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Abstract— In this work, we propose a distributed adaptive
observer for a class of nonlinear networked systems inspired
by biophysical neural network models. Neural systems learn by
adjusting intrinsic and synaptic weights in a distributed fash-
ion, with neuronal membrane voltages carrying information
from neighbouring neurons in the network. We show that this
learning principle can be used to design an adaptive observer
based on a decentralized learning rule that greatly reduces
the number of observer states required for exponential con-
vergence of parameter estimates. This novel design is relevant
for biological, biomedical and neuromorphic applications.

I. INTRODUCTION

With the improvement of neural recording technology, it
may soon be possible to concurrently monitor the mem-
brane potential of hundreds of interconnected neurons in
a living brain [1]. This high-resolution data opens up new
possibilities for the development of real-time closed-loop
interventions aimed at treating disorders of neural excitabil-
ity such as epilepsy and Parkinson’s [2]. The capability to
effectively monitor and control spiking systems also impacts
the nascent field of neuromorphic engineering [3].

Good closed-loop control design often requires reliable
model estimates, and hence any method aimed at controlling
neural activity is bound to involve the estimation of neu-
ronal models, which is a nontrivial task. Many techniques
have been proposed for batch-mode or offline estimation
of neuronal dynamics, see for instance [4], [5], [6], [7].
However, living brain systems are adaptive [8], and thus
online estimation approaches are necessary, especially if
real-time applications are involved.

To meet this demand, an adaptive observer-based ap-
proach for online estimation of conductance-based neural
networks was recently proposed in [9]. The adaptive ob-
servers, inspired by [10] and [11], are rooted in the familiar
Recursive Least Squares (RLS) algorithm [12], and allow
for approximately tracking slowly time-varying parameters.
One limitation of RLS-based adaptive observers is the rapid
increase in observer states with respect to the number of
parameters. More observer states require more computing
power, which might become critical when attempting to
perform online estimation of large neuronal network mod-
els containing thousands of parameters. In this paper, we
propose a distributed version of the linear-in-the-parameters
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adaptive observer from [9] that results in a scalable algo-
rithm for online parameter estimation of biophysical neural
models. The proposed modification, which echoes the diago-
nal RLS-like update rule of [13], greatly reduces the number
of adaptive observer states. We show that for neuronal
network models, the proposed adaptive observer becomes
distributed over individual neuronal membrane currents and
also over neurons in the network. We analyse the adaptive
observer using contraction theory [14], and show that a
strengthened persistent excitation condition is sufficient for
consistent convergence of the parameter estimates.

The paper is organized as follows: in Section II, we pose
the problem from an abstract point of view and recall the
observer from [9]. In Section III, we introduce and analyse
the modified distributed observer. In Section IV, we use the
observer to estimate conductance-based biophysical neural
networks. In Section V, we discuss the relevance of this
work in neuroscience, as well as future research directions.

Notation: We write In for the n× n identity matrix, and
I when n is obvious from the context. For two column
vectors x and y, we write col(x, y) := (xT, yT)T. For a
matrix A ∈ Rn×n, λmax(A) denotes the largest eigenvalue
of A. For a vector-valued function f : Rn1 × Rn2 → Rm,
we write ∂xf(x, y) ∈ Rm×n1 for the Jacobian of f(x, y)
with respect to x. We write A � B (A � B) if A−B is a
positive-semidefinite (positive-definite) matrix.

II. BACKGROUND

We consider nonlinear state-space systems of the form

v̇ =

m∑
j=1

ΦT
j (v, wj , u)θj + a(v, w, u) (1a)

ẇj = gj(v, w
j) (1b)

for j = 1, . . . ,m. Here, v ∈ Rnv is a state vector, which is
also the output of the system; w = col(w1, . . . , wm) is an
internal dynamics state vector, with wj ∈ Rnjw ; u ∈ Rnu a
control input vector; and θ = col(θ1, . . . , θm) is a parameter
vector, with θj ∈ Rn

j
θ . The matrices Φj(v, w

j , u) ∈ Rn
j
θ×nv

and the vectors a(v, w, u) ∈ Rnv and gj(v, w
j) ∈ Rnjw

are assumed to be continuously differentiable in their argu-
ments. We will also use the more compact notation

ΦT(v, w, u) :=
[
ΦT

1 (v, w1, u) . . . ΦT
m(v, wm, u)

]
and

g(v, w) := col(g1(v, w1), . . . , gm(v, wm)) .

The role of an adaptive observer is to provide an online
estimation of the states and the parameters of the system
from measurements of the input u(t) and output v(t).
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The structure of (1) is motivated by models of neuronal
dynamics [15]. The state v represents a vector of membrane
voltages in a neural network, while w represents a vector of
gating variables that dictate ion channel and synaptic dy-
namics. This specific application is discussed in Section IV.

In our problem formulation, we assume that the trajec-
tories of the system (1) evolve in a compact positively
invariant set, and that the internal dynamics of (1) are
exponentially contracting [14], uniformly in v:

Assumption 1. There exists a compact set V ×U such that
{v(t), u(t)} ∈ V × U for all t ≥ 0.

Assumption 2. For each j = 1, . . . ,m, there exists a
compact convex set Wj which is positively invariant with
respect to (1b), uniformly in v on Rnv . Furthermore, there
exist a symmetric matrix Mj(t) = Θj(t)

TΘj(t) such that
σI � Mj(t) � σI for some σ, σ > 0, and a contraction
rate λj > 0 such that the generalized Jacobian

Fj := (Θ̇j + Θj∂wjgj(v, w
j))Θ−1j (2)

satisfies
Fj + FT

j � −λjI (3)

for all {v, wj} ∈ Rnv ×Wj and all t ≥ 0.

In [9], an adaptive observer-based approach (inspired
by the earlier designs of [10] and [11]) was proposed to
estimate the parameter vector θ = col(θ1, . . . , θm) in real-
time. In the present work, our point of departure is the
adaptive observer given by

˙̂v = ΦT(v, ŵ, u)θ̂ + a(v, ŵ, u) + γ(I + ΨTPΨ)(v − v̂)

˙̂w = g(v, ŵ) (4a)
˙̂
θ = γP Ψ (v − v̂)

where the matrices P and Ψ evolve according to

Ψ̇ = −γΨ + Φ(v, ŵ, u) , (4b)

Ṗ = αP − αP ΨΨTP, P (0) � 0, (4c)

with γ > α > 0. Under Assumptions 1 and 2, and under
the persistent excitation (PE) assumption that

∃T > 0, ∀t ≥ 0 : δI �
∫ t+T

t

Ψ(τ)ΨT(τ)dτ � δI (5)

for some δ, δ > 0, it can be shown that the adap-
tive observer state vector col(v̂(t), ŵ(t), θ̂(t)) converges to
col(v(t), w(t), θ) exponentially fast as t → ∞ (see [9,
Theorem 1] and its proof).

The adaptive observer (4) relies on the nθ × nθ matrices
P (t) and ΨΨT to update the parameter estimates θ̂. From
a computational point of view, when the number nθ =∑m
j=1 n

j
θ is large, updating the (nθ)

2 states of P (t) becomes
costly. In this paper, we are interested in redesigning the
adaptive observer above so as to decrease the number of
required observer states in P (t).

We will explore the simple idea that the matrix ΨΨT can
be approximated by its (block) diagonal elements ΨjΨ

T
j

under suitable assumptions. This will lead to a decoupled
version of the update rule for each component θj of θ
which is in addition distributed with respect to the internal
dynamics states wj .

III. DISTRIBUTED ADAPTIVE OBSERVER

We now consider the adaptive observer design given by

˙̂v =

m∑
j=1

ΦT
j (v, ŵj , u)θ̂j + a(v, ŵ, u) (6a)

+
(
γ0I + γj

m∑
j=1

ΨT
j PjΨj

)
(v − v̂)

˙̂wj = gj(v, ŵ
j) (6b)

˙̂
θj = γjPj Ψj (v − v̂) (6c)

where γ0, γ1, . . . , γm > 0 are constant gains, and the
matrices Pj and Ψj evolve according to

Ψ̇j = −γjΨj + Φj(v, ŵ
j , u), Ψj(0) = 0, (6d)

Ṗj = αjPj − αjPj ΨjΨ
T
j Pj , Pj(0) � 0, (6e)

for all j = 1, . . . ,m (there is no loss of generality in the
choice of Ψj(0) above).

The adaptive observer (6) is obtained from (4) by ignoring
the off-diagonal terms in ΨΨT, enforcing a block-diagonal
structure in the matrix P (t), and allowing for different
learning gains γj > 0 and forgetting rates αj > 0. In
the new design, the adaptation law given by (6c)-(6e) is
distributed with respect to each “regressor” ΦT

j and its
associated internal dynamics (6b). The total number of states
in the matrices Pj for j = 1, . . . ,m is now reduced to
m ×

∑m
j=1(njθ)

2 ≤ (nθ)
2. In addition, the learning gains

and forgetting rates can now be chosen independently, which
might be beneficial to account for different timescales in
the internal dynamics components (1b). These timescales
correspond to the contraction rates λj in Assumption 2.

Remark 1. The distributed adaptive observer (6) was de-
signed by modifying the design of [9], which exactly solves
a Recursive Least Squares (RLS) problem with exponential
forgetting [12, Chapter 2]. In a similar spirit, a modification
of the RLS algorithm based on a diagonal update rule was
previously proposed by [13]. However, not much is known
about the convergence properties of such diagonal update
rules, and they do not seem to have been considered in the
context of adaptive observers.

Remark 2. Many authors have studied the related problem
of directional forgetting in RLS estimation, e.g. [16], [17],
[18]. The adaptive observer above is not based on direc-
tional forgetting methods, however, since such methods still
consider off-diagonal terms of ΨΨT in the update rule. It is
also worth mentioning that the diagonal update rule above
is reminiscent of the idea of splitting across features when
solving regression problems with the Alternating Direction
Method of Multipliers [19].



Remark 3. While the rather general PE condition (5) is
a sufficient condition for the consistent exponential conver-
gence of the adaptive observer (4), the same condition may
not be sufficient for exponential convergence of the adaptive
observer with the diagonal update rule (6). The reason can
be illustrated by considering the simplified linear model

y = γΨ(t)Tθ

with known Ψ(t). It is well-known that the update rule
˙̂
θ = PΨ(y − γΨTθ̂) (7)

with P given by (4c) ensures that θ̂(t) → θ exponentially
fast as long as the PE condition (5) holds. Indeed, the PE
condition ensures that P (t) is uniformly positive definite
and bounded above [10], leading to the Lyapunov function
candidate V (t, θ̃) = θ̃TP−1(t) θ̃ where θ̃ := θ − θ̂. This
function satisfies

V̇ (t, θ̃) = −θ̃T(αP−1 + (2γ − α)ΨΨT)θ̃ ,

which is uniformly negative definite for γ > α/2. Suppose
now that we replace the update rule (7) by its diagonal
counterpart

˙̂
θ = P̄Ψ(y − γΨTθ̂) ,

with P̄ := diag{P1, . . . , Pm} and Pj(t) given by (6e),
where for simplicity we take αj = α. Persistent excitation
with respect to each ΨjΨ

T
j still ensures that P̄ (t) is uni-

formly positive definite and bounded above, but PE alone is
not sufficient to ensure the uniform negative definiteness of
the derivative of the Lyapunov function candidate V̄ (t, θ̃) =
θ̃TP̄−1(t) θ̃.

The previous remark illustrates that the convergence anal-
ysis of the distributed observer requires further investigation.
In the same vein as [20], [21], we shall give up on negative
definiteness (or semidefiniteness) of the derivative of the
Lyapunov function. To state our final assumption, we define
the matrices

P̄ := diag{P1, . . . , Pm} ,
Γ := diag{γ1In1

θ
, . . . , γmInmθ } ,

A := diag{α1In1
θ
, . . . , αmInmθ } ,

D := diag{Ψ1ΨT
1 , . . . ,ΨmΨT

m} ,

(8)

where the Pj above come from (6e).

Assumption 3. For all v(t), u(t), there exists a T > 0 such
that for all t ≥ 0, the following hold:

(i) For each j = 1, . . . ,m, we have∫ t+T

t

Ψj(τ)Ψj(τ)Tdτ � δj

for some δj > 0.
(ii) Let α = min{α1, . . . , αm}. Then there exists a β > 0

such that
1

T

∫ t+T

t

λmax(AD + γ0ΨΨT − ΓΨΨT −ΨΨTΓ)dτ

≤ (α− β)×min
j
δjαje

−2αj ,T .

We can now state our main theoretical result:

Theorem 1. Consider the true system (1) and the adaptive
observer (6). Under Assumptions 1 to 3, for any v̂(0) ∈ Rnv ,
ŵ(0) ∈

∏
jWj , and θ̂(0) ∈ Rnθ , we have

col(v̂(t), ŵ(t), θ̂(t))→ col(v(t), w(t), θ)

exponentially fast as t→∞.

Proof. See Appendix A.

Remark 4. Assumption 3 part (ii) shows that to promote
consistent parameter estimation, we can pick Γ = γ0I with
γ0 � αj for all j: then AD+ γ0ΨΨT−ΓΨΨT−ΨΨTΓ ≈
−γ0ΨΨT � 0. However, the freedom in choosing different
γj allows us to be more strategic in terms of how to choose
those gains to ensure convergence of the observer, especially
when some prior information about the system is available.
This is illustrated in Section IV-A.

IV. APPLICATION TO BIOPHYSICAL NEURAL NETWORKS

In the context of biophysical neural network models,
each component vi of the vector v ∈ Rnv represents the
membrane potential of a single neuronal cell. In each of
these cells, the membrane potential evolves according to

civ̇i = −
∑
ion∈I

I ioni −
∑

syn∈S

∑
k 6=i

Isyni,k −µ
leak
i (vi− ν leak) +ui,

(9)
where ci > 0 is a capacitance,

I ioni = µion
i (mion

i )p
ion

(hioni )q
ion

(vi − νion) (10)

are intrinsic ionic currents,

Isyni,k = µsyn
i,k s

syn
i,k (vi − νsyn) (11)

are synaptic currents, and µleak
i (vi− ν leak) is a leak current.

The set I collects ionic current types, while S collects
synaptic current types. The scalars µion

i > 0 and µsyn
i,k >

0 are intrinsic and synaptic maximal conductances, and
the scalars νion ∈ R and νsyn ∈ R are intrinsic and
synaptic Nernst potentials, respectively. Finally, the scalars
mion
i , hioni ∈ (0, 1) and ssyni,k ∈ (0, 1) are intrinsic and synap-

tic gating variables, respectively. Those gating variables
modulate the intensity of the currents traversing the neuronal
membrane, according to the voltage-dependent dynamics

τ ionm (vi) ṁ
ion
i = −mion

i + σion
m (vi) (12a)

τ ionh (vi) ḣ
ion
i = −hioni + σion

h (vi) (12b)
ṡsyni,k = asynσ

syn(vk)(1− ssyni,k )− bsynssyni,k (12c)

where τ(·) are bell-shaped1 functions of the form τ(v) =
τ + (τ − τ) exp(−(v − ζ)2/χ2), with τ , τ > 0, where σ(·)
are sigmoids of the form σ(v) = (1+exp (−(v − ρ)/κ))−1,
and where asyn, bsyn > 0.

For i, k = 1, . . . , nv , the biophysical neural network
model given by (9)-(12) can be put in the parametric form

1The results easily extend to other forms of time-constant functions and
sigmoidal functions.



(1). We illustrate this fact by means of an example in which
the components of the parameter vector θ are given by the
maximal conductances µion

i and µsyn
i,k , which constitute key

parameters dictating the behavior of the network (see [9] for
more general parametrizations).

Example 1. The Hodgkin-Huxley (HH) biophysical model
first introduced by [22] contains a sodium and a potassium
intrinsic current, so that I = {Na,K}. Here we consider
two HH neurons interconnected bidirectionally by means of
a GABA-type inhibitory synapse (abbreviated by G), so that
S = {G}. We parameterize the model according to

θ = col(θNa, θK, θG) ,

where

θNa = (µNa
1 , µ

Na
2 )T, θK = (µK

1 , µ
K
2 )T, θG = (µG

1,2, µ
G
2,1)T .

The voltage dynamics (9) of this model can be expressed as

v̇ = ΦNa(v, w
Na)θNa+ΦK(v, wK)θK+ΦG(v, wG)θG+a(v, u)

with the internal states

wNa = (mNa
1 , h

Na
1 ,m

Na
2 , h

Na
2 )T, wK = (mK

1 ,m
K
2 )T, and

wG = (sG
1,2, s

G
2,1)T,

the system matrices

ΦNa(v, w
Na) = −diag

(
(wNa

1 )3wNa
2 (v1 − νNa) , −(wNa

3 )3wNa
4 (v2 − νNa)

)
,

ΦK(v, wK) = −diag
(
(wK

1 )4(v1 − νK) , (wK
2 )4(v2 − νK)

)
,

ΦG(v, wG) = −diag
(
wG

1 (v1 − νG) , wG
2 (v2 − νG)

)
,

and the known vector

a(v, u) =

(
−µleak

1 (v1 − ν leak) + u1
−µleak

2 (v2 − ν leak) + u2

)
.

With the choice of internal states above, the internal dynam-
ics (12) can be expressed as (1b), and hence the model is
in the form (1) (for clarity, we have replaced indexing by
j = 1, . . . ,m with indexing by ion ∈ I and syn ∈ S).

It can be shown that any conductance-based model (9)-
(12) satisfies Assumptions 1 and 2; in particular the internal
dynamics (12) are exponentially contracting (see [9] for
rigorous proofs). Hence, (6) can be used to estimate the
maximal conductances of any conductance-based model.

Example 1 shows an interesting feature of biophysical
neural network models: the matrices Φj(v, ·) are diagonal,
with the ith diagonal elements depending only on the
voltage and internal states of the ith neuron. This feature
allows for distributing parameter estimation over the neurons
in the network, in addition to distributing it over individual
membrane currents. This is illustrated next:

Example 2. Consider the two-neuron HH network of Ex-
ample 1. With the distributed observer (6), the sodium
maximum conductance update rule is given by

˙̂
θNa = γNaPNaΨNa(v − v̂)

Ψ̇Na = −γNaΨNa + ΦNa(v, ŵ
Na)

ṖNa = αNaPNa − αNaPNaΨNaΨ
T
NaPNa

(13)

Fig. 1. Voltages of the two-neuron HH network in Section IV-A.

For ΨNa(0) = 0 and diagonal PNa(0) � 0, the matrices
ΨNa(t), and PNa(t) are diagonal for all t ≥ 0, and (13)
becomes the network-distributed update rule

˙̂µNa
i = γNap

Na
i ψ

Na
i (vi − v̂i)

ψ̇Na
i = −γNaψ

Na
i − (m̂Na

i )3ĥNa
i (vi − νNa)

ṗNa
i = αNap

Na
i − αNa(p

Na
i )2(ψNa

i )2

for i = 1, 2. The same simplification applies to the update
rules of θ̂K and θ̂G. Hence the observer (6) becomes fully
distributed with respect to neurons in the network and
individual neuronal membrane currents in each neuron.

A. Numerical simulation

We finish this section by simulating online parameter
estimation of the two-neuron HH network of Example 1.
By doing so, we also show that the distributed adaptive
observer estimates are able to approximately track slowly
time-varying parameters. We consider a configuration in
which the two neurons in the true system have identical
parameters, except for their synaptic maximal conductances
and control inputs. The parameters to be estimated are given
by µNa

1 = µNa
2 = 120, µK

1 = µK
2 = 36,

µG
1,2 = 0.75− 0.4(1 + e−(t−750)/100)−1, and

µG
2,1 = 0.25 + 0.4(1 + e−(t−750)/100)−1,

while the remaining (non-adaptive) parameters are described
in Appendix B (which also describes initial conditions).
Figure 1 shows the resulting voltages of the network.

We compare the performance of the distributed observer
(6), implemented according to Example 2, with the non-
distributed version (4). To check the robustness of the ob-
servers to measurement noise, both observers are simulated
with the measured v(t) replaced by v(t) + e(t), where e(t)
is white Gaussian measurement noise chosen so that the
signal-to-noise between v(t) and e(t) is of 40 dB.

The non-distributed observer is simulated with α = 0.15
and γ = 2. The distributed observer is simulated with the
two different gain sets below:

Gains γ0 γNa γK γG αNa αK αG

(A) 2 2 2 2 0.15 0.15 0.15
(B) 2 2 2 0.8 0.15 0.15 0.03

The behaviour of the estimates µ̂Na
i and µ̂G

i,j is shown
in Figures 2 and 3 (the behaviour of µ̂K

i is qualitatively



similar to that of µ̂Na
i and is omitted). The estimates of

the non-distributed observer converge very rapidly to a
neighborhood of the true parameter values (after only a
few spikes, compare with Figure 1). This indicates a rather
aggressive choice of gains, which can also be inferred from
the perturbation in µ̂G

1,2 seen just before 1200 ms (this
perturbation occurs due to a momentary decrease in the
excitation provided by v2, which increases sensitivity to
noise). For the distributed observer with gain set (A), which
mimics the aggressive gains of the non-distributed observer,
it can be seen that µ̂Na

i converges with a small smooth
transient, but µ̂G

i,j converges with a large transient with rapid
oscillations. A less aggressive choice of gains could mitigate
the undesired transients and decrease the sensitivity to noise,
at the cost of a slower convergence rate (for a detailed
analysis, see [9]). The distributed observer allows being
strategic with respect to the choice of gains: the gain set
(B) remedies the undesirable transients in µ̂G

i,j with a less
aggressive choice of gains for αG and γG, while keeping
the other gains from the set (A). As a result, the good
convergence properties of µ̂Na

i (and of µ̂K
i ) are preserved.

V. DISCUSSION

We have shown that the distributed adaptive observer
proposed in this paper is well-suited for estimating net-
works of biophysical neuronal models in real-time. We
envision two applications of this work. First, experiment
design in electrophysiology: neuromodulators are capable
of changing the maximal conductances of living neurons,
and this process can be studied in vitro using a closed-loop
technique called dynamic clamp [23]. The adaptive observer
provides a means to track neuromodulatory changes in
real-time, which allows incorporating this information in
experiment design. The second application is the detection

Fig. 2. Estimates of µNa
1 = µNa

2 (dashed line) for the non-distributed and
distributed adaptive observers with gain sets (A) and (B).

of qualitative changes in excitable regimes [24]: epileptic
seizures are associated to hyperexcitable neuronal states;
given intracellular voltage data from a large network of neu-
rons, the distributed adaptive observer provides a tractable
means to keep track of the conductances responsible for
modulating cellular excitability. This information is valuable
for predicting the onset of switches in excitable regime
associated to seizures.

In this paper, we have assumed the internal dynamics (1b)
is known. To address the case of an uncertain or unknown
internal dynamics, a distributed version of the locally con-
vergent nonlinearly parameterized adaptive observer in [9],
designed to estimate the internal dynamics, can be proposed.
This will be the subject of future work.

APPENDIX

A. Proof of Theorem 1

The proof is inspired by the results of [20], [21] who
provided sufficient conditions for exponential stability of
nonlinear systems without requiring a Lyapunov function
with a negative semidefinite derivative. The proof also uses
the idea of virtual system from contraction theory, see [14].
The idea is to construct a dynamical system (the virtual
system) whose trajectories contain the trajectories of the true
system (1) as well as those of the system (6a)-(6c), and then
show that the virtual system is exponentially contracting on
a positively invariant set. Contraction of the virtual system’s
trajectories then imply exponential convergence of (v̂, ŵ, θ̂)
to (v, w, θ). The virtual system is given by

ṡ = g(v, s)

ṙ = f̃(t, s, η) + a(v, s, u) + (γ0I + ΨTP̄ΓΨ)(v − r)
η̇ = P̄ΓΨ(v − r)

(14)

Fig. 3. Estimates of µG
1,2 and µG

2,1 (dashed lines) for the non-distributed
and distributed adaptive observers with gain sets (A) and (B).



where

f̃(t, s, η) = ΦT(v, ŵ, u)η + (ΦT(v, s, u)− ΦT(v, ŵ, u))θ

and where Ψ comes from (6d), which can be rewritten as

Ψ̇ = −ΓΨ + Φ(v, ŵ, u), Ψ(0) = 0 .

Here, s, r and η are the virtual system states, as opposed
to v(t), ŵ(t), and u(t), which are treated as time-varying
signals. Notice that any solutions col(w, v, θ) of (1) and
col(ŵ, v̂, θ̂) of (6) are particular solutions of the virtual
system. The first two equations of the virtual system have
been written in a different order with respect to those of
the true system and the adaptive observer, to simplify the
notation in the remainder of the proof.

To proceed, we derive the differential virtual system,
given by δ̇sδ̇r

δ̇η

 =

[
J1,1 0
J2,1 J2,2

]
︸ ︷︷ ︸

J

δsδr
δη

 (15)

where the Jacobian J has the components

J1,1 = diag{∂s1g1(v, s1), . . . , ∂smgm(v, sm)} (16a)

J2,1 =

[
∂s(Φ

T(v, s, u)θ + a(v, s, u))
0

]
, (16b)

J2,2 =

[
−(γ0I + ΨTP̄ΓΨ) ΦT(v, ŵ, u)

−P̄ΓΨ 0

]
(16c)

Following the ideas of [14], [21] we show that the dynamics
(14) are exponentially contracting on the invariant set W ×
Rnv ×Rnθ using an infinitesimal coordinate transformation
(we write W :=

∏
jWj). We define

δz = col

(
µΘ̄(t)δs, Θ0(t)

(
δr
δη

))
, (17)

where µ > 0 is an arbitrary constant, Θ̄ is given by

Θ̄(t) := diag{Θ1, . . . ,Θm},

with the Θj(t) from Assumption 2, and Θ0(t) is given by

Θ0(t) =

[
I −ΨT

0 R̄
1
2

]
,

with

R̄(t) = diag{R1(t), . . . , Rm(t)} := P̄ (t)−1.

Under Assumptions 1 and 2, Ψ(t) is bounded for all t ≥
0, which implies R̄(t) is a well-defined upper-bounded
inverse of P̄ (t), see [9, Lemma 3]. Furthermore, part (i)
of Assumption 3 ensures that

Rj(t) � δjαje−2αjT I, t ≥ T (18)

and Rj(t) � e−αjTR(0) � 0 for t ∈ [0, T ), see [10, Lemma
1]. As a consequence, J in (15) is bounded on W ×Rnv ×

Rnθ for all t ≥ 0, and Θ0(t) is uniformly invertible and
bounded, with

Θ−10 (t) =

[
I ΨTP̄

1
2

0 P̄
1
2

]
(19)

Following [21], we prove contraction of the virtual system
(14) by showing that ‖δz(t)‖ → 0 as t → 0. For that
purpose, we now derive the transformed differential system.
Taking the derivative of (17) and using the inverse coordi-
nate transformation, we obtain

δ̇z =

[
F̄ 0

µ−1J2,1Θ̄−1 F0

]
︸ ︷︷ ︸

F (t, s)

δz (20)

where F̄ = diag{F1, . . . , Fm}, with Fj given by (2), and
where F0 is given by

F0 =
(
Θ̇0 + Θ0J2,2

)
Θ−10 (21)

(here, we have used Θ0J2,1 = J2,1).
The dynamics of the distance ‖δz‖ is governed by

d

dt
‖δz(t)‖2 = δzT(F + FT)δz

and hence we seek an upper bound for F +FT. To compute
F0 + FT

0 , it is worth noticing that since d(P−1j )/dt =

−P−1j ṖjP
−1
j , the diagonal elements of R̄ obey

Ṙj = −αjRj + αjΨjΨ
T
j

from where we derive the relation

d
dt (R̄

1
2 )P̄

1
2 + P̄

1
2 d
dt (R̄

1
2 ) = −A+ P̄

1
2ADP̄

1
2 (22)

It follows from (16c), (19), (21) and (22) that

F0 + FT
0 =

[
−2γ0I −γ0ΨTP̄

1
2

−γ0P̄
1
2 Ψ −A+ P̄

1
2 (AD − ΓΨΨT −ΨΨTΓ)P̄

1
2

]
Now, using Assumption 2 and F in (20), we have that

F + FT ≤ εI +M +N

where

M =

[
−εI µ−1Θ̄−TJT

2,1

µ−1J2,1Θ̄−1 −εI + γ0M2,2

]

M2,2 =

[
−I −ΨTP̄

1
2

−P̄ 1
2 Ψ −P̄ 1

2 ΨΨTP̄
1
2

]
with ε > 0 an arbitrary constant, and

N =

−minj{λj}I 0 0
0 −γ0I 0

0 0 −A+ P̄
1
2QP̄

1
2

 (23)

with
Q = AD + γ0ΨΨT − ΓΨΨT −ΨΨTΓ

In what follows, we choose ε such that

0 < ε < min{γ0, λ1, . . . , λm, β} (24)



where β > 0 is taken from part (ii) of Assumption 3.
Using Schur’s complement, we see that M2,2 � 0. Then,

since µ > 0 is arbitrary and Θ̄ and J2,1 are bounded on on
W × Rnv × Rnθ , uniformly in t ≥ 0, we can use Schur’s
complement again to show that M � 0 for a sufficiently
large choice of µ(ε) > 0. Hence for that choice it follows
that

d

dt
‖δz(t)‖2 ≤ δz(t)T(N(t) + εI)δz(t)

≤ (λmax(N(t)) + ε)‖δz(t)‖2

Solving for this inequality at every initial time t ≥ T yields

‖δz(t+ T )‖ ≤ ‖δz(t)‖ exp
(1

2

∫ t+T

t

(λmax(N(τ)) + ε)dτ
)

Now since A, P̄ and Q are all symmetric, [25, Theorem
4.5.9] and [25, Corollary 4.3.15] can be used to show that

λmax(−A+ P̄
1
2QP̄

1
2 ) ≤ λmax(−A) + λmax(P̄ )λmax(Q)

≤ −α+ (min
j

( δjαj
e2αj T

)
)−1λmax(Q)

for all t ≥ T , where α = min{α1, . . . , αm}, and where we
have used λmax(P̄ ) = (λmin(R̄))−1 as well as (18).

It finally follows from part (ii) of Assumption 3, and the
form of N in (23), that for all t ≥ T , there is a T such that∫ t+T

t

(λmax(N(τ)) + ε)dτ ≤ (−min{γ0, λj , β}+ ε)T

Given our choice of ε in (24), the right hand side above is
strictly negative. Hence, similarly to [21, Corollary 3.1], we
conclude that ‖δz(t)‖ → 0 as t → 0 and that the virtual
system (14) is exponentially contracting on the invariant
set W × Rnv × Rnθ . As a result, we have col(ŵ, v̂, θ̂) →
col(w, v, θ) as t→∞ and the result is proven.

B. Simulation parameters

The parameters in Φ(v, w) and a(v, u) are given by
µleak
1 = µleak

2 = 0.3, νNa = 55, νK = −77, ν leak = −54.4,
and νG = −80; the parameters of the intrinsic gating
variable dynamics (12a)-(12b) are given in the table in
[9, Appendix C.1]; the parameters of the synaptic gating
variable dynamics (12c) are given by asyn = 2, bsyn = 0.1,
ρsyn = −45 and κsyn = 2. The two neurons are excited with
the control inputs u1(t) = 2 + sin(2πt/10) + sin(2πt/7) +
sin(2πt/4) and u2(t) = 1 + 2 sin(2πt/9) + sin(2πt/5).
All simulations are performed using the Euler-Maruyama
method with dt = 10−4 ms. The initial conditions are
given by v1(0) = v̂1(0) = 0, v2(0) = v̂2(0) = −60,
wNa(0) = (0, 0.5, 0, 0.5)T, wK(0) = (0, 0.5)T, wG =
(0, 0.5)T, ŵNa(0) = (0.5, 0, 0.5, 0)T, ŵK(0) = (0.5, 0)T,
ŵG = (0.5, 0)T, θ̂Na = θ̂K = (78, 78)T, θ̂G = (0, 0)T.
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