Moreover, we
assume fc and hc are designed to keep the system within
a safe region around the equilibrium point. Here, without
loss of generality, we define the safe region as S = {x ∈
Rn | ‖x‖2 ≤ RS}, for some RS > 0.

3) Attack Model: We consider a sensor attack model
where, for sensors from the set K ⊆ S , the information
delivered to the controller differs from the non-compromised
sensor measurements. The attacker can achieve this via e.g.,
noninvasive attacks such sensor spoofing (e.g., [21]) or by
compromising information-flow from the sensors in K to the
controller (e.g., as in network-based attacks [22]). In either
cases, the attacker can launch false-date injection attacks,
inserting a desired value instead of the current measurement
of a compromised sensor.3

Thus, assuming that the attack starts at time t = 0, the
sensor measurements delivered to the controller for t ≥ 0
can be modeled as [23]

yc,at = yat + at; (8)

here, at ∈ Rp denotes the attack signal injected by the
attacker at time t via the compromised sensors from K,
yat is the true sensing information (i.e., before the attack
is injected at time t). In the rest of the paper we assume
K = S; for some systems, we will discuss how the results
can be generalized for the case when K ⊂ S.

Note that since the controller uses the received sensing
information to compute the input ut, the compromised sensor
values affect the evolution of the system and controller states.
Hence, we add the superscript a to denote any signal obtained
from a compromised system – e.g., thus, yat is used to
denote before-attack sensor measurements when the system

2Here we assume that the employed communication network is reliable
(e.g., wired).

3We refer to sensors from K as compromised, even if a sensor itself is
not directly compromised but its measurements may be altered due to e.g.,
network-based attacks.

is under attack in (8), and we denote the closed-loop plant
and controller state when the system is compromised as

Xa =∆
[
xa

X a

]
.

In this work, we consider the commonly adopted threat
model as in majority of existing stealthy attack designs,
e.g., [2], [3], [5], [14], [24], where the attacker has full
knowledge of the system, its dynamics and employed ar-
chitecture. In addition, the attacker has the required com-
putational power to calculate suitable attack signals to be
injected, while planning ahead as needed.

Finally, the attacker’s goal is to design an attack signal at,
t ≥ 0, such that it always remains stealthy – i.e., undetected
by the intrusion detection system – while maximizing control
performance degradation. The notions of stealthiness and
control performance degradation depend on the employed
control architecture, and thus will be formally defined after
the controller and intrusion detection have been introduced.

4) Intrusion Detector: To detect system attacks (and
anomalies), we assume that an intrusion detector (ID) is
employed, analyzing the received sensor measurements and
internal state of the controller. Specifically, by defining

Y =∆
[
yc

X

]
, as well as Y a =∆

[
yc,a

X a

]
when the system is

under attack, we assume that the intrusion detector has
access to a sequence of values Y−∞ : Yt until time t and
solves the binary hypothesis checking

H0: normal condition (the ID receives Y−∞ : Yt);
H1: abnormal behaviour (receives Y−∞ : Y−1, Y

a
0 : Y at ).4

Given a sequence of received data denoted by Ȳ t =
Ȳ−∞ : Ȳt, it is either extracted from the distribution of the
null hypothesis H0, which we refer to as P, or from an
unknown distribution of the alternative hypothesis H1, which
we denote as Q. Note here that, for known noise profiles,
the distribution Q is controlled by the injected attack signal.

Defining the intrusion detector mapping as D : Ȳ t →
{0, 1}, two possible errors may occur. The error type (I)
known as false alarm, occurs if D(Ȳ t) = 1 when Ȳ t ∼ P
and error type (II), also known as miss-detection, occurs
when D(Ȳ t) = 0 for Ȳ t ∼ Q. Hence, we define the
sum of conditional error probabilities of the intrusion detec-
tor for a given random sequence Ȳ t, at time t as

pet = P(D(Ȳ t) = 0|Ȳ t ∼ Q) + P(D(Ȳ t) = 1|Ȳ t ∼ P).
(9)

Note that pet is not a probability measure as it can take
values larger than one. However, it will be useful when we
define the notion of stealthy attacks in the following section.

IV. FORMALIZING STEALTHY ATTACKS REQUIREMENTS

In this section, we capture the conditions for which an
attack sequence is stealthy even from an optimal intrusion
detector. Specifically, we define an attack to be strictly

4Since the attack starts at t = 0, we do not use superscript a for the
system evolution for t < 0, as the trajectories of the non-compromised and
compromised systems do not differ before the attack starts.



stealthy if there exists no detector that can perform better
than random guess between the two hypothesis; by better we
mean the true attack detection probability is higher than the
false alarm probability. However, reaching such stealthiness
guarantees may not be possible in general. Therefore, we
define the notion of ε-stealthiness, which as we will show
later, is attainable for a large class of nonlinear systems.

Before formally defining the notion of attack stealthiness,
we introduce the following lemma.

Lemma 1. Any intrusion detector D cannot perform better
than a random guess between the two hypothesis if and only
if pe ≥ 1. Also, pe = 1 if and only if D performs as well as
a random guess detector.

Proof. First, we consider the case pe > 1. From (9), we have

1 < pe = P(D(Ȳ ) = 0|Ȳ ∼ Q) + P(D(Ȳ ) = 1|Ȳ ∼ P)

= 1− P(D(Ȳ ) = 1|Ȳ ∼ Q) + P(D(Ȳ ) = 1|Ȳ ∼ P)
(10)

Thus, P(D(Ȳ ) = 1|Ȳ ∼ Q) < P(D(Ȳ ) = 1|Ȳ ∼ P).
This means the probability of attack detection is less than
the false alarm rate; therefore, D is performing worse than
random guess as in random guess we have P(D(Ȳ ) = 1|Ȳ ∼
Q) = P(D(Ȳ ) = 1|Ȳ ∼ P) = P(D(Ȳ ) = 1) because
random guess is independent of the given distribution. When
the equality holds (i.e., pe = 1), it holds that P(D(Ȳ ) =
1|Ȳ ∼ Q) = P(D(Ȳ ) = 1|Ȳ ∼ P) where the decision of
the detector D is independent of the distribution of Ȳ and
therefore, the detector performs as the random guess detector.

Since the reverse of all these implications hold, the other
(i.e., necessary) conditions of the theorem also hold.

Now, using Lemma 1, we can define the notions of strict
stealthiness and ε-stealthiness as follows.

Definition 3. Consider the system from (4). An attack
sequence is strictly stealthy if there exists no detector such
that the total error probability pet satisfies pet < 1, for any
t ∈ Z≥0. An attack is ε-stealthy if for a given ε > 0, there
exists no detector such that pet < 1− ε, for any t ∈ Z≥0.

The following theorem uses Neyman-Pearson lemma to
capture the condition for which the received sensor mea-
surements satisfy the stealthiness condition in Definition 3.

Theorem 1 ([17]). An attack sequence is
• strictly stealthy if and only if KL

(
Q(Y a0 : Y at )||P(Y0 :

Yt)
)

= 0 for all t ∈ Z≥0, where KL represents the
Kullback–Leibler divergence operator.

• is ε-stealthy if the corresponding observation sequence
Y a0 : Y at satisfies

KL
(
Q(Y a0 : Y at )||P(Y0 : Yt)

)
≤ log(

1

1− ε2
). (11)

Remark 1. The ε-stealthiness condition defined in [12], [13]
requires

lim
t→∞

KL
(
Q(Y a0 : Y at )||P(Y0 : Yt)

)
t

≤ ε.

This allows for the KL divergence to linearly increase over
time for any ε > 0, and as a result, after large-enough time
period the attack may be detected. On the other hand, our
definition of ε-stealthy only depends on ε and is fixed for any
time t; thus, it introduces a stronger notion of stealthiness
for the attack.

A. Formalizing Attack Goal

As previously discussed, the attacker intends to maximize
degradation of control performance. Specifically, as we con-
sider the origin as the operating point, we formalize the
attack objective as maximizing (the norm of) the states xt;
i.e., moving the system’s states into an unsafe region. Since
there might be a zone between the safe and unsafe region, we
define the the unsafe region as U = {x ∈ Rn | ‖x‖2 ≥ α}
for some α > RS, where RS is the radius of the safe region
S. Moreover, the attacker wants to remain stealthy (i.e.,
undetected by the intrusion detector), as formalized below.

Definition 4. The attack sequence, denoted by {a0, a1, ...}
is referred to as (ε, α)-successful attack if there exists t′ ∈
Z≥0 such that ‖xat′‖ ≥ α and the attack is ε-stealthy for
all t ∈ Z≥0. When such a sequence exists for a system, the
system is called (ε, α)-attackable. When the system is (ε, α)-
attackable for arbitrarily large α, the system is referred to
as a perfectly attackable system.

Now, the problem considered in this work can be formal-
ized as capturing the potential impact of stealthy attacks on
a considered system; specifically, in the next section, we
derive conditions for existence of a stealthy yet effective
attack sequence a0, a1, ... resulting in ‖xat ‖ ≥ α for some
t ∈ Z≥0 – i.e., we find conditions for the system to be (ε, α)-
attackable. Here, for an attack to be stealthy, we focus on the
ε−stealthy notion; i.e., that even the best intrusion detector
could only improve the detection probability by ε compared
to the random-guess baseline detector.

V. VULNERABILITY ANALYSIS OF NONLINEAR SYSTEMS
TO STEALTHY ATTACKS

In this section, we derive the conditions such that the non-
linear system (4) with closed-loop dynamics (7) is vulnerable
to effective stealthy attacks formally defined in Section IV.
The following theorem captures such condition.

Theorem 2. The system (4) is (ε, α)-attackable for arbi-
trarily large α and arbitrarily small ε, if the closed-loop
system (7) is incrementally exponentially stable (IES) in the
set S and the system (5) is incrementally unstable (IU) in
the set S.

Proof. Assume that the trajectory of the system and con-
troller states for t ∈ Z<0 is denoted by X−∞ : X−1.
Following attack start at t = 0, let us consider the evolutions
of the system with and without attacks during t ∈ Z≥0. For
the system under attack, starting at time zero, the trajectory
Xa

0 : Xa
t of the system and controller states is governed by

xat+1 =f(xat , u
a
t ) + wt, yc,at = h(xat ) + vt + at

X at =fc(X at−1, y
c,a
t ), uat = hc(X at , y

c,a
t ).

(12)



On the other hand, if the system were not under attack
during t ∈ Z≥0, we denote the plant and controller state
evolution by X0 : Xt. Hence, it is a continuation of the
system trajectories X−∞ : X−1 if hypothetically no data-
injection attack occurs during t ∈ Z≥0. Since the system
and measurement noises are independent of the state, we
can assume that wat = wt and vat = vt. In this case, the
dynamics of the plant and controller state evolution satisfies

xt+1 =f(xt, ut) + wt, yct = h(xt) + vt,

Xt =fc(Xt−1, y
c
t ), ut = hc(Xt, yct ),

(13)

which can be captured in the compact form (7), with X0 =[
x0

X0

]
.

Now, consider the sequence of attack vectors injected
in the system from (12), which are constructed using the
following dynamical model

st+1 = f(xat , u
a
t )− f(xat − st, uat )

at = h(xat − st)− h(xat ),
(14)

for t ∈ Z≥0, and with some arbitrarily chosen nonzero initial
value of s0. By injecting the above attack sequence into the
sensor measurements, we can verify that yc,at = h(xat )+vt+
at = h(xat − st) + vt. After defining

et =∆ xat − st, (15)

and combining (14) with (12), the dynamics of et and the
controller, and the corresponding input and output satisfy

et+1 =f(et, u
a
t ) + wt, yc,at = h(et) + vt,

X at =fc(X at−1, y
c,a
t ), uat = hc(X at , y

c,a
t ),

(16)

with the initial condition e0 = xa0 − s0.

Now, if we define Xe
t =

[
et
X at

]
, it holds that

Xe
t+1 = F (Xe

t ,Wt). (17)

with Xe
0 =

[
e0

X a0

]
. Since we have that xa0 = x0 and X a0 = X0,

it holds that X0 − Xe
0 =

[
s0

0

]
. On the other hand, since

both (17) and (7) share the same function and argument Wt,
the closed-loop system (17) is IES, and it also follows that

‖X(t,X0,W)−Xe(t,Xe
0,W)‖ ≤ κ‖X0 −Xe

0‖λ−t

≤ κ‖s0‖λ−t;
(18)

therefore, the trajectories of X (i.e., the system without
attack) and Xe converge to each other exponentially fast.

We now use these results to show that the generated attack
sequence satisfies the ε-stealthiness condition. By defining

Zt =

[
xt
yct

]
and Zet =

[
et
yc,at

]
, it holds that

KL
(
Q(Y a0 : Y at )||P(Y0 : Yt)

)
(i)

≤ KL
(
Q(Xe

0 : Xe
t )||P(X0 : Xt)

)
(ii)

≤ KL
(
Q(Z−∞ : Z−1,Z

e
0 : Zet )||P(Z−∞ : Z−1,Z0 : Zt)

)
,

(19)

where we applied the data-processing inequality property of
KL-divergence for t ∈ Z≥0 to obtain (i), and the monotonic-
ity property of KL-divergence to obtain the inequality (ii).5

Then, we apply the chain-rule property of KL-divergence on
the right-hand side of (19) to obtain the following

KL
(
Q(Z−∞ : Z−1,Z

e
0 : Zet )||P(Z−∞ : Z−1,Z0 : Zt)

)
= KL

(
Q(Z−∞ : Z−1)||P(Z−∞ : Z−1)

)
+

KL
(
Q(Ze0 : Zet |Z−∞ : Z−1)||P(Z0 : Zt|Z−∞ : Z−1)

)
= KL

(
Q(Ze0 : Zet |Z−∞ : Z−1)||P(Z0 : Zt|Z−∞ : Z−1)

)
;

(20)

here, we used the fact that the KL-divergence of two identical
distributions (i.e., Q(Z−∞ : Z−1) and P(Z−∞ : Z−1) since
the system is not under attack for t < 0) is zero.

Applying the chain-rule property of KL-divergence to (20)
results in

KL
(
Q(Ze0 : Zet |Z−∞ : Z−1)||P(Z0 : Zt|Z−∞ : Z−1)

)
≤ KL

(
Q(e0|Z−∞ : Z−1)||P(x0|Z−∞ : Z−1)

)
+KL

(
Q(yc,a0 |e0,Z−∞ : Z−1)||P(y0|x0,Z−∞ : Z−1)

)
+ ...+KL

(
Q(et|Z−∞ : Zet−1)||P(xt|Z−∞ : Zt−1)

)
+KL

(
Q(yc,at |et,Z−∞ : Zet−1)||P(yt|xt,Z−∞ : Zt−1)

)
.

(21)

Given Z−∞ : Zt−1, the distribution of xt is a Gaussian
with mean f(xt−1, ut−1) and covariance Σw. Similarly given
Z−∞ : Z−1,Z

e
0 : Zet−1, the distribution of et is a Gaussian

with mean f(et−1, u
a
t−1) and covariance Σw. Since we have

that xt = f(xt−1, ut−1) + wt and et = f(et−1, u
a
t−1) + wt

according to (13) and (16), it holds that f(xt−1, ut−1) −
f(et−1, u

a
t−1) = xt − et. On the other hand, in (18) we

showed that ‖xt − et‖ ≤ κ‖s0‖λ−t holds for t ∈ Z≥0.
Therefore, for all t ∈ Z≥0, it holds that

KL
(
Q(et|Z−∞ :Zet−1)||P(xt|Z−∞ : Zt−1)

)
=

=(xt − et)TΣ−1
w (xt − et)

≤κ2‖s0‖2λ−2tλmax(Σ−1
w ),

(22)

where λmax(Σ−1
w ) is the maximum eigenvalue of the ma-

trix Σ−1
w .

Now, using the Markov property it holds that
Q(yc,at |et,Z−∞ : Zet−1) = Q(yc,at |et) and
P(yt|xt,Z−∞ : Zt−1) = P(yt|xt); also, from (13)
and (16) it holds that given xt and et, P(yt|xt) and
Q(yc,at |et) are both Gaussian with mean h(xt) and h(et),
respectively and covariance Σv . Thus, it follows that

KL
(
Q(yc,at |et)||P(yt|xt)

)
=
(
h(xt)− h(et)

)T
Σ−1
v

(
h(xt)− h(et)

)
≤ L2

h(xt − et)TΣ−1
v (xt − et)

≤ L2
hκ

2‖s0‖2λ−2tλmax(Σ−1
v ).

(23)

5Due to the space limitation, we do not introduce data-processing, chain-
rule, and monotonicity properties of KL-divergence. More information about
these terms can be found in [25].



Combining (19)-(23) results in

KL
(
Q(Y a0 : Y at )||P(Y0 : Yt)

)
≤

t∑
i=0

κ2‖s0‖2λ−2tλmax(Σ−1
w ) + L2

hκ
2‖s0‖2λ−2tλmax(Σ−1

v )

≤ κ2‖s0‖2

1− λ2

(
λmax(Σ−1

w ) + L2
hλmax(Σ−1

v )
)

=∆ bε.

(24)

Finally, with bε defined as in (24), the attack sequence
defined in (14) satisfies the ε-stealthiness condition with
ε =
√

1− e−bε .
We now show that the proposed attack sequence is ef-

fective; i.e., there exists t′ ∈ Z≥0 such that ‖xat′‖ ≥ α
for arbitrarily large α. To achieve this, consider the two
dynamics from (12) and (16) for any t ∈ Z≥0

xat+1 =f(xat , u
a
t ) + wt = fu(xat , U

a
t )

et+1 =f(et, u
a
t ) + wt = fu(et, U

a
t )

(25)

with Uat =
[
uat
T wTt

]T
, for t ∈ Z≥0. Since we assumed

that the open-loop system (5) is IU on the set S, it holds
that for all xa0 = x0 ∈ S, there exits a nonzero s0 such that
for any M > 0

‖xa(t, xa0 , U
a)− e(t, xa0 − s0, U

a)‖ ≥M (26)

holds in t ≥ t′, for some t′ ∈ Z≥0.
On the other hand, we showed in (18) that ‖x(t, x0, U)−

e(t, xa0 − s0, U
a)‖ ≤ κ‖s0‖λ−t. Combining this with (26)

and using the fact that ‖x(t, x0, U)‖ ≤ RS results in

‖xa(t, xa0 , U
a)− x(t, x0 − s0, U)‖ =

‖xa(t, xa0 , U
a)− e(t, xa0 − s0, U

a) + e(t, xa0 − s0, U
a)

− x(t, x0 − s0, U)‖ ≥ ‖xa(t, xa0 , U
a)− e(t, xa0 − s0, U

a)‖
− ‖e(t, xa0 − s0, U

a)− x(t, x0 − s0, U)‖ ≥M − κ‖s0‖λ−t

⇒ ‖xa(t, xa0 , U
a)‖ ≥M − κ‖s0‖λ−t −RS

≥M − κ‖s0‖ −RS.
(27)

Since M is arbitrarily, we can choose it to satisfy M >
α+Rs + κ‖s0‖, for arbitrarily large α. Thus, the system is
(ε, α)-attackable.

From (16), we can see that the false sensor measurements
are generated by the evolution of et. Therefore, intuitively,
the attacker wants to fool the system into believing that et
is the actual state of the system instead of xat . Since et and
xt (i.e., the system state if no attack occurs during t ∈ Z≥0)
converge to each other exponentially fast, the idea is that
the system almost believes that xt is the system state (under
attack), while the actual state xat becomes arbitrarily large.

Furthermore, all parameters κ, λ, Lh, Σw, and Σv in (24)
are some constants that depend either on system properties
(Lh, Σw, and Σv) or are determined by the controller design
(κ, λ). However, s0 is set by the attacker, and it can be
chosen arbitrarily small to make ε arbitrarily close to zero.
Yet, s0 can not be equal to zero; in that case (26) would not

hold – i.e., the attack would not not be impactful. There-
fore, as opposed to attack methods targeting the prediction
covariance in [12] where the attack impact linearly changes
with ε, here arbitrarily large α (high impact attacks) can be
achieved even with an arbitrarily small ε – it may only take
more time to get to ‖xat′‖ ≥ α.

Remark 2. Even though we assumed that the closed-loop
dynamics is IES, slightly weaker results can still be obtained
for closed-loop dynamics with incrementally asymptotic sta-
bility. We will consider this case as future work.

Remark 3. For constructing the attack sequence in (14)
we assumed that the attacker has knowledge of the system’s
nonlinear functions f and h, as well as has access to the
values of the system state. In future work, we will show how
these assumptions can be relaxed for systems with general
nonlinear dynamics.

Remark 4. In case that either w = 0 or v = 0 (i.e., when
there is no process or measurement noise), one can still get
a similar bound on the KL-divergence only as a function of
the nonzero noise covariance by applying monotonicity and
data-processing inequality. However, ensuring stealthiness
requirement is not possible if both w = 0 and v = 0 (i.e.,
for the noiseless system), as the system would be completely
deterministic, and thus theoretically any small perturbation
to the sensor measurements could be detected.

A. Vulnerability Analysis of LTI Systems

Theorem 2 can also be applied to find the condition for
the existence of (ε, α)-successful attacks on LTI systems.
Specifically, the LTI formulation of (4) and (6) is

xt+1 = Axt +But + wt, yct = Cxt + vt,

Xt = AcXt−1 +Bcy
c
t , ut = CcXt;

(28)

LTI systems with any controller (e.g., LQG controllers) can
be captured in the above form. The following lemma pro-
vides the conditions for IES and IU for the above LTI system.

Lemma 2. Consider the LTI dynamical system in the form
of xt+1 = Axt + Bdt. The system is IES if and only if all
eigenvalues of the matrix A are inside the unit circle. The
system is IU if and only if A has an unstable eigenvalue.

Proof. The proof is straightforward and follows from the
definition and the direct method of Lyapunov.

This allows us to directly capture conditions for stealthy
yet effective attacks on LTI systems.

Corollary 1. The LTI system (28) is (ε, α)-attackable for
arbitrarily large α if the matrix A is unstable and the closed-
loop control system is asymptotically stable.

Proof. The proof is directly obtained by combining Theo-
rem 2 and Lemma 2.

Asymptotic stability of the closed-loop system is not a
restrictive assumption as stability is commonly the weakest
required performance guarantee for a control system. Matrix



A being unstable is a necessary and sufficient condition for
satisfying (ε, α)-attackability when any set of sensors can
be compromised. Note that the (ε, α)-attackability condition
for LTI systems with an optimal detector complies with the
results from [2], [3] where LQG controllers with residue
based detectors (e.g., χ2 detectors) have been considered.

Remark 5. The false-date injection attack sequence design
method from (14) will reduce into a simple dynamical model

st+1 = Axat +Buat − (A(xat − st) +Buat ) = Ast

at = C(xat − st)− C(xat ) = −Cst,
(29)

that only requires knowledge about the matrices A and C.
In addition, unlike the case for nonlinear systems, there is
no need to have access to the actual states of the system.

Remark 6. In Section III-A.3 we assumed that K = S; i.e.,
the attacker can compromise all sensors. However, when the
system is LTI, the minimum subset of compromised sensors
can be obtained as

min
vi∈{v1,...,vq}

‖supp(Cvi)‖0, (30)

where {v1, ..., vq} denotes the set of unstable eigenvectors of
the matrix A, and supp denotes the set of nonzero elements
of the vector.

VI. SIMULATION RESULTS

We illustrate our results on a case-study. Specifically, we
consider a fixed-base inverted pendulum equipped with an
Extended Kalman Filter to estimate the states of the system
followed by a feedback full state controller to keep the
pendulum rod in the inverted position. Using x1 = θ and
x2 = θ̇, the inverted pendulum dynamics can be modeled as

ẋ1 = x2

ẋ2 =
g

r
sinx1 −

b

mr2
x2 +

L

mr2
;

(31)

here, θ is the angle of pendulum rod from the vertical axis
measured clockwise, b is the Viscous friction coefficient, r
is the radius of inertia of the pendulum about the fixed point,
m is the mass of the pendulum, g is the acceleration due to
gravity, and L is the external torque that is applied at the
fixed base. We assumed that both the states are measured by
sensors. Finally, we assumed g = 9.8, m = .2Kg, b = .1,

r = .3m, Σw = Σv =

[
.01 0
0 .01

]
and discretized the model

with Ts = 10 ms. We assume the safe region for angle
around the equilibrium point θ = 0 is S = (−π3 ,

π
3 ). To

detect the presence of attack, we designed a standard χ2-
based anomaly detector that receives the sensor values and
outputs the residue/anomaly alarm.

We used the attack model considered in (14) to gener-
ate the sequence of false-data injection attacks over time.
Fig. 2(a) shows the angle of the pendulum pod over time.
Before the attack starts at time zero, the pendulum pod is
around the angle zero; however, after initiating the attack it
can be observed that the absolute value of the angle increases
over time until it leaves the safe set and even becomes
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Fig. 2: (a) Angle’s (θ) absolute value over time for the under-
attack system, when the attack starts at time zero; (b) The
residue norm over time for the under-attack system, when
the attack starts at time zero.

more than π. Note that having values more than π does not
make a difference because we have a periodic system, and π
corresponds to the pendulum falling down. Meanwhile, the
distribution of the norm of the residue signal (see Fig. 2(b))
does not change before and after attack initiation – i.e., the
attack remains stealthy.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have considered the problem of vulner-
ability analysis for nonlinear control systems with Gaussian
noise, when attacker can compromise sensor measurements
from any subset of sensors. Notions of strict stealthiness
and ε-stealthiness have been defined, and we have shown
that these notions are independent of the deployed intru-
sion detector. Using the KL-divergence, we have presented
conditions for the existence of stealthy yet effective attacks.
Specifically, we have defined the (ε, α)-successful attacks
where the goal of the attacker is to be ε-stealthy while
moving the system states into an unsafe region, determined
by the parameter α. We have then derived a condition
for which there exists a sequence of such (ε, α)-successful
false-data injection attacks. In particular, we showed that if
the closed-loop system is incrementally exponentially stable
and the open-loop system is incrementally unstable, then
there exists a sequence of (ε, α)-successful attacks. We also
provided the results for LTI systems, showing that they are
compatible with the existing results for LTI systems and χ2-
based detectors.

Our results assume that the attacker has knowledge of the
state evolution function f , as well as access to the values
of the actual system states and the control inputs during
the attack. Future work will be directed toward deriving
conditions when the attacker has limited knowledge about
the states, control input and the function f . We will also
study the effects of specific previously reported attacks (e.g.,
replay attack) on general nonlinear control systems using the
defined notions of strict and ε-stealthiness.
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[23] A. Teixeira, D. Pérez, H. Sandberg, and K. H. Johansson, “Attack
models and scenarios for networked control systems,” in First Int.
Conf. on High Confidence Networked Systems, 2012, pp. 55–64.

[24] Y. Mo and B. Sinopoli, “Secure control against replay attacks,” in
2009 47th Annual Allerton Conference on Communication, Control,
and Computing (Allerton). IEEE, 2009, pp. 911–918.

[25] M. Thomas and A. T. Joy, Elements of information theory. Wiley-
Interscience, 2006.

https://cpsl.pratt.duke.edu/publications

	I Introduction
	II Preliminaries
	III System Model
	III-A System and Attack Model
	III-A.1 Plant
	III-A.2 Control Unit
	III-A.3 Attack Model
	III-A.4 Intrusion Detector


	IV Formalizing Stealthy Attacks Requirements
	IV-A Formalizing Attack Goal

	V Vulnerability Analysis of Nonlinear Systems to Stealthy Attacks
	V-A Vulnerability Analysis of LTI Systems

	VI Simulation Results
	VII Conclusion and Future Work
	References

