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Abstract— We consider a perimeter defense problem in a
planar conical environment in which a single vehicle, having
a finite capture radius, aims to defend a concentric perimeter
from mobile intruders. The intruders are arbitrarily released
at the circumference of the environment and they move ra-
dially toward the perimeter with fixed speed. We present a
competitive analysis approach to this problem by measuring
the performance of multiple online algorithms for the vehicle
against arbitrary inputs, relative to an optimal offline algorithm
that has information about entire input sequence in advance.
In particular, we establish two necessary conditions on the
parameter space to guarantee (i) finite competitiveness of any
algorithm and (ii) a competitive ratio of at least 2 for any
algorithm. We then design and analyze three online algorithms
and characterize parameter regimes in which they have finite
competitive ratios. Specifically, our first two algorithms are
provably 1, and 2-competitive, respectively, whereas our third
algorithm exhibits different competitive ratios in different
regimes of problem parameters. Finally, we provide a numerical
plot in the parameter space to reveal additional insights into
the relative performance of our algorithms.

I. INTRODUCTION

This work considers a perimeter defense problem in a
conical environment in which a single mobile vehicle seeks
to intercept mobile intruders before they enter a specified
region (referred to as the perimeter). This scenario arises
when a UAV is required to tag (or relay critical information
to) the intruders (targets) before they reach a specific region
of interest. The intruders are generated at the boundary of
the environment and move radially inwards with fixed speed
toward the perimeter. The vehicle, which has a finite capture
radius, moves with bounded speed (greater than that of the
intruders) with the aim of capturing as many intruders as
possible before they reach the perimeter. This is an online
problem as the number and the arrival location of intruders
is gradually revealed over time.

Most prior works in the area of perimeter defense have
either focused on determining optimal strategies for a small
number of agents or considered a stochastic arrival process
for the intruders [1]–[3]. Although these studies provide
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valuable insights, they essentially ignore the worst-case per-
formance where the intruders might coordinate their actions
to overwhelm the defense [4].

In this work, we adopt a competitive analysis technique [5]
to assess online vehicle motion planning algorithms. In
competitive analysis, we measure the performance of an
online algorithm, A, using the concept of competitive ratio,
i.e., the ratio of an optimal offline algorithm’s performance
divided by algorithm A’s performance for a worst-case input
instance. Algorithm A is c-competitive if its competitive ratio
is no larger than c which means its performance is guaranteed
to be within a factor, c, of the optimal for all input instances.
In this work, the performance of an algorithm, either online
or offline, is measured by the fraction of intruders captured.

A related area of research is vehicle routing with new
inputs arriving over time. Introduced on graphs in [6], a
typical approach requires that the vehicle routes be re-
planned as new information is revealed over time. We refer
the reader to [7] and the references therein for a review of
this literature. In most of the vehicle routing problems, the
input (known as demands) are static, and so, the problem
is to find the shortest route through the demands in order
to minimize (maximize) the cost (reward); examples of such
metrics would be the total service time or the number of
inputs serviced. In perimeter defense scenarios, the input
(intruders) are not static. Instead, they are moving towards a
specified region, making this problem more challenging than
the former. In our previous works, we introduced perimeter
defense problems in circular and rectangular environments
with stochastically generated input, [3], [8]. The key dis-
tinction of our current work from these past works is the
characterization of competitiveness for the worst-case inputs,
as opposed to the average-case.

Perimeter defense problems were first introduced for a
single vehicle and a single intruder in [9]. Since then,
perimeter defense has been mostly formulated as a pursuit-
evasion differential game. The multiplayer setting for the
same has been studied extensively as a reach-avoid game in
which the aim is to design control policies for the intruders
and the defenders [10]–[12]. A typical approach requires
computing solutions to the Hamilton-Jacobi-Bellman-Isaacs
equation, which is generally only suitable for low dimen-
sional state spaces and in simple environments [13], [14].
Recent works include [15]–[18]. Authors in [15] propose
a receding horizon strategy based on maximum matching,
[16], [17] consider a scenario wherein the defenders are
constrained to be on the perimeter and [18] extends the reach
avoid game to n-dimensional Euclidean spaces. Previously,
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Fig. 1. Problem Description. The dark red circles represent the
intruders, and the vehicle and its capture circle are represented by
the green triangle and green circle, respectively. The perimeter is
denoted by the red curve.

we introduced a perimeter defense problem for linear envi-
ronments based on the use of competitive analysis [19]. The
key distinction of our current work from the past work is the
geometry of the environment which yields novel results in
terms of optimally placing the vehicle, role of capture radius
and additional conditions to guarantee competitiveness of the
algorithms.

The general contribution of this paper is that we consider
a conical environment of unit radius and angle 2θ in which
arbitrary number of intruders are released at the circumfer-
ence of the environment at arbitrary time instances. Upon
release, the intruders move radially inwards with fixed speed
v < 1 with the aim of reaching a conical perimeter of radius
ρ < 1 and angle 2θ. A single vehicle having a finite capture
radius r, moves with maximum speed of unity with an aim to
capture the intruders. Our main contributions are as follows.
We first establish two necessary conditions in the parameter
space for achieving a c-competitive algorithm with a finite c.
Specifically, we characterize the parameter regime in which
no online algorithm is c-competitive and a parameter regime
in which no algorithm can be better than 2-competitive.
Next, we design and analyze three classes of algorithms
and establish their competitiveness. Specifically, we identify
parameter regimes in which the first two algorithms are
provably 1 and 2-competitive, respectively, and the third
algorithm has a finite competitive ratio that varies with the
problem parameters (r, ρ, θ).

This paper is organized as follows. In section II, we
formally describe our problem and define the competitive
ratio for online algorithms. Section III establishes two nec-
essary conditions; first on achieving a finite competitive
ratio and second on achieving at best a competitive ratio of
2. In section IV, we design and analyze three algorithms
and establish their competitive ratios, section V provides
additional insights through numerous parameter space plots
and finally, section VI summarizes this work and outlines
directions for future works.

II. PROBLEM DESCRIPTION

Consider a conical environment of E(θ) = {(y, α) : 0 <
y ≤ 1,−θ ≤ α ≤ θ} which contains a conical region

(referred to as perimeter) R(ρ, θ) = {(z, α) : 0 < z ≤
ρ < 1,−θ ≤ α ≤ θ} (Fig. 1). Intruders arrive over time
at the circumference of the environment, i.e., y = 1 and
move radially inwards with a fixed speed v towards the origin
in order to breach the perimeter. The defense consists of a
single vehicle with motion modeled as a first order integrator
with maximum speed of unity and a finite capture radius
r < ρ 1. A capture circle is defined as a circle of radius
r, centered at the vehicle’s location. An intruder is captured
and subsequently removed from E(θ) if it lies within or on
the capture circle. An intruder is said to be lost if the intruder
reaches the perimeter without being captured by the vehicle.

A problem instance P(θ, ρ, v, r) is characterized by four
parameters: the speed of the intruders, v < 1, the perimeter’s
radius 0 < ρ < 1, the angle that defines the size of the envi-
ronment as well as the perimeter, 0 < θ ≤ π and, the capture
radius r < ρ. An input instance I is a set of tuples consisting
of time instant t ≤ T , where T denotes the final time instant,
the number of intruders N(t) that are released at time instant
t, and the arrival location of each of the N(t) intruders. For-
mally, I = {t,N(t), {(1, α1), (1, α2), . . . , (1, αN(t))}}Tt=0,
for any αl ∈ [−θ, θ] where 1 ≤ l ≤ N(t).

We now formally define an online algorithm.
Online Algorithm: An online algorithm is a map A :

I(t)→ B1, where B1 denotes a unit ball. In other words, A
assigns a velocity in the plane with at most unit magnitude
to the vehicle as a function of the input I(t) ⊂ I revealed
until time t, yielding the kinematic model, ẋ(t) = A(I(t)),
where x denotes the vehicle’s polar coordinates.

An optimal offline algorithm is a non-causal algorithm
which computes the velocity of the vehicle at any time t
as a function of the entire input instance I; that is, it knows
in advance when, where, and how many intruders will arrive.

Definition 1 (Competitive Ratio) Given a problem in-
stance P(θ, ρ, r, v), an input instance I, and an online
algorithm A, let A(I) denote the the number of intruders
captured by the vehicle when using algorithm A on input
instance I. Let O denote the optimal offline algorithm that
maximizes the number of intruders captured out of input
instance I. Then, the competitive ratio of A on I is defined
as cA(I) = O(I)

A(I) ≥ 1, and the competitive ratio of A for
the problem instance P is cA(P) = supI cA(I). Finally,
the competitive ratio for the problem instance P is c(P) =
infA cA(P). An algorithm is c-competitive for the problem
instance P(θ, ρ, r, v) if cA(P) ≤ c, where c ≥ 1 is a
constant.

Problem Statement: The aim is to establish fundamental
guarantees and to design c-competitive algorithms for the
vehicle with minimum c.

In light of Lemma 1 in [19], we restrict our attention
to extreme speed algorithms that move the vehicle with
maximum speed or keep it stationary.

1If r ≥ ρ, then the problem is trivial as an algorithm that positions the
vehicle at the origin can capture all intruders.



Fig. 2. Description of proof of Lemma III.2. The blue dashed
circles C and C′ are centered at (ρ, θ) and (ρ,−θ) respectively.
The vehicle, denoted by the green triangle, is located at (x, α).
The line L is denoted by the black dashed line.

III. FUNDAMENTAL LIMIT

Before we establish necessary conditions in the space of
problem parameters (θ, v, r, ρ) we provide two properties
based on geometry of the environment.

Lemma III.1 For a problem instance P with θ < π
4 , all

intruders can be captured if r ≥ ρ tan(θ) by positioning the
vehicle at

(
ρ

cos(θ) , 0
)

.

Proof: Let (x, α) ∈ E(θ) denote a location for the
vehicle such that when the vehicle is positioned at (x, α),
the capture circle contains the entire circumference of the
perimeter. Note that in order to ensure that the capture
circle contains the entire perimeter, location (x, α) must
be equidistant from the points (ρ, θ) and (ρ,−θ), i.e., the
position of the vehicle (x, α) must lie on the angle bisector
that bisects angle 2θ of the environment, implying that α =
0. Further, the minimum capture radius r must be a value
such that the capture circle is tangent to the sector of radius
ρ and angle 2θ. Using the property that the radius of a circle
is perpendicular to its tangent and applying trigonometric
definitions, we obtain r = ρ tan(θ) and x = ρ

cos(θ) . This
concludes the proof.

The next result characterizes the minimum time required
by the vehicle to move from one end of the perimeter to the
other.

Lemma III.2 The minimum time required by the vehicle to
move from a location such that the capture circle contains
one end of the perimeter, (ρ, θ), to a location such that the
capture circle contains the opposite end of the perimeter,
(ρ,−θ), is 2(ρ sin(θ)− r) if θ < π

2 and 2(ρ− r) otherwise.

Proof: Consider two circles C and C′, each of radius
r and with centers coinciding with the points (ρ, θ) and
(ρ,−θ), respectively (Fig. 2). Observe that, if the vehicle
is located at any point within the intersection of the circle
C (resp. C′) and the perimeter, then the location (ρ, θ) (resp.
(ρ,−θ)) will be contained within the capture circle.

Let (x, α) ∈ E(θ) (resp. (x,−α)) denote a point on the
circumference of circle C (resp. C′). Our aim is to determine
the closest possible pair of locations (x, α) and (x,−α);

that is, the pair of positions that minimizes the distance the
vehicle needs to travel to go from one point to the other. We
consider two cases: (i) θ ≤ π

2 and (ii) θ > π
2 .

For case (i), finding the closest pair of points corresponds
to determining the shortest distance along the line L between
the two circles C and C′. The shortest line that connects any
two non intersecting circles must pass through the center of
the circles, so L must pass through (ρ, θ) and (ρ,−θ), and
the points (x, α) and (x,−α) are where L intersects C and C′,
respectively. We compute the distance between the two points
as follows. We first find the angle bisector which bisects the
angle 2θ of the environment. Note that the angle bisector
is also the perpendicular bisector of line L as the triangle
formed by joining points (ρ, θ), (ρ,−θ) and the origin is an
isosceles triangle. By constructing a triangle that joins the
points (x, α), origin, and the midpoint of line L and using
trigonometric identities, we determine that x = ρ sin(θ)−r

sin(α)

and α = tan−1(ρ sin(θ)−rρ cos(θ) ). From geometry, it follows that
the length of the line segment joining the points (x, α) and
(x,−α) is 2(ρ sin(θ) − r). Note that when θ = π

2 , L runs
through the origin simplifying this expression to 2(ρ − r)
matching the expression from case (ii).

For case (ii), the corresponding line L is not contained
in the environment which means the vehicle cannot travel
on L to move from (x, α) to (x,−α). Instead, the shortest
path is to first move to the origin from (x, α) and then to the
location (x,−α) from the origin. This gives us x = ρ−r and
α = θ and a minimum distance of 2(ρ− r). This concludes
the proof.

We now present our first necessary condition on the
problem parameters for a finite c(P).

Theorem III.3 (Necessary condition for finite c(P)) For
any problem instance P(v, ρ, r, θ) with parameters satisfying

2(ρ sin(θ)− r) > 1− ρ
v

, if θ <
π

2
,

2(ρ− r) > 1− ρ
v

, if θ ≥ π

2
,

there does not exist a c-competitive algorithm for any con-
stant c and no algorithm, either online or offline, can capture
all intruders.

Proof: In this proof, we first construct an input se-
quence and then determine the number of intruders captured
in that input sequence by any online algorithm. Finally, we
compare the performance with the performance of an optimal
offline algorithm to establish the result.

Consider an online algorithm A and an optimal offline
algorithm O. For both algorithms, assume that the vehicle
starts at the origin at time 0. The input instance starts at time
instant 1 with a stream of intruders, i.e., a single intruder
being released every 1−ρ

v time units apart, at location (1, θ).
If A never captures any stream intruders, the stream never
ends meaning the algorithm A will not be c-competitive
for any constant c ≥ 1, and the first result follows as the
optimal offline algorithm can move to (ρ, θ) and capture all



Fig. 3. Description of the proof of Theorem III.4 for I3. The red
curve denotes the perimeter. The circles C and C′ are denoted by
blue dashed circles and the line segment L′ is denoted by the black
dashed line. The vehicle and the intruders are denoted by a green
triangle and a red dot, respectively. (a) The vehicle is located at
(t1, α1) at time t1. Intruder b is at (1,−θ). (b) The vehicle is
located at (t2, α2). Intruder b is captured but intruder a is lost.

the stream intruders. We thus assume A does capture at least
one stream intruder, say the ith one, at time t. The input
instance ends with the release of a burst of c + 1 intruders
that arrive at location (1,−θ) at the same time instant t.

We now identify how many intruders A can capture. First,
it cannot capture stream intruders 1 through i − 1 because
the stream intruders arrive 1−ρ

v time units apart meaning the
previous intruder reaches the perimeter and thus is lost just
as the next stream intruder arrives. We now show that the
vehicle cannot capture any of the c + 1 burst intruders. At
time t, the vehicle must be at most r distance away from the
ith stream intruder in order to capture it. Likewise, it has only
1−ρ
v time to move to capture the c + 1 burst intruders that

arrived at time t. From Lemma III.2 and our given conditions,
2(ρ sin(θ) − r) > 1−ρ

v (resp. 2(ρ − r) > 1−ρ
v ) for θ < π

2
(resp. θ ≥ π

2 ), the vehicle is guaranteed to not capture the
burst intruders.

On the other hand, the optimal offline algorithm O can
move the vehicle to location (x, α), as defined in Lemma
III.2, until the first i−1 intruders have been captured and then
move the vehicle to (x,−α) capturing the burst intruders,
losing only the ith intruder. This concludes the proof.

We now establish a necessary condition for the existence
of online algorithms having a competitive ratio of at least 2.
We first characterize locations (t1, α1) ∈ E(θ) and (t2, α2) ∈
E(θ) for the vehicle (Fig. 3), where

t1 =

√
1 + r2 − 2r(1−ρ cos(2θ))√

1+ρ2−2ρ cos(2θ)
,

α1 = tan−1
(

sin(θ)
√

1+ρ2−2ρ cos(2θ)−r(1+ρ) sin(θ)
cos(θ)

√
1+ρ2−2ρ cos(2θ)−r(1−ρ) cos(θ)

)
,

t2 =

√
ρ2 + r2 + 2rρ(cos(2θ)−ρ)√

1+ρ2−2ρ cos(2θ)
,

α2 = tan−1
(
−ρ sin(θ)

√
1+ρ2−2ρ cos(2θ)+r(1+ρ) sin(θ)

ρ cos(θ)
√

1+ρ2−2ρ cos(2θ)+r(1−ρ) cos(θ)

)
.

The locations (t1, α1) and (t2, α2) are determined analo-
gously to the proof of Lemma III.2, and so, we only give
an outline for it. Construct two circles C and C′, each of
radius r, centered at (1, θ) and (ρ,−θ) and consider a line
segment L′ that joins the centers of the two circles (Fig. 3).
Then, location (t1, α1) (resp. (t2, α2)) corresponds to the

intersection points of the line segment L′ with circles C and
C′, respectively.

Theorem III.4 (Necessary condition for c(P) ≥ 2) For
any problem instance P(θ, ρ, r, v), c(P) ≥ 2 if

1− ρ
v
≤
√

1 + ρ2 − 2ρ cos(2θ)− 2r, if θ ≤ π

2
1− ρ
v
≤ 1 + ρ− 2r, if θ >

π

2
.

Proof: The key idea is to construct input instances
for which any online algorithm is guaranteed to lose half
the intruders while proving that an offline algorithm exists
that can intercept all intruders. All of our input instances
consists of two intruders denoted by a and b that arrive at
location (1, θ) and (1,−θ), respectively, and we assume that
the vehicle starts at the origin.

Two cases arise; (i) θ ≤ π
2 and (ii) θ > π

2 . We first consider
case (i), i.e., θ ≤ π

2 .
Consider that 1−ρ

v =
√
1 + ρ2 − 2ρ cos(2θ) − 2r and

consider an input instance I1 in which both intruders a and
b arrive at time instant t1. This is the time that the vehicle
takes to move from the origin directly to location (t1, α1).
We claim that the best way for any algorithm to capture
both intruders is to capture either intruder a or b exactly at
time t1, i.e., as soon as it arrives and then move to capture
the second intruder in minimum time. The explanation is as
follows.

The total time taken by the vehicle to capture
both the intruders in the worst case is 1−xi

v +√
x2i + ρ2 − 2xiρ cos(2θ) − 2r, where ρ ≤ xi ≤ 1 is the

radial component of the location of the first of the two
intruders at the time of capture. The expression of the total
time is determined as follows: The term 1−xi

v is the intercept
time for the first intruder. For the second term, construct a
line segment L joining two points (xi, θ) (resp. (xi,−θ)) and
(ρ,−θ) (resp. (ρ, θ)). Then, the length of the line segment
L is given by

√
x2i + ρ2 − 2xiρ cos(2θ) from which we

subtract 2r to account for the capture radius, to obtain the
second term. As 1−xi

v +
√
x2i + ρ2 − 2xiρ cos(2θ) − 2r is

monotonically decreasing function of xi, its minimum is
achieved at xi = 1. This establishes our claim that the
minimum time any algorithm can take is to capture one
intruder exactly when it arrives followed by the second
intruder at

√
1 + ρ2 − 2ρ cos(2θ)− 2r.

We now describe how an offline algorithm can capture
both the intruders in the input instance I1. At time 0,
the vehicle starts at the origin and moves towards location
(t1, α1) capturing the intruder at location (1, θ) exactly at
time t1. Then the vehicle moves directly to location (t2, α2)
exactly at time t1+

√
1 + ρ2 − 2ρ cos(2θ)−2r capturing the

second intruder at (ρ,−θ). Note that placing the vehicle at
(t1, α1) (resp. (t2, α2)) ensures that the location (1, θ) (resp.
(ρ,−θ)) is on the circumference of the capture circle of the
vehicle. Therefore, an algorithm that hopes to be better than
2-competitive must capture both the intruders in this input



instance and the only way to do so is to move to either
location (t1, α1) or (t1,−α1) arriving exactly at time t1.

Now consider input instances I2 and I3. In I2, intruder
a arrives at time t1 and intruder b arrives at time t1 + ε,
where ε < L = 2 sin(θ)

(
1− r(1+ρ)√

1+ρ2−2ρ cos(2θ)

)
and L

denotes the minimum time required by the vehicle to move
from (t2, α2) to (t2,−α2). In I3, intruder b arrives at time
t1 and intruder a arrives at time t1 + ε. Input instance I2
(resp I3) are constructed for algorithms that have the vehicle
arriving at location (t1,−α1) (resp. (t1, α1)) at time t1. Any
algorithm that has the vehicle arriving at location (t1,−α)
(resp. (t1, α1)) at time t1 can capture only one intruder from
I2 (resp. (I3)). As the solution is symmetric, we only provide
the explanation for input instance I3. This follows as the
vehicle can capture intruder b if it moves directly to location
(t2, α2) (Fig. 3 (a)). However, as intruder a arrives in at most
ε < L time units, the vehicle will not be able to capture
intruder a (Fig. 3 (b)). An optimal offline algorithm can
capture both the intruders by simply moving to (t1,−α1)
at time t1, capturing intruder a upon arrival and then to
(t2,−α2) to capture intruder b.

We now consider the case when 1−ρ
v <√

1 + ρ2 − 2ρ cos(2θ)−2r. Consider input instances I4 and
I5. In I4, intruder a arrives at time t1 and intruder b arrives
at time t1+ ε, where ε =

√
1 + ρ2 − 2ρ cos(2θ)−2r− 1−ρ

v .
In I5, intruder b arrives at time t1 and intruder a arrives at
time t1 + ε. Following similar reasoning as input instance
I2 and I3, it follows that no online algorithm can capture
both intruders from input instance I4 or I5.

We now consider case (ii), i.e., θ > π
2 . Except for when

θ = π, as the line segment L′ will not be contained
completely, the vehicle must move first to the origin and
then to the next intercept point. Note that, the vehicle will
do the same when θ = π. Thus, in this case, the location
(t1, α1) is (1−r, θ) and location (t2, α2) is (1+ρ−2r,−θ).
Following similar steps as case (i), we construct input
instances I1, . . . , I5 (omitted for brevity) and show that no
online algorithm can capture both the intruders from those
input instances.

In summary, even restricting our input instance to
{I1, . . . , I5}, no online algorithm can capture both intruders
whereas an optimal offline algorithm can capture both the
intruders. This concludes the proof.

We now turn our attention to design of algorithms that
provide sufficient conditions on the competitive ratios. In
the next section, we design and analyze three algorithms,
characterizing their parameter regimes with provably finite
competitive ratios.

IV. ALGORITHMS

We start by defining an angular path for the vehicle. Let
the vehicle be located at (x, α) ∈ E(θ) for any 0 < x ≤ 1
and α ∈ [−θ, θ]. An angular path is a circular arc centered
at the origin defined as T (x, β, β) := {(x, β) : β ≤ β ≤ β}
for any β, β ∈ [−θ, θ] such that β ≤ α ≤ β and β 6= β. We
say that the vehicle completes its motion on the angular path

when the vehicle returns to its starting location after moving
along all of the points in T twice. Once to move from the
starting location (x, α) to (x, β) (resp. (x, β)), and second,
to move from location (x, β) (resp. (x, β)) to location (x, β)

(resp. (x, β)) and then back to the starting location (x, α).

A. Angular Sweep algorithm

Angular Sweep is an open loop algorithm, described as
follows. The vehicle starts at location (xS , 0), where

xS ∈
[ ρ− r
1− aθv

,min{1− r, ρ+ r}
]
,

and a = 2 if θ = π and a = 4 if θ 6= π. This choice for the
location xS will be justified shortly (Theorem IV.1).

In Angular Sweep, the vehicle moves on an angular path
with x = xS , β = −θ and β = θ for any θ 6= π. For θ = π,
the vehicle moves on a circle with xS as the radius and the
origin as the center.

We first define the angular sweep algorithm for θ 6= π. At
time 0, the vehicle first picks a velocity with unit magnitude
and direction tangent to the angular path, oriented to the
right until it reaches (xS , θ). Once it reaches the endpoint,
the vehicle switches direction and moves towards the other
endpoint, (xS ,−θ). From this moment on, the vehicle only
switches direction after it reaches an endpoint. In other
words, the vehicle moves on the angular path T (xs,−θ, θ),
moving towards (xS , θ) at time 0.

We now define the algorithm for θ = π. At time 0, the
vehicle picks a velocity with unit magnitude and direction
perpendicular to its position vector, oriented to the right.
From this point on, the vehicle keeps on moving in the
direction perpendicular to its position vector for the entire
duration, i.e., the vehicle moves on a circle of radius xS and
center as the origin.

Theorem IV.1 (Angular Sweep competitiveness) For any
problem instance P(θ, ρ, r, v) such that

v ≤ min
{ 2r

(ρ+ r)aθ
,

1− ρ
(1− r)aθ

}
, (1)

where a = 2 (if θ = π) or a = 4 (if θ 6= π), with the choice
of any

xS ∈
[ ρ− r
1− aθv

,min{1− r, ρ+ r}
]
,

Angular Sweep is 1-competitive. Otherwise, Angular Sweep
is not c-competitive for any constant c.

Proof: First, observe that if equation (1) holds, then the
interval

[
ρ−r

1−aθv ,min{1 − r, ρ + r}
]

is non-empty and well
defined. Therefore, it suffices to show that any xS from the
said interval guarantees that Angular Sweep intercepts every
intruder.

To justify the choice of xS , we observe that there is no
benefit for the vehicle to be located beyond a distance of ρ+r
and below ρ− r from the origin. This follows because if the
vehicle is located below ρ − r, then the capture circle will
be completely below the perimeter and the vehicle cannot
capture any intruder using the angular sweep algorithm.



Fig. 4. Setup for ConCaC algorithm for xC = r+ ρ. All intruders
that are on the right side of the black dashed line and between the
blue curves are in the set Sk

right. All intruders that are on the left
side of the black dashed line and between the blue curves are in
the set Sk

left. Green dashed curve denotes the angular path.

Moreover, for any radial location xS > ρ+r, the vehicle will
take 4θxS time units to complete one angular path, whereas,
in the worst case, the intruders will require 2r

v time to not
get captured by the vehicle. Note that the time taken by
the vehicle, i.e., 4θxS increases as xS increases whereas the
time taken by the intruders, i.e., 2r

v remains the same for any
xS > ρ + r. Thus, there will be no benefit for the vehicle
to be located at a distance beyond ρ + r. To establish 1-
competitiveness, it is required that no intruders are lost by the
vehicle and so, the total time taken by the vehicle to return to
its starting location after completing its motion on the angular
path must be at most the time required by the intruders to
travel the distance of xS+r−ρ. Mathematically, we require
aθxS ≤ xS+r−ρ

v , which implies xS ≥ ρ−r
1−aθv . Note that,

since ρ > r, we require that 1 − aθv > 0 or equivalently,
v < 1

aθ . Finally, to ensure that xS + r is contained in the
environment, we have xS ≤ 1 − r. As, ρ − r < ρ−r

1−aθv ,
ρ− r < ρ+ r, and ρ− r < 1− r, the condition xS > ρ− r
is always satisfied. Furthermore, since 1

aθ < 2r
(ρ+r)aθ and

1
aθ < 1−ρ

(1−r)aθ , the condition 1 − aθv > 0 always holds.
Lastly, xS only exists if ρ−r

1−aθv ≤ min{1 − r, ρ + r} which
yields v ≤ min{ 2r

(ρ+r)aθ ,
1−ρ

(1−r)aθ}.
We now prove that for any choice of xS ∈

[ ρ−r
1−aθv ,min{1 − r, ρ + r}], angular sweep algorithm is 1-

competitive.
Without loss of generality, we assume that, in the worst-

case, at time instant t, the vehicle has just left the location
(xS , θ) and intruder i is located at (xS + r, θ). The vehicle
takes a total of aθxS time units to return to the location
(xS , θ) whereas the intruder takes xS+r−ρ

v time units to reach
the perimeter. Thus, in order to ensure that the intruder i is
captured and takes time no less than xS+r−ρ

v , we require
aθxS ≤ (xS + r− ρ)/v and xS ≤ 1− r, respectively, which
holds given that xS ∈ [ ρ−r

1−aθv ,min{1− r, ρ+ r}].
For any xS /∈ [ ρ−r

1−aθv ,min{1−r, ρ+r}], we can construct
an input instance with stream of intruders always arriving at
(1, θ) such that when the vehicle leaves location (xS , θ), an
intruder is located at (xS+r, θ). Since xS /∈ [ ρ−r

1−aθv ,min{1−
r, ρ+ r}], all intruders will be lost and the result follows.

B. Conical Compare and Capture

We now describe our second algorithm, Conical Compare
and Capture (ConCaC) and establish that ConCaC is 2-

Algorithm 1 Conical Compare-and-Capture Algorithm

Select xC ∈ [ ρ−r
1−2θv ,min{ρ+ r, 1−r

1+vθ ]}.
Wait until time 1−min{1, xC + r + 2θvxC}.
for each epoch k ≥ 1 do

if |Skleft| < |Skright| then
Set β = 0, β = θ
Move on angular path to location (xC , θ)
Move on angular path to return to (xC , 0)

else
Set β = −θ, β = 0
Move on angular path to location (xC ,−θ)
Move on angular path to return to (xC , 0)

end
end

competitive for parameter regimes outside of those required
for Angular Sweep to be 1-competitive.

An epoch k is defined as the time interval in which the
vehicle completes its motion on angular path with a specified
distance xC ∈ [ ρ−r

1−2θv ,min{ρ + r, 1−r
1+vθ}] which is fixed

for all epochs. The choice of xC will be justified shortly
(Theorem IV.3). ConCaC sets the parameters β and β for
the angular path at the start of every epoch. Denote |Skright|
(resp. |Skleft|) as the total number of intruders in the set Skright
(resp. Skleft) in epoch k, where

Skright(ρ, v) := {(y, β) : ρ+ βxCv < y ≤
min{1, xc + r + (2θ − β)vxC}∀β ∈ [0, θ]} and

Skleft(ρ, v) := {(y, β) : ρ− βxCv < y ≤ min{1, xc + r

+ (2θ + β)vxC}∀β ∈ (0,−θ]}.

Conical Compare and Capture algorithm is defined in
Algorithm 1 and is summarized as follows. At the start
of every epoch k, the vehicle compares the total number
of intruders in the set Skleft and Skright. If |Skleft| < |Skright|,
then the vehicle moves on the angular path (x = xC , β =

0, β = θ) until it reaches location (xC , θ) and then returns
back to (xC , 0), moving on the same angular path, capturing
intruders on its way. Otherwise, the vehicle moves on an
angular path (x = xC , β = −θ, β = 0) towards the location
(xC ,−θ). The vehicle then returns back to (xC , 0) moving
on the same angular path. After returning to (xC , 0), the
vehicle repeats the same for the next epoch.

For the initial case, we assume time 0 as the time when the
first intruder arrives in the environment. The vehicle starts at
location (xC , 0) and waits for 1−min{1, xC + r+2θvxC}
amount of time and then begins its first epoch.

Lemma IV.2 Any intruder that lies beyond2 the location
(xc + r + (2θ − β)vxC , β), ∀β ∈ [−θ, θ] in epoch k, will
either be contained in the set Sk+1

left or in Sk+1
right in epoch k+1

and is not lost at the start of epoch k + 1 if v ≤ xC+r−ρ
2θxC

.

2intruders with radial coordinate more than xc + r + (2θ − β)vxC



Proof: Without loss of generality, assume that |Skleft| <
|Skright| at epoch k. The total time taken by the vehicle to
capture intruders in Skright and return back to its starting
location (xC , 0) is 2θxC . In the worst-case, in order for any
intruder i to be not considered in the start of epoch k, the
intruder i must be located just above (xC + r + θvxC , θ)
at the start of epoch k, i.e., β = θ. By the time the vehicle
reaches location (xC , θ), intruder i will be located just above
the location (xC + r, θ) and will not be captured. Since
v ≤ xC+r−ρ

2θxC
, the intruder will be at least θvxC distance

away from the perimeter at the end of epoch k. Thus, this
intruder will be considered in the start of epoch k+1 given
the definition of set Sk+1

left and Sk+1
right . Clearly, as the intruder

i will be considered for comparison in epoch k+1, it is not
lost unless the vehicle decides to move to Sk+1

left in epoch
k + 1. This concludes the proof.

Theorem IV.3 (ConCaC competitiveness) For any prob-
lem instance P(θ, ρ, r, v) such that

v ≤ min
{ r

θ(ρ+ r)
,

1− ρ
θ(2− 3r + ρ)

}
, (2)

with the choice of any

xC ∈
[ ρ− r
1− 2θv

,min{ρ+ r,
1− r
1 + vθ

}
]
,

ConCaC algorithm is 2-competitive.

Proof: First, observe that if equation (2) holds, then the
interval [ ρ−r

1−2θv ,min{ 1−r
1+vθ , ρ+ r}] is non-empty. Therefore,

it suffices to show that for any xC from the said interval,
ConCaC algorithm is 2-competitive.

We first justify the choice of xC . Similar to the proof
of Theorem IV.1, we observe that there is no benefit for
the vehicle to be located beyond a distance of ρ + r and
below ρ − r from the origin. From Lemma IV.2, in order
to ensure that every intruder that is not considered in the
set Skleft and Skright in epoch k, is considered in either set
Sk+1

left or Sk+1
right in epoch k + 1, we require xC ≥ ρ−r

1−2θv .
Note that, since ρ > r, we require that 1 − 2θv > 0 or
equivalently, v < 1

2θ . Finally, to ensure that xC + r + xCvθ
is contained in the environment, we require xC ≤ 1−r

1+vθ .
Note that ρ−r < ρ−r

1−2θv , ρ−r < ρ+r. Also, if equation (2)
holds then, ρ − r < 1−r

1+vθ . Thus, the condition xC > ρ − r
always holds. Furthermore, since 1

2θ < r
(ρ+r)θ and 1

2θ <
1−ρ

θ(2−3r+ρ) , the condition 1 − 2θv > 0 always holds. Lastly,
xC only exists if ρ−r

1−2θv ≤ min{ 1−r
1+vθ , ρ + r} which yields

v ≤ min{ r
(ρ+r)θ ,

1−ρ
θ(2−3r+ρ)}.

We now prove that for any choice of xC ∈
[ ρ−r
1−2θv ,min{ 1−r

1+vθ , ρ + r}], ConCaC algorithm is 2-
competitive.

Lemma IV.2 ensures that every intruder will belong to
either set Skleft or Skright in every epoch k. In every epoch
k, the vehicle compares the total number of intruders on
either side contained in the set Skleft and Skright and moves to
the side where the number of intruders is higher. Thus, it
is guaranteed that the vehicle will capture at least half of

Fig. 5. Breakdown of environment into ns = 3 sectors and time
intervals of length D. The dashed green triangles denote the resting
point of each sector. Vehicle is located at the resting point (x3, α3)
of sector N3.

the total number of intruders that arrive in the environment,
assuming that an optimal offline algorithm can capture all
intruders.

C. Stay Near Perimeter

Unlike the previous two algorithms, in this algorithm, the
vehicle does not follow an angular path. Instead, the idea
is to divide the environment into sectors and position the
vehicle close to the perimeter in a specific sector.

We partition the environment E(θ) into ns = d θθs e sectors,
each with angle 2θs = 2arctan( rρ ). Since r < ρ, θs <
π
4 . Let Nl, l ∈ {1, . . . , ns} denote the lth sector, where N1

corresponds to the leftmost sector in the environment (Fig.
5). Then, a resting point (xl, αl) ∈ E(θ) of a sector Nl
is defined as the location for the vehicle such that when
positioned at that location, the entire perimeter contained in
that sector is contained completely within the capture radius
of the vehicle. Mathematically, the resting point, (xl, αl), for
a sector Nl is defined as ( ρ

cos(θ) , (l−
ns+1

2 )2θs). Further, we
define D as the distance between the two resting points that
are farthest in the environment as

D =

{
2 ρ
cos(θs)

sin((ns − 1)θs), if (ns − 1)θs <
π
2

2 ρ
cos(θs)

, otherwise.
(3)

Note that ns = 1 ⇒ D = 0. This means that there is
only one sector, i.e., the environment and the capture circle
can contain the entire perimeter. Thus, the vehicle is to be
positioned at the unique corresponding resting point and must
capture all intruders that arrive in the environment.

After partitioning the environment into ns sectors, Stay
Near Perimeter (SNP) algorithm divides the environment into
three time intervals of time length D each. Specifically, the
jth interval for any j > 0 is defined as the time interval
[(j − 1)D, jD]. In order to ensure a finite competitiveness
for this algorithm, we require 1−ρ

v ≥ 3D, i.e., the intruders
require at least 3D time to reach the perimeter. For any j ≥
1, let Sjl be the set of intruders that arrive in a sector Nl in
the jth interval (Fig 5).

The SNP algorithm (defined in Algorithm 2) is based
on the following two steps: First, select a sector in the
environment with maximum number of intruders. Second,



Algorithm 2 Stay Near Perimeter Algorithm
Stay at origin until time D.
k∗ = argmaxk∈{1,...,ns}{η

1
i , . . . , η

ns
i }, Ni = Nk∗

Move to (xi, αi)
Wait until time 3D.
Assumes vehicle is at (xi, αi) in sector Ni
for each j ≥ 1 do

k∗ = argmaxk∈{1,...,ns}{η
1
i , . . . , η

ns
i }

No = Nk∗

if No 6= Ni and |Sj+2
o | ≥ |Sj+1

i | then
Move to (xo, αo)
Capture |Sj+2

o |
else

Stay at (xi, αi)
Capture |Sj+1

i |
end

end

determine if it is beneficial to switch over to that sector.
These two steps are achieved by two simple comparisons;
C1 and C2 detailed below.

In the first comparison C1, SNP determines that sector
which has the most number of intruders in the last two
intervals as compared to the total number of intruders in the
entire sector in which the vehicle is located. In particular,
suppose that the vehicle is located at the resting point of
sector Ni at the j-th iteration. Corresponding to any sector
Nl, we define ηli as

ηli ,

{
|Sj+2
l |+ |Sj+3

l |, if l 6= i,

|Sj+1
i |+ |Sj+2

i |+ |Sj+3
i |, if l = i.

Then, SNP selects the sector Nk∗ , where k∗ =
argmaxk∈{1,...,ns}{η

1
i , . . . , η

ns
i }. In case there are multiple

sectors with same number of intruders, then SNP breaks
the tie as follows. If the tie includes the sector Ni, then
SNP selects Ni. Otherwise, SNP selects the sector with the
maximum number of intruders in the interval j + 2. If this
results in another tie, then this second tie can be resolved by
picking the sector with the least index. Let the sector chosen
as the outcome of C1 be No, o ∈ {1, . . . , ns}.

For the second comparison C2, if the sector chosen is
No, o 6= i, and the total number of intruders in the set Sj+2

o

is no less than the total number of intruders in Sj+1
i , then

SNP moves the vehicle to (xo, αo) arriving in at most D
time units. Then the vehicle waits at that location to capture
all intruders in Sj+2

o . Otherwise (i.e., if Sj+2
o < Sj+1

i or o =
i), the vehicle stays at its current location (xi, αi), captures
intruders in Sj+1

i and then reevaluates after time interval of
D.

At time 0, the vehicle waits for D time units at location
(0, 0) after the first intruder arrives in the environment. Then
the vehicle moves to the sector which has the maximum
number of intruders in S1

i , ∀Ni sectors in the environment.
The vehicle then waits until time 3D. To ensure that no
intruder is lost until time 3D, we require ρ

cos(θs)
≤ 2D.

Lemma IV.4 Let the vehicle be located at a resting point
(xi, αi) of a sector Ni, i ∈ {1, . . . , ns}. Then, for any j ≥ 1,
the vehicle always captures intruders in either Sj+1

i or Sj+2
o ,

where No denotes the sector selected by SNP after C1.

Proof: Consider that the sector No = Ni. Then,
according to Algorithm 2, the vehicle stays at its current
position and captures Sj+1

i and the result follows.
Now consider that the sector No 6= Ni. Then there are

two cases: (i) Either the vehicle decides to stay at its current
position for D time interval, i.e., |Sj+1

i | > |Sj+2
o | or (ii) the

vehicle decides to move to the resting point corresponding to
the sector No, i.e., |Sj+1

i | ≤ |Sj+2
o |. In case (i), the vehicle

stays at its current location and captures |Sj+1
i |. In case (ii),

the vehicle spends at most D time units to moves to the
resting point of the sector No and then captures intruders in
the set Sj+2

o . This concludes the proof.
To establish the competitive ratio of Algorithm SNP, we

use an accounting analysis in which captured intervals pay
for the lost intervals or equivalently, captured intervals are
charged for the intervals lost. The following lemmas will
jointly establish the competitive ratio of SNP algorithm.

Lemma IV.5 In algorithm SNP, any two consecutive cap-
tured intervals pay for total 3(ns − 1) lost intervals.

Proof: As Lemma IV.4 ensures that the vehicle always
captures an interval of intruders, any two consecutive cap-
tured intervals can be classified into four types (Fig. 6); (a)
stay at the current location and capture both intervals on
the same side, (b) stay at the current location and capture
an interval and then move to the resting point of No and
capture the second interval, (c) move to the resting point
of No and capture both intervals, and finally (d) move to
the resting point of sector No and capture an interval and
then move to the resting point of another sector, No′ , o′ ∈
{1, . . . , ns} \ {o} and capture an interval.

The explanation for Type (a) captured intervals Sj+1
i and

Sj+2
i is as follows. At time instant jD and (j + 1)D, since

vehicle decides to capture Sj+1
i and Sj+2

i (comparison C1
and C2), it loses Sj+2

l and Sj+3
l intruders from other sectors,

i.e., ∀l ∈ {1, . . . , ns}\{i}. Thus the captured intervals Sj+1
i

and Sj+2
i are charged 2ns − 2 times. The remaining ns − 1

charge is explained as follows. Since the vehicle is currently
located at (xi, αi) it must be that the vehicle captured Sji .
This implies that comparison C1 must have yielded sector
Ni at either time instant (j−2)D (if the vehicle was located
at (xl, αl), l 6= i)) or (j − 1)D (if the vehicle was located
at (xi, αi)). Recall that C1 requires at least Sji and Sj+1

i

for the comparison. As the vehicle captured Sji , the captured
interval Sj+1

i is charged another ns − 1 times for both Sjl
and Sj+1

l combined for all l 6= i.
Following similar calculations, type (b) captured intervals

Sj+1
i and Sj+3

o are also charged 3(ns−1) times. ns−1 times
to pay for lost intervals Sjl and Sj+1

l combined and ns − 1
times for lost interval Sj+2

l , ∀l ∈ {1, . . . , ns} \ {i}. The
remaining ns−1 pay is as follows. Once for all lost intervals



(a) Type (a) captured intervals. Vehicle stays at (x3, α3) to
capture Sj+1

3 and Sj+2
3 .

(b) Type (b) captured intervals. Vehicle stays at (x3, α3) to
capture Sj+1

3 and then moves to (x1, α1) to capture Sj+3
1 .

(c) Type (c) captured intervals. Vehicle moves to (x1, α1) to
capture Sj+2

1 and Sj+3
1 .

(d) Type (d) captured intervals. Vehicle moves to (x1, α1) to
capture Sj+2

1 and then to (x3, α3) to capture Sj+4
3 .

Fig. 6. Depiction of captured intervals for the proof of Lemma IV.5 for i = 3 and o = 1. The intruders of the respective captured intervals are represented
by yellow circles. Note that for type (d) captured intervals, intruders of interval Sj+4

4 have not arrived in the environment. Information of interval Sj+4
4

is revealed to the SNP algorithm once the vehicle moves to (x1, α1).

Sj+2
i , Sj+3

i , and Sj+4
i combined and ns − 2 pay for lost

intervals Sj+3
l′ , and Sj+4

l′ combined ∀l′ ∈ {1, . . . , ns}\{i, o}
(comparison C1 and C2 at time (j + 1)D).

Type (c) captured intervals Sj+2
o and Sj+3

o pay once for
lost intervals Sj+1

i , Sj+2
i , and Sj+3

i combined as well as
ns − 2 times for the lost intervals Sj+2

l and Sj+3
l , ∀l ∈

{1, . . . , ns} \ {i, o} (comparison C1 and C2 at time jD).
The captured intervals also pay ns−1 times for lost intervals
Sj+4
l for all Nl, l 6= o sectors. Finally, the last ns− 1 pay is

for lost interval Sjl′ and Sj+1
l′ , ∀l′ ∈ {1, . . . , ns} \ {i} as the

vehicle captured Sj+2
o instead of Sj+1

i (comparison C1).
For type (d) captured intervals, without loss of generality,

consider that after capturing its first interval, Sj+2
o , in sector

No, the vehicle moves back to sector Ni to capture its second
interval Sj+4

i , i.e., No′ = Ni. Type (d) captured interval
Sj+2
o pays once for Sj+1

i , Sj+2
i , and Sj+3

i combined and
ns−2 times for the lost intervals Sj+2

l and Sj+3
l combined,

∀l ∈ {1, . . . , ns} \ {i, o} (comparison C1 and C2 at time j).
The captured interval Sj+4

i pays once for Sj+3
o , Sj+4

o , and
Sj+5
o combined and ns− 2 times for the lost intervals Sj+4

l

and Sj+5
l combined (comparison C1 and C2 at time j +2).

The final pay is ns− 1 times for lost intervals Sjl′ and Sj+1
l′

combined, ∀l′ ∈ {1, . . . , ns} \ {i} as the vehicle captured
Sj+2
o and instead of Sj+1

i (comparison C1).
Since each type of captured intervals are charged 3(ns−1)

times, the result is established.
We now establish that each lost interval is fully accounted

for by the captured intervals. Since SNP directs the vehicle
to stay at a resting point of any sector for some time

interval, it can be viewed as a sequence of traces, in which
the vehicle spends some number of intervals at one resting
point and some number of intervals at another. Each trace
is defined by a set {k1, k2, . . . , kns

}, where each element
kl, l ∈ {1, . . . , ns} denotes the number of intervals that the
vehicle decides to capture by staying at the corresponding
resting point of the sector Nl.

Lemma IV.6 Each lost interval is accounted for by the
captured intervals of SNP algorithm.

Proof: Note that any realization of SNP can be achieved
by the combination of one or more traces as described in
the following cases. Case (i) ki = 3 and kl = 0 ∀l ∈
{1, . . . , ns}\{i}, Case (ii) 0 ≤ ki < 3 and ko = 2 and Case
(iii) ki = 0, ko = 1 and ko′ = 1,∀o ∈ {1, . . . , ns} \ {i} and
∀o′ ∈ {1, . . . , ns} \ {o}. The idea is to identify all of the
lost and captured intervals in each case and show that each
lost interval is accounted by the captured intervals.

Case (i): Due to comparison steps C1 and C2 at time jD,
the captured intervals Sj+1

i , Sj+2
i and Sj+3

i account for all
of the lost intervals Sj+2

l and Sj+3
l , ∀l ∈ {1, . . . , ns} \ {i}.

There are two sub-cases; sub-case (a) No = Ni at time
instant jD and sub-case (b), there exists a sector No 6= Ni at
time instant jD (comparison C1) such that |Sj+2

o | < |Sj+1
i |

(comparison C2). We first consider sub-case (a). Sub-case
(a) implies that at time instant jD, the total number of
intruders in sector Ni is more than in any other sector
in the environment. Thus, captured intervals Sj+1

i , Sj+2
i

and Sj+3
i account for all of the lost intervals Sj+2

l and



(a) θ = π/4 (b) θ = π/3 (c) θ = π/2

Fig. 7. Parameter regime plot for r = 0.2.

(a) r = 0.05 (b) r = 0.1 (c) r = 0.3

Fig. 8. Parameter regime plot for θ = π/3.

Sj+3
l , ∀l 6= i. In sub-case (b), we account for lost intervals
Sj+2
l , Sj+3

l , ∀l ∈ {1, . . . , ns} \ {i, o} and Sj+2
o , Sj+3

o ,
separately. Lost intervals Sj+2

l and Sj+3
l are accounted for

because |Sj+2
l | + |Sj+3

l | ≤ |Sj+1
i | + |Sj+2

i | + |Sj+3
i | or

equivalently ηli ≤ ηii (comparison C1). Now it remains to
account for lost intervals Sj+2

o and Sj+3
o . Observe that if

there exists a sector No 6= Ni at time instant jD such that
|Sj+2
o | < |Sj+1

i |, then there cannot exist the same No at
time instant (j + 1)D (from comparison C1). Thus, even if
No 6= Ni exists, then the lost interval Sj+2

o is accounted by
Sj+1
i as |Sj+2

o | < |Sj+1
i | (comparison C2). Since, at time

(j+1)D, sector No cannot be selected again, it follows that
ηoi < ηii at time (j + 1)D and thus, Sj+3

o is accounted for.

Case (ii): To account for the lost intervals Sj+kil and
Sj+1+ki
l ,∀l ∈ {1, . . . , ns} \ {i}, from comparison C1 and

C2 at time (j+ki)D, the vehicle was supposed to capture all
Sj−2+kii , Sj−1+kii , . . . , Sj+1+ki

i intervals. While the vehicle
captured Sj−2+kii , . . . , Sj+kii intervals, it did not capture
Sj+1+ki
i . As ηoi > ηli at time instant (j+ki)D, lost intervals
Sj+kil and Sj+1+ki

l ,∀l ∈ {1, . . . , ns} \ {i} are fully ac-
counted for. The remaining lost intervals Sj+1+ki

i , Sj+2+ki
i ,

Sj+3+ki
i Sj+2+ki

l , and Sj+3+ki
l ∀l ∈ {1, . . . , ns} \ {o}

are fully accounted by the captured intervals Sj+2+ki
o and

Sj+3+ki
o because the conditions ηoi > ηii and ηoi > ηli are

satisfied at time instant (j + ki)D (comparison C1).

Case (iii): To account for lost intervals Sj+1
i , Sj+2

i , Sj+3
i ,

Sj+2
l , and Sj+3

l ∀l ∈ {1, . . . , ns} \ {i, o}, the vehicle was
supposed to capture Sj+2

o and Sj+3
o . This follows because

at time instant jD, ηoi > ηii (comparison C1) and |Sj+2
o | ≥

|Sj+1
i | (comparison C2). The vehicle captured Sj+2

o which
accounts for Sj+1

i as |Sj+2
o | ≥ |Sj+1

i |. As the vehicle moved
to capture Sj+4

o′ at time (j + 2)D, it implies that |Sj+4
o′ | ≥

|Sj+3
o | (comparison C2) and thus, Sj+3

o , Sj+2
i , Sj+3

i , Sj+2
l ,

and Sj+3
l are all accounted by the captured interval |Sj+4

o′ |.
Finally, the lost intervals |Sj+4

l |,∀l ∈ {1, . . . , ns} \ {o′} are
accounted for as follows: If the vehicle also captures Sj+5

o′ ,
then lost intervals Sj+4

l are accounted for by per case (ii)
(ki = 1). Otherwise (i.e., the vehicle moved to another sector
Nõ, õ 6= o to capture Sj+6

õ ), Sj+4
l is accounted for as per

case (iii) as now the lost intervals will be Sj+3
i , Sj+4

i , Sj+5
i ,

Sj+4
l , and Sj+5

l ∀l ∈ {1, . . . , ns} \ {i, o}.
Finally, note that the boundary cases of the first and the

last intervals fall into these cases by adding dummy intervals
S0
i ,∀i ∈ {1, . . . , ns} and SY+1

i , where Y denotes the last
interval that consists of intruders in any sector. We assume
that the vehicle captures all of the dummy intervals. This
concludes the proof.

Theorem IV.7 (SNP competitiveness) For any problem in-
stance P(θ, ρ, v, r) that satisfies 3D ≤ 1−ρ

v and 2
ρ cos(θs)

≤
2D, SNP is 3ns−1

2 -competitive, where ns = dθ/θse, θs =
arctan(r/ρ) and D is defined in (3).

Proof: From Lemma IV.5 and Lemma IV.6 it follows
that, for any given trace of SNP algorithm, every two
consecutively captured intervals pay for 3ns−3 lost intervals
and every lost interval is accounted by two consecutive



captured intervals, and the claim follows.

V. NUMERICAL VISUALIZATION AND OBSERVATIONS

We now provide a numerical visualization of the analytic
bounds derived in this paper. Figure 7 shows the (ρ, v)
parameter regime plots for a fixed value of capture radius
r = 0.2 and varying values of θ. Figure 8 shows the (ρ, v)
parameter regime plots for a fixed value of θ = π

3 and
varying values of capture radius r.

Since the competitiveness of SNP depends on the number
of sectors, observe that the parameter regime of SNP is
in regions, where each region corresponds to a specific
competitiveness. As the capture radius r increases, the num-
ber of regions decreases and as θ increases, the number
of regions increases. An important characteristic for SNP
is that it can be used to determine the tradeoff between
the competitiveness and the target parameter regime for the
problem instance.

Figure 7 suggests that Algorithm SNP has a relatively
small area of utility (below the red and above the blue curve)
in the parameter space and completely lies below the purple
curve for Theorem III.4. For θ = π/4 and θ = π/3, SNP is at
best 2.5-competitive for ρ ≤ 0.5 and ρ ≤ 0.35, respectively,
and decreases by a factor of 1.5 with every region. For
ρ > 0.5, ConCaC is more effective than SNP as the curve
defined by the conditions for ConCaC is completely above
the conditions defined for SNP. For θ = π/2, SNP is at best
4-competitive and increases by a factor of 1.5.

In Figure 8, for small values of r (0.05 and 0.1), SNP has
a relatively large area of utility. For r = 0.05 and r = 0.1,
SNP is at best 2.5-competitive for ρ < 0.2 and ρ < 0.17.
This suggests with the smaller the capture radius, SNP can
capture equally fast intruders, and it covers a larger area in
the parameter regime but at the cost of higher competitive
ratio. Interestingly, the curve for SNP extends beyond that of
Theorem III.4. For r = 0.3, the curve defined by sufficient
conditions for SNP is completely below the curve defined
by conditions of ConCaC suggesting that SNP is ineffective
for high values of r.

VI. CONCLUSION AND FUTURE DIRECTIONS

This work analyzed the problem wherein a single vehicle,
having a finite capture radius r, is tasked to defend a perime-
ter in a conical environment from arbitrary many intruders
that arrive in the environment in an arbitrary fashion. We
designed and analyzed three algorithms, i.e., Angular Sweep,
Conical Compare and Capture, and Stay Near Perimeter al-
gorithms, and established sufficient conditions that guarantee
a finite competitive ratio for each algorithm. In particular, we
demonstrated that Angular Sweep algorithm is 1-competitive
and Conical Compare and Capture algorithm is 2 competitive
for parameter space beyond that of Angular Sweep algorithm.
Moreover, the competitive ratio of Stay Near Perimeter
changes with as a function of the parameters (r, ρ, θ) and
does not always extend beyond that of Conical Compare and
Capture algorithm in specific parameter regimes. Thus, the
choice of which algorithm to use depends on the problem

parameters and the acceptable bound on competitiveness. We
also derived two fundamental limits on achieving a finite
competitive ratio by any online algorithm.

Apart from closing the gap between the curve defined by
Theorem IV.3 for algorithm ConCaC and the curve defined
by Theorem III.4 as well as the gap between the curve
defined by Theorem IV.7 for algorithm SNP and Theorem
III.3, key future directions include a cooperative multi-
vehicle scenario with communication and energy constraints.
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