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Abstract— State and input constraints are ubiquitous in
control system design. One recently developed tool to deal
with these constraints is control barrier functions (CBF) which
transform state constraints into conditions in the input space.
CBF-based controller design thus incorporates both the CBF
conditions and input constraints in a quadratic program.
However, the CBF-based controller is well-defined only if the
CBF conditions are compatible. In the case of perturbed
systems, robust compatibility is of relevance. In this work,
we propose an algorithmic solution to verify or falsify the
(robust) compatibility of given CBFs a priori. Leveraging the
Lipschitz properties of the CBF conditions, a grid sampling and
refinement method with theoretical analysis and guarantees is
proposed.

I. INTRODUCTION

Control design for dynamical systems with input and state
constraints is an omnipresent problem in engineering and
has been extensively investigated over the last few decades.
Among all the investigated control methods, such as model
predictive control (MPC) [1], reference governor [2], barrier
Lyapunov functions (BLF) [3], and prescribed performance
control (PPC) [4], the so-called control barrier functions
(CBF) has revived recently [5], [6] and gained increasing
popularity in the control and robotic community. The latter
three methods relate a system state and possibly a time
state with a real number. Unlike its counterparts as in BLF
and PPC, CBF is negative if the system state is in the
unsafe/undesired regions. By enforcing an inequality con-
straint on the system input, which is referred to as the CBF
condition, the system trajectory is guaranteed to stay within
a given safe region for all time. A CBF-based controller
is thus formed as a quadratic program (QP) [6] with the
CBF conditions and actuator limits as the constraints while
trying to minimize its differences to a pre-designed task-
satisfying controller. A moderate magnitude control signal
is obtained when the system state is close to the boundary
of the safety set, making it applicable even in the presence
of noise. Compared to MPC schemes, the CBF formulation
only requires to solve a small size quadratic program online
and thus is more suitable for embedded systems thanks to
today’s increasing computational power.

Another nice property of the CBF formulation is its mod-
ular design feature. In the case that multiple state constraints
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are present for the system, i.e., the safe region is the intersec-
tion of all these state constraints, we can add multiple CBF
conditions to the QP formulation each of which corresponds
to one state constraint. Under the core assumption that the
CBF-induced QP is always feasible, or equivalently, the CBF
conditions are compatible, the satisfaction of all the state
constraints is guaranteed for all time.

However, the compatibility of multiple CBFs is in general
difficult to check. The problem is even more challenging if
input limits are also present. In [7], sufficient and necessary
conditions on CBF compatibility are discussed for SISO
systems without input constraints. In the recent work [8], the
authors propose a mixed-initiative control formulation that
satisfies the input bound explicitly and enforces CBF condi-
tions only in a neighborhood of the safety boundary. Under
an assumption that the neighborhood around the boundary
of safety region specified by each CBF should not overlap,
the mixed-initiative formulation is applicable in the presence
of multiple CBFs. In [9], a navigation problem is considered
and a CBF-based QP for the image of obstacles in the “ball
world” is employed. The QP feasibility is guaranteed thanks
to the special structure of the problem, yet input constraints
are missing.

More relevant to our work is the sum-of-square (SoS)
approach in [10] for verifying worst-case and stochastic
system safety by constructing a barrier certificate. A recent
work [11] extends the SoS technique to verify if a candidate
function is indeed a CBF by checking whether a polynomial
control input exists and satisfies the CBF condition in the
safe region. In [12], a SoS-based compatibility verification
scheme for multiple CBFs is proposed. However, these
results are only applicable to polynomial control systems.
Moreover, the feasibility result is also subject to the order of
the polynomials, and a failure to find such polynomial inputs
provides no falsification guarantee.

In this paper, we consider the compatibility checking
problem when multiple control barrier functions are present
for input constrained systems. We aim to give a verification
or falsification on the compatibility of multiple CBFs prior to
their online implementation. In that respect, a grid sampling
and refinement method is proposed leveraging the Lipschitz
properties of the CBF conditions. We show that 1) the
proposed algorithm will output the exact compatibility result
if it terminates, 2) the algorithm is guaranteed to terminate in
finite steps if the multiple CBFs are robustly compatible, and
3) the upper bound of the robustness level can be obtained
if a lower bound of the lattice size is incorporated.

1

ar
X

iv
:2

20
9.

02
28

4v
1 

 [
ee

ss
.S

Y
] 

 6
 S

ep
 2

02
2



II. PRELIMINARIES

Notation: The operator ∇ : C1(Rn) → Rn is defined
as the gradient ∂

∂x of a scalar-valued differentiable function
with respect to x. The Lie derivatives of a function h(x)
for the system ẋ = f(x) + g(x)u are denoted by Lfh =
∇h>f(x) ∈ R and Lgh = ∇h>g(x) ∈ R1×m, respectively.
The interior and boundary of a set A are denoted Int(A) and
∂A, respectively. A continuous function α : [0, a)→ [0,∞)
for a ∈ R>0 is a class K function if it is strictly increasing
and α(0) = 0 [13]. A continuous function α : (−b, a) →
(−∞,∞) for a, b ∈ R>0 is an extended class K function
if it is strictly increasing and α(0) = 0. Vector inequalities
are to be interpreted element-wise. 0,1 refer to vectors of
proper dimensions with all entries to be 0 or 1, respectively.

Consider the nonlinear control affine system

ẋ = f(x) + g(x)u, (1)

where the state x ∈ Rn, and the control input u ∈ U ⊂
Rm. Assume that the vector fields f(x) and g(x) are locally
Lipschitz functions in x. A set A ⊂ Rn is called forward
invariant, if for any initial condition x0 ∈ A, the system
solution x(t,x0) ∈ A for all t in the maximal time interval
of existence.

Consider the safety set C defined as an intersection of
superlevel sets of continuously differentiable functions hi :
Rn → R, i ∈ I = {1, 2, ..., N}:

C = {x ∈ Rn : hi(x) ≥ 0, i ∈ I}. (2)

Definition 1 (Compatible CBFs). The functions hi(x), i ∈ I
are compatible control barrier functions (CBF) for (1) if
there exists an open set D ⊇ C and locally Lipschitz extended
class K functions αi such that, ∀x ∈ D,∀i ∈ I,

∃u ∈ U, Lfhi(x) + Lghi(x)u+ αi(hi(x)) ≥ 0. (3)

For given differentiable functions hi and extended class K
functions αi, i ∈ I, define

K(x) = {u ∈ U : Lfhi(x) + Lghi(x)u

+ αi(hi(x)) ≥ 0,∀i ∈ I}. (4)

Then hi(x), i ∈ I, being compatible CBFs is equivalent to
that K(x) 6= ∅,∀x ∈ D.

Proposition 1. If hi(x), i ∈ I, are compatible CBFs,
then any locally Lipschitz continuous feedback control law
u(x) ∈ K(x) renders the safe set C forward invariant.

Proof. This is evident from the Brezis version of Nagumo’s
Theorem at ∂C. Please check [14, Theorem 4] for details.

In the case that the system is subject to distur-
bances/uncertainty, a relevant concept is that of robustly
compatible CBFs.

Definition 2 (Robustly compatible CBFs). The functions
hi(x), i ∈ I are robustly compatible control barrier func-
tions with robustness level η > 0 for system (1), if there

exists an open set D ⊇ C and locally Lipschitz extended
class K functions αi such that, ∀x ∈ D,∀i ∈ I,

∃u ∈ U, Lfhi(x) + Lghi(x)u+ αi(hi(x)) ≥ η. (5)

The condition in (5) is stricter compared to the condition in
(3). If (5) holds, then the safety set C can be rendered forward
invariant for the perturbed system ẋ = f(x)+g(x)u+p(x)ω
as long as |Lpωhi(x)|≤ η, ∀i ∈ I,∀x ∈ D. The analysis
follows similarly as in [15] [16, Remark 3].

A CBF-based safety controller u : D → Rm is given in
the following form

u(x) = argmin
v
‖v − unom(x)‖

s.t. v ∈ K(x),
(6)

where unom is a nominal controller focusing on task com-
pletion. For example, unom can be designed for state sta-
bilization, reference tracking or can be given directly by a
human user. One core problem for the CBF-based controller
formulation in (6) is the compatibility, i.e., K(x) 6= ∅,∀x ∈
D. When external disturbances are present, robustly compat-
ibility is a desired property for practical implementation.

In this work, we propose an algorithmic solution to verify
or falsify the hypothesis that hi(x), i ∈ I are (robustly)
compatible. The compatibility verification algorithm only
needs to be executed once and offline, before applying
the CBF-based safety controller (6) online. For notational
brevity, given hi(x), αi(·) and the control system in (1), we
denote

A(x) :=


Lgh1(x)
Lgh2(x)

...
LghN (x)

 , b(x) :=


Lfh1(x) + α1(h1(x))
Lfh2(x) + α2(h2(x))

...
LfhN (x) + αN (hN (x))

 .

The problem is thus to verify whether

sup
u∈U

A(x)u+ b(x) ≥ 0,∀x ∈ D. (7)

for compatibility, and whether

sup
u∈U

A(x)u+ b(x) ≥ η1,∀x ∈ D. (8)

for robust compatibility with robustness level η > 0.
To simplify our analysis though without jeopardizing the

generality, we assume the following:

Assumption 1. The safe set C is compact.

Assumption 2. The input set U is convex.

Under Assumption 2 and in view of (4), we know that K(x)
is either empty or convex, for any x ∈ D.

III. PROPOSED SOLUTIONS

A. Grid sampling algorithm using n-cubes

We recall some basic notions for approximating a compact
set in Rn using n-cubes. Let S ⊂ Rn be a compact set,
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and {ei, i = 1, 2, ..., n} the canonical basis of Rn. For x ∈
Rn, r > 0, define

Plattice(x, r) = {y ∈ Rn : y = x+
∑

i∈{1,2,...,n}

airei,

∀ai ∈ N, i = {1, 2, ..., n}}, (9)

B(x, r) = {y ∈ Rn : y = x+
∑

i∈{1,2,...,n}

kirei,

∀ki ∈ [−1/2, 1/2], i ∈ {1, 2, ..., n}}. (10)

Here Plattice denotes a set of points that forms a regular lattice
with size r in Rn and x ∈ Plattice; B(x, r) denotes a n-cube
in Rn centered at x with size r.

Now we propose the following grid sampling algorithm.
First we calculate the range limit ρmin

ei
and ρmax

ei
, i =

1, 2, ..., n of the set S (Line 1 of Algorithm 1). Since S is
compact, S is a subset of the hyperrectangle [ρmin

e1
, ρmax

e1
]×

[ρmin
e2

, ρmax
e2

] × ... × [ρmin
en

, ρmax
en

] (Line 2). Then we con-
struct a regular lattice Plattice around the center point of
the hyperrectangle with size r. In Line 3, we obtain a set
Pcand by intersecting Plattice with the inflated hyperrectangle
[ρmin

e1
− r/2, ρmax

e1
+ r/2]× [ρmin

e2
− r/2, ρmax

e2
+ r/2]× ...×

[ρmin
en
− r/2, ρmax

en
+ r/2]. We then collect all the points p

in Pcand around which the n-cube with size r intersects with
the set S (Line 4). The algorithm returns G as a Cartesian
product of P and the singleton {r}.

Algorithm 1 GridSampling

Require: Compact set S ⊂ Rn, lattice size r
1: Calculate ρmin

ei
= minx∈S e

>
i x, ρ

max
ei

= maxx∈S e
>
i x

for i ∈ {1, 2, ..., n}.
2: Construct a regular lattice Plattice around

(
ρmin
e1

+ρmax
e1

2 ,
ρmin
e2

+ρmax
e2

2 , ...,
ρmin
en

+ρmax
en

2 ) with size r.
3: Construct Pcand = Plattice ∩ [ρmin

e1
− r/2, ρmax

e1
+ r/2] ×

[ρmin
e2
−r/2, ρmax

e2
+r/2]× ...× [ρmin

en
−r/2, ρmax

en
+r/2].

4: P = {p ∈ Pcand : B(p, r) ∩ S 6= ∅}, G = P × {r}.
5: return G.

Proposition 2. Given a compact set S ⊂ Rnand a lattice
size r > 0, then the following hold:

1) G, from Algorithm 1, is of finite cardinality, and
2) S ⊆ ∪p∈PB(p, r), where P is given in Algorithm 1,

Line 4.

Proof. Since the set S is compact, the lower and upper range
limit ρmin

ei
and ρmax

ei
, i = 1, 2, .., n, given in Line 1 of

Algorithm 1, are finite for every dimension. This leads to
the fact that the hyperrectangle [ρmin

e1
− r/2, ρmax

e1
+ r/2]×

[ρmin
e2
− r/2, ρmax

e2
+ r/2] × ... × [ρmin

en
− r/2, ρmax

en
+ r/2]

is bounded. Recall that by definition (9), Plattice denotes a
regular lattice in Rn, and we thus know that Pcand has a finite
cardinality, which implies that G also has a finite cardinality.
Now we show Property 2) by contradiction. Assume that
there exists x ∈ S and x /∈ ∪p∈PB(p, r). In view of
the definition of P , this implies that x /∈ ∪p∈PcandB(p, r).

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Fig. 1: Grid sampling of a set S in 2-D. Here the set S
is shown in violet, Bound(S) is shown in gray, the 2-cubes
generated from Algorithm 1 are in light green, and all the
points in blue form Pcand. We observe that S ⊂ Bound(S)
and S is over-approximated by the union of the 2-cubes.

This yields a contradiction since x ∈ S ⊆ [ρmin
e1

, ρmax
e1

] ×
[ρmin

e2
, ρmax

e2
] × ... × [ρmin

en
, ρmax

en
] ⊆ ∪p∈PcandB(p, r). The

former set inclusion is trivial in view of the definition of
ρmin
ei

, ρmax
ei

. The latter set inclusions can be straightforwardly
checked by discussing all possible relations of the points in
Pcand and the hyberrectangle.

From now on, we denote Bound(S) the bounding box
[ρmin

e1
− r/2, ρmax

e1
+ r/2]× [ρmin

e2
− r/2, ρmax

e2
+ r/2]× ...×

[ρmin
en
− r/2, ρmax

en
+ r/2] of a compact set S .

Example 1. Here we show an example of Algorithm 1 with
the set S = {x ∈ R2 : 1 ≤ x>Qx ≤ 2, where Q =(
0.5 0.1
0.1 0.3

)
} and r = 0.25. From Fig. 1, we observe that G

has a finite cardinality and S ⊆ ∪p∈PB(p, r). It is worth
noting that ∪p∈PB(p, r) * Bound(S), where P is given in
Algorithm 1 Line 4, as shown in Fig. 1. We also note that the
intersection condition in Line 4 can be checked numerically
as a feasibility problem.

B. Proposed verification algorithm

Now consider the compatibility verification problem in (7).
For any x ∈ Bound(C), define

c(x) = max
u,t

t

s.t. A(x)u+ b(x) ≥ t1N ,
u ∈ U.

(11)

In the case that U is a polytopic set, c(x) is obtained by
solving a linear program. In the general case where U is
convex, c(x) is obtained from a convex optimization. One
interpretation is that c(x) indicates the largest robustness
level at x up to which the CBF conditions or the input
constraints are to be breached.

Recall that the candidate CBFs hi(x), i = 1, 2, ..., N are
continuously differentiable, the vector fields f(x) and g(x)
are locally Lipschitz, and thus A(x), b(x) in (7) are locally
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Lipschitz. Specifically, denote the respective Lipschitz con-
stants in the bounding box Bound(C) with respect to the l∞
norm as LA,∞, Lb,∞, i.e.,

‖A(x)−A(x′)‖∞≤ LA,∞‖x− x′‖∞,
‖b(x)− b(x′)‖∞≤ Lb,∞‖x− x′‖∞,

(12)

for all x,x′ ∈ Bound(C)1.
If c(x) > 0 for some x, based on the Lipschitz continuity

of A(x) and b(x), there must exist a neighborhood around
x where the CBFs hi(x) are compatible. This is formally
shown below.

Proposition 3. For any x ∈ Bound(C), if c(x) > 0, then
supv∈UA(x

′)v + b(x′) ≥ 0 for all x′ ∈ B(x, ρ(x)) ∩
Bound(C) with

ρ(x) =
2c(x)

LA,∞‖u?(x)‖∞+Lb,∞
, (13)

where LA,∞, Lb,∞ are the Lipschitz constants of A(x), b(x)
with respect to the l∞ norm as per (12), respectively, and
u?(x) is the optimal solution to (11) at x.

Proof. For any x′ ∈ B(x, ρ) ∩ Bound(C), we have

A(x′)u?(x) + b(x′) = (A(x′)−A(x))u?(x)
+ (b(x′)− b(x)) +A(x)u?(x) + b(x) (14)

In view of (12), we have

‖(A(x′)−A(x))u?(x) + b(x′)− b(x)‖∞
≤ ‖A(x′)−A(x)‖∞‖u?(x)‖∞+‖b(x′)− b(x)‖∞
≤ LA,∞‖x− x′‖∞‖u?(x)‖∞+Lb,∞‖x− x′‖∞

(15)

In view of x′ ∈ B(x, ρ), and ρ in (13), we obtain
‖x− x′‖∞≤ ρ/2 = c(x)

LA,∞‖u?(x)‖∞+Lb,∞
. Thus, ‖(A(x′)−

A(x))u?(x) + b(x′) − b(x)‖∞≤ c(x). From (14) and
A(x)u?(x) + b(x) ≥ c(x)1, we further obtain A(x′)u? +
b(x′) ≥ 0, which completes the proof.

Built on above analysis, we design a compatibility check-
ing algorithm using grid sampling and refinement. As given
in Algorithm 2, the safety set C is firstly over-approximated
using GridSampling Algorithm with an initial lattice size
r0. This will yield a finite set G0 of n-cubes that is to
be checked later. Recall that in Problem formulation (7)
and (8), we need to check the compatibility over a set
D ⊇ C. Here we take D = ∪(xi,r0)∈G0

B(xi, r0), which
is a super set of C from Proposition 2, item 2). Choosing r0
is important and depends on how large buffering zone one
allows outside the safety set. For each n-cube B(x, r) in
Gk, represented as a (x, r) pair in Line 4, we calculate the
robustness level c and the size ρ of a guaranteed compatible
n-cube centered at x from (11) and (13), respectively. If
c < 0, then an incompatible state is found and the algorithm
terminates and returns False. If ρ ≥ r, then we know that
the CBFs are compatible for all the states within the n-cube

1Here ‖A‖∞, where A is a matrix, refers to the induced matrix norm
and can be calculated as the maximum absolute row sum of A.

Algorithm 2 CompatibilityChecking

Require: hi(x), αi(·), initial size r0, decaying factor λ
1: Initialization:
2: k = 0, obtain C from (2), G0 ← GS(C, r0), G1 = ∅.
3: while Gk 6= ∅ do
4: for each (x, r) ∈ Gk do
5: c← c(x) from (11), ρ← ρ(x) from (13).
6: if c < 0 then . Found an incompatible state;
7: return False.
8: else if ρ ≥ r then . Compatibility checked;
9: remove (x, r) from Gk.

10: else . Compatibility partially checked;
11: remove (x, r) from Gk, r′ ← λr.
12: Gk+1 ← Gk+1 ∪ GS(B(x, r) \B(x, ρ), r′).
13: end if
14: end for
15: k = k + 1, Gk+2 = ∅.
16: end while
17: return True.
*GS stands for GridSampling given in Algorithm 1.

B(x, r) and we remove (x, r) from Gk; otherwise, we refine
the remaining unchecked region B(x, r) \ B(x, ρ) with a
discounted lattice size r′ = λr and include the new n-cubes
in Gk+1. After checking all the n-cubes in Gk, we iterate
the process again for Gk+1. Once Gk+1 = ∅, the algorithm
terminates and returns True.

The following properties provide a guarantee on the finite-
step termination of the algorithm and the compatibility
property certified from its termination.

Theorem 1. Given control barrier functions hi(x), extended
class K functions αi(·) with i ∈ I, an initial lattice size
r0 > 0 and a decaying factor 0 < λ < 1, we have:

1) If Algorithm 2 terminates, it gives verification or falsi-
fication on the CBF compatibility as per Def. 1;

2) if U is bounded, and the CBFs hi(x) are robustly
compatible with robustness level η > 0 in Bound(C),
then Algorithm (2) terminates in finite steps.

3) If U is bounded, and a lower bound of the lattice size r
is incorporated, i.e., Algorithm 2 terminates if r ≤ r in
Line 4, then Algorithm 2 terminates in finite steps and
gives one of the following three results:

i. hi(x), i ∈ I are compatible;
ii. hi(x), i ∈ I are incompatible;

iii. hi(x), i ∈ I are not robustly compatible with robust
level greater than

η′ = λ−1r(max
u∈U

LA,∞‖u‖∞+Lb,∞)/2. (16)

Proof. From Proposition 2, we know that the n-cubes gen-
erated by the grid sampling algorithm will over-approximate
the safety set C (Line 2) or the remaining unchecked region
B(x, r) \ B(x, ρ) (Line 12) with a finite number of n-
cubes. If Algorithm 2 terminates, it indicates that either an
incompatible state is found or a state set over-approximating
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the safety set has been checked for compatibility. This proves
Property 1).

Now consider the case when the CBF hi(x)s are robustly
compatible with level η, i.e., c(x) ≥ η,∀x ∈ Bound(C). At
the kth iteration, rk = λkr0 is the size of the n-cubes in Gk.
Denote ρ = minu∈U

2η
LA,∞‖u‖∞+Lb,∞

. As U is assumed to
be bounded, ρ > 0. As rk is decreasing exponentially fast to
zero as k grows, we deduce there exists a M ∈ N such that
rM ≤ ρ. Thus, Algorithm 2 will terminate in finite steps.
This completes the proof of Property 2).

If a lower bound of the lattice size r is incorporated,
Algorithm 2 terminates in one of the following three cases:
Case a. it has found an incompatible state and returns False
(Line 7); Case b. it has checked all the n-cubes and returns
True (Line 17); Case c. rM ≤ r,M ∈ N for the first time
as the algorithm iterates, i.e., r0 > r, r1 > r, ..., rM−1 >
r, rM ≤ r, where rk, k ∈ {0, 1, 2, ...} is the size of n-cubes
in Gk at the kth iteration (Line 4). These three termination
cases correspond to the three possible results in Property 3).
Since rk = λkr0, we deduce that such a M ∈ N exists. Thus,
the finite-step termination is concluded since the algorithm
executes at most M iterations.

Now we show Property 3) Result iii by contradiction.
Assume that hi(x), i ∈ I are robustly compatible with
level η′ in (16), then based on the analysis for Property
2), we know there exists a constant lattice size ρ′ =

minu∈U
2η′

LA,∞‖u‖∞+Lb,∞
and if the size of the remaining n-

cubes is smaller than ρ′, they can be checked in one iteration
(Line 8). Substituting η′ in (16), we have ρ′ = λ−1r. Since
rM ≤ r, we have rM−1 = λ−1rM ≤ ρ′ due to ρ′ = λ−1r.
This, however, contradicts with the termination condition of
Case c that rM−1 > r. Thus, the termination Case c occurs
only if hi(x)s are not robustly compatible with robustness
level greater than η′. This concludes the proof.

IV. DISCUSSIONS

A. Computational concerns

As any lattice-based verification method, one main compu-
tational issue of Algorithm 2 is the exponential growth of the
number of the n-cubes as the system dimension grows and
thus this approach is limited to low-dimensional systems. We
propose the following to mitigate the computational burdens.

Recall that to prove the forward invariance of the safety
set, we only need to guarantee the CBF conditions around
the safety boundary. This relaxation of the classic CBF
conditions in (3) has been explored in [8], [16]. Thus, one
way to reduce the number of n-cubes is to check the CBF
compatibility only around the safety boundary. Specifically,
we can change G0 ← GS(C, r0) in Algorithm 2 Line 2 to
G0 ← GS(C \ Ca, r0), where Ca = {x ∈ Rn : hi(x) ≥
a, a > 0,∀i ∈ I}. By this modification, we do not need to
check a region that lies strictly in the interior of the safety
set C. Another interpretation of this modification is that we
can always choose appropriate αi(·) so that the third term in
the CBF condition (3) dominates the first two terms for all
x ∈ Ca when the input set U is bounded and C is compact.

We also note that CompatibilityChecking is com-
puted offline, irrelevant to the nominal control design, and,
for each iteration, the process for each n−cube (Line 4 to
Line 14 in Algorithm 2) can be executed in parallel.

B. Generalization to time-varying dynamics and safety set

One basic setup in previous sections is that the control
system (1) and the safety set (2) are time-invariant. The result
can be trivially generalized to time-varying dynamics ẋ =
f(x, t)+g(x, t)u with a time-varying safety set C(t) = {x ∈
Rn : hi(x, t) ≥ 0,∀i ∈ I} as follows. Let x̃ := (x, t)
be a new state variable. Thus, we obtain the new dynamics
˙̃x =

(
f(x̃)
1

)
+
(

g(x̃)
0

)
u and the new safety set C̃ = {x̃ ∈

Rn+1 : hi(x̃) ≥ 0,∀i ∈ I}. Due to Assumption 1, however,
we can only consider a bounded time interval.

C. Alternative grid sampling methods

In Algorithm 2, we have utilized the grid sampling al-
gorithm (Algorithm 1) which, for any compact set S ⊂
Rn, generates a finite number of n-cubes whose union
over-approximates set S. There are of course alternative
grid sampling methods. One option is to use n-spheres
BS(x, r) = {y ∈ Rn : ‖y − x‖≤ r}. Furthermore, we can
show that, in a similar manner to the proof of Proposition
3, if c(x) > 0, then there exists a radius ρS(x) depending
on c(x) and the Lipschitz constants LA, Lb of A(x), b(x)
with respect to the l2 norm such that the CBF conditions are
compatible for all BS(x, ρS). Thus, a similar algotithm as
Algorithm 2 and a similar theoretical result as Theorem 1
can be developed.

Despite that choosing n-spheres for grid sampling is
viable, we opt for n-cubes for the following reasons: 1) for
an arbitrarily compact set S ⊂ Rn, n > 3, it is generally
difficult to generate a set of n-spheres whose union covers
S with a small overlapping ratio; 2) since each row in
A(x) and b(x) correspond to one safety constraint, we can
calculate LA,∞, LB,∞ by checking each of the constraints
individually, rendering the computation easier in general.
A more detailed calculation of these Lipschitz constants is
given in Example 2 below.

D. Other improvements

There are also other heuristics to improve Algorithm
2. For example, instead of using the Lipschitz constants
LA,∞, Lb,∞ in Bound(C) in Line 5 of Algorithm 2, we can
calculate a more precise LA,∞, Lb,∞ in B(x, r) and then
calculate ρ(x). This would lead to a larger ρ and fewer
iterations in general.

Another possible improvement is about the updated lattice
size. It is reasonable to assume that ρ(x) will not vary too
much in a neighborhood of x, thus the updated size r′ in
Line 11 of Algorithm 2 could be upper bounded by ρ(x),
i.e., r′ ← min(ρ, λr) in place of r′ ← λr. We note that this
does not affect the theoretical results in Theorem 1.
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V. CASE STUDIES

In this section we show more details on the algorithm im-
plementation, especially the Lipschitz constant calculation,
and demonstrate the efficacy of our proposed verification
algorithm in several different scenarios. All the simulations
are done using Matlab Parallel Computing Toolbox on an
Intel i7-8650U CPU laptop.

Example 2. Consider a 2 − D system with state variable
x = (x1, x2), input variable u = (u1, u2), dynamics(

ẋ1
ẋ2

)
=

(
x1 + x2
−x21/2

)
︸ ︷︷ ︸

f(x)

+

(
1 0
0 1

)
︸ ︷︷ ︸

g(x)

(
u1
u2

)
, (17)

and the input constraint set U = {(u1, u2) : |u1|≤ 3, |u2|≤
3}. The two CBF candidates are h1(x) = x>Qx −
1, h2(x) = 2 − x>Qx, where Q =

(
0.5 0.1
0.1 0.3

)
. The safety

set is C = {x : hi(x) ≥ 0, i = 1, 2}. The corresponding ex-
tended class K functions are chosen as α1(v) = v, α2(v) =
v, v ∈ R. The CBF conditions are then given by

A(x) :=

(
∇>h1(x)
∇>h2(x)

)
, b(x) :=

(
∇>h1(x)f(x) + h1(x)
∇>h2(x)f(x) + h2(x)

)
.

where ∇h1(x) = (Q + Q>)x = 2Qx,∇h2(x) = −2Qx.
Choose the initial lattice size r0 = 0.25. By applying
GridSampling(C, r0), we obtain, as shown in Fig. 1,
Bound(C) = [−2.2, 2.2]× [−2.8, 2.8].

Now we calculate the Lipschitz constants LA,∞, Lb,∞
in Bound(C). We note that the Lipschitz constants can
be obtained by considering each CBF individually, taking
advantage of the fact that each row of A(x) and b(x)
corresponds to one CBF. By definition, LA,∞ needs to satisfy

‖A(x)−A(x′)‖∞= ‖
(

2(x−x′)>Q

−2(x−x′)>Q

)
‖∞≤ LA,∞‖x−x′‖∞

(18)
for any x,x′ in Bound(C). Let ai(x) be the ith row of A(x).
Condition (18) is equivalent to

‖ai(x)− ai(x
′)‖1= ‖2Q(x− x′)‖1
≤ LA,∞‖x− x′‖∞,∀i ∈ {1, 2}. (19)

This is implied by the condition maxx,x′
‖2Q(x−x′)‖1
‖x−x′‖∞ ≤

LA,∞. Using the inequality ‖v‖∞≤ ‖v‖1≤ n‖v‖∞,∀v ∈
Rn, we have

max
x,x′,x 6=x′

‖2Q(x− x′)‖1
‖x− x′‖∞

≤ 2 max
x,x′,x6=x′

‖2Q(x− x′)‖1
‖x− x′‖1

= 4‖Q‖1 (20)

The equality holds due to the definition of induced matrix
norm. This reveals that LA,∞ = 4‖Q‖1= 2.4 satisfies (18).2

Similarly, Lb,∞ needs to satisfy

‖b(x)− b(x′)‖∞≤ Lb,∞‖x− x′‖∞ (21)

2Here ‖Q‖1, where Q is a matrix, refers to the induced matrix norm and
can be calculated as the maximum absolute column sum of Q.

for any x,x′ in Bound(C). Let bi(x) be the ith row of
b(x). Thus, (21) is equivalent to |bi(x)−bi(x′)|≤ Lb,∞‖x−
x′‖∞,∀i = {1, 2}, for any x,x′ in Bound(C). Recall that

b1(x) = 2x>Qf(x) + x>Qx− 1 (22)

b2(x) = 2x>Qf(x)− x>Qx+ 2 (23)

We have ∇b1(x) = 2Qf(x) + 2 ∂f∂x (x)Qx + 2Qx,
∇b2(x) = 2Qf(x) + 2 ∂f∂x (x)Qx − 2Qx, where ∂f

∂x (x) =(
1 1
−x1 0

)
. Following Mean Value Theorem, we know |bi(x)−

bi(x
′)|≤ maxv∈Bound(C)‖∇bi(v)‖∞‖x − x′‖∞,∀x,x′ ∈

Bound(C),∀i ∈ {1, 2}. Thus we choose Lb,∞ ≥
maxi=1,2 maxv∈Bound(C)(‖∇bi(v)‖∞). This leads to solve
two quadratic programs and we obtain Lb,∞ = 13.

Now we have all the necessary elements to execute
CompatibilityChecking. Choose λ = 0.25. The Al-
gorithm terminates after 3 iterations and verifies the compat-
ibility of the two CBFs. The execution process takes 169s
and is shown in Fig. 2.

Example 3. Now we consider the same scenario as in Ex-
ample 2 but with a more stringent input set U = {(u1, u2) :
|u1|≤ 2, |u2|≤ 2}. This time, CompatibilityChecking
gives a falsification on the compatibility. It finds an in-
compatible state xin = (−1.5,−1.25), at which point
h1(xin) = 0.96, h2(xin) = 0.03, c(xin) = −0.36. The
execution process takes 23s and is shown in Fig. 3.

Example 4. In this example, a lower bound r of the size
of the 2-cubes is incorporated in Algorithm 2 in a fashion
described in Property 3) of Theorem 1. The input set is again
U = {(u1, u2) : |u1|≤ 3, |u2|≤ 3}. In Example 2, we have
already showed that the multiple CBFs are compatible. Now
we would like to obtain an upper bound of the robustness
level the multiple CBFs can attain. From Fig. 2, if we
set r = 0.016, then CompatibilityChecking takes
73s and terminates after 2 iterations due to the lattice size
decreases as the algorithm iterates and is smaller than r
after the second iteration. Thus the termination belongs to
Case c in the proof of Theorem 1. Based on (16), we thus
know the multiple CBFs are at most robustly compatible
with a robustness level η = 0.6464. This is validated by, for
example, considering that c(−1.5,−1.25) = 0.5.

VI. CONCLUSIONS

In this work, we propose a grid sampling and refinement
verification scheme for the compatibility checking of mul-
tiple control barrier functions for input constrained control
systems. We provide both implementation details and theo-
retical guarantees for the verification problem. In particular,
we show that if the algorithm terminates, it will give an exact
answer to the compatibility problem. If the multiple CBFs
are robustly compatible, then the algorithm is guaranteed to
terminate in finite steps. If we also incorporate a lower bound
on the size of the n-cubes, then we can also obtain the largest
robustness level the multiple CBFs can possibly attain. We
demonstrate the efficacy of the proposed algorithm in several
scenarios that corroborates our theoretical results.
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(a) First iteration, r = 0.25. (b) Second iteration, r = 0.0625. (c) Third iteration, r = 0.0156.

Fig. 2: Execution process of CompatibilityChecking in Example 2. The safety region is between the two ellipsoids.
Compatible 2-cubes: 2-cubes within which the CBFs are verified to be compatible (in green); to-be-refined 2-cubes: 2-cubes
that need further refinement (in yellow). (a) First iteration with the lattice size r = 0.25. All of the total 200 2-cubes are
to-be-refined 2-cubes. (b) Second iteration with the lattice size r = 0.0625. The refined 2-cubes are checked and 3204 out
of 4869 are verified to be compatible 2-cubes, and 1665 2-cubes are refined again. (c) Third iteration with the lattice size
r = 0.0156. All the 2-cubes are compatible. Algorithm 2 thus gives verification on the compatibility of the CBFs.
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Fig. 3: Execution process of CompatibilityChecking
in Example 3. The safety region is between the two el-
lipsoids. To-be-refined 2-cubes: 2-cubes that need further
refinement (in yellow); incompatible 2-cubes: 2-cubes whose
center point is an incompatible state (in red). At the first
iteration with the lattice size r = 0.25, Algorithm 2 finds
incompatible 2-cubes and terminates, falsifying the CBF
compatibility.

This work focuses on the compatibility checking of mul-
tiple CBFs. Future directions include how to determine
the extended class K functions that mitigate the possible
incompatibility and/or increase the robustness level, and how
to incorporate the compatibility as a constraint with the
online QP to ensure recursive feasibility.
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