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Abstract— The main contribution of this paper is a novel
sensory feedback control law for an octopus arm. The control
law is inspired by, and helps integrate, several observations
made by biologists. The proposed control law is distinct from
prior work which has mainly focused on open-loop control
strategies. Several analytical results are described including
characterization of the equilibrium and its stability analysis.
Numerical simulations demonstrate life-like motion of the soft
octopus arm, qualitatively matching behavioral experiments.
Quantitative comparison with bend propagation experiments
helps provide the first explanation of such canonical motion
using a sensory feedback control law. Several remarks are
included that help draw parallels with natural pursuit strategies
such as motion camouflage or classical pursuit.

Index Terms— Octopus, bend propagation, sensorimotor con-
trol, feedback control, pursuit strategies

I. INTRODUCTION

Octopus arm movements have been studied extensively by
the biologists during the past few decades [1]–[4]. Octopus
arms are hyper-flexible and have virtually infinite degrees
of freedom. Although this flexibility yields an impressive
repetoire of motions, it also makes discerning the underlying
sensorimotor control mechanisms a challenging task. Several
hypotheses and methods have been proposed for the control
of octopus arms, including stiffening wave actuation [5]–[8],
energy shaping control [9], [10], and optimal control [11],
[12]. These earlier model-based studies typically lack the
integration of sensory information into the motor control.
How octopuses use their sensing capabilities to control their
arms remains an open question.

Sensorimotor control has been widely investigated in other
animals. Biologically plausible control laws for pursuit have
been proposed, such as motion camouflage (observed in bats,
dragonflies, falcons)[13]–[16] or classical pursuit (observed
in honey bees, flies) [17]–[20]. The majority of these studies
focus on terrestrial or aerial creatures. Little has been put
forth on the mathematics of potential pursuit strategies of
octopuses.

The main contribution of this paper is a novel sensory
feedback control law for octopus arms. The control law is
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inspired by several behavioral observations and biophysical
experiments.

A. Biological inspiration for sensorimotor control

1) Local target bearing sensing through suckers: An
octopus arm is equipped with an array of suckers on one
of its sides. Each sucker has an abundance of sensory
receptors (tens of thousands), including chemosensory and
mechanosensory cells [21], [22], to detect a variety of
stimuli. Fig. 1(a) depicts successive video frames from a
laboratory experiment where shrimp extract is pipetted in
the proximity of a group of suckers in an isolated octopus
arm. Frames show that suckers change their orientation in
response to the chemical stimulus and reach towards the
source. These experiments indicate that a sucker is able to
estimate the bearing to a target stimulus.

2) Bend propagation: Bend propagation in an octopus
arm refers to a stereotypical maneuver whereby an octopus
pushes a bend (localized region of large curvature) from the
base to the tip of the arm (Fig. 1(b)). It is the most widely
studied motion primitive in an octopus arm [1], [2], [5], [6].
Another related motion pattern is depicted in Fig. 1(c), where
a food source (shrimp) is presented to the octopus on the
other side of a glass obstacle with holes. The octopus near
the hole first senses the food source with suckers. Then it
squeezes its arm through the hole by creating a bend which
is subsequently propagated to catch the food.

3) The arm is passive beyond the bend point: Elec-
tromyogram (EMG) recordings indicate that during a bend
propagation maneuver, octopuses engage a wave of muscle
actuation from the base to the tip [1]. In particular, it has been
suggested that the arm muscles are activated from the base
to the point where the bend is formed, while the remaining
portion of the arm (bend to tip) stays passive. Our recent
work [8] on an open-loop control scheme that mimics this
type of muscle control was found to reproduce the bend
propagation patterns.

B. Contributions

This paper builds on a body of work from our group [8]–
[10] on control-oriented modeling of soft octopus arm and
its internal musculature based on the Cosserat rod theory.
The unique contributions of this paper are as follows:

1) A sensor model is proposed based on experimental
observations involving suckers (Fig. 1(a)). Based on the
sensor model, a biologically plausible feedback control law
is proposed. The control is in the form of internal muscle
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Fig. 1: (a) A recording of suckers of an isolated octopus arm reacting to stimuli by extending and changing their orientation. The yellow
arrows indicate the moving sucker. (b) A video sequence of an octopus performing bend propagation. The yellow arrows indicate the
location of the bend. (c) A video recording of an octopus sensing a food source and reaching towards the target by squeezing through a
hole. The yellow arrows indicate the location of the bend.

couples whose magnitude depends on the target bearing and
the location of the arm closest to the target.

2) An analysis of the equilibrium is described to show
that stationary targets in the workspace are reached. A
stability characterization of the equilibrium is also obtained.
Finally, motion patterns (such as bend propagation) that do
not necessarily involve reaching a target are shown to be
encompassed within the framework of our proposed control
scheme.

3) A numerical comparison is provided against the experi-
mental data of bend propagation in a freely moving octopus
arm. The control law is shown to reproduce bell shaped bend
velocity profiles. The comparison helps provide the first such
explanation of the bend propagation using a feedback control
law.

4) We also report additional numerical simulation results
which show life-like motion of the soft arm for a range of
observed octopus behaviors including bend formation, bend
propagation, and interaction with obstacles.

The remainder of this paper is organized as follows. The
dynamic model of an elastic rod is presented in Sec. II. The
sensory model and the feedback control law are introduced
in Sec. III. An analytical study of the proposed control law
is provided in Sec. IV. Control results are demonstrated by
numerical simulations in Sec. V, followed by a comparison
with bend propagation experiments in Sec. VI. Conclusions
appear in Sec. VII.

II. MATHEMATICAL MODEL OF AN OCTOPUS ARM

A soft octopus arm is modeled as a planar Cosserat rod [9],
[10], [23]. For simplicity of analysis, we consider the rod to
be inextensible and unshearable (Kirchhoff rod). Let {e1, e2}
denote a fixed orthonormal basis for the two-dimensional
laboratory frame. The independent variables are the time t ∈

R and the arc-length s ∈ [0, L0] where L0 is the length
of the undeformed rod (see Fig. 2). The subscripts (·)t and
(·)s denote the partial derivatives with respect to t and s,
respectively.

The position vector of the centerline is denoted by
r(s, t) ∈ R2 and the angle θ(s, t) ∈ [0, 2π) describes the
material frame spanned by the orthonormal basis {a,b},
where a = cos θ e1+sin θ e2, b = − sin θ e1+cos θ e2. The
vector a is defined to be normal to the cross section. The
kinematics of the rod are given by the following equations

rs =

(
cos θ
sin θ

)
= a, θs = κ (1)

The dynamics of a muscular octopus arm are described by
a set of partial differential equations which require specifi-
cation of internal passive elastic stresses, giving rise to the
forces n and couples m, as well as internal active forces and
couples generated by muscles. The internal forces n = n1a+
n2b are to be determined so as to satisfy the rod’s kinematic
constraints of inextensibility and unshearability. We adopt
the linear stress-strain relationship m = EIκ = EIθs for
the internal couple, where E is the Young’s modulus of the
arm and I is the second moment of area of its cross section.
We then write down the simplified dynamics of the muscular
arm as follows:

(%Art)t = (Qn)s − ζrt + f drag

(%Iθt)t = (EIκ)s + n2 − ζθt + us
(2)

where Q = [a b] is the planar rotation matrix, % is density,
A is the cross sectional area, and ζ > 0 is a damping
coefficient which models viscoelastic dissipation within the
arm. The effect of drag forces due to the surrounding fluid
environment is modeled through the term f drag, which is
explained in Appendix I. Since the arm is assumed to be
inextensible and unshearable, without loss of generality the



muscle actuations can be simplified to a couple control,
denoted by u. The dynamics (2) are accompanied by a fixed-
free boundary condition

r(0, t) = 0, θ(0, t) = 0, n(L0, t) = 0, m(L0, t) = 0 (3)

Remark 1: Since the muscle actuation is internal, we write
the effective external couple as us in (2). For our numerical
simulations, we adopt a biophysically realistic muscle model,
as established in [10]. In particular, we consider two longitu-
dinal muscles (top and bottom, see Fig. 2). These muscles run
along the length of the arm and are responsible for bending
the arm. Let uLMt and uLMb denote the muscle actuation for
top and bottom longitudinal muscles, respectively. Muscle
actuations as a function of the couple control u are then
given by

uLMt = u1{u ≥ 0}, uLMb = u1{u < 0}

where 1{·} is the indicator function.

III. SENSORIMOTOR CONTROL

Consider a target (food source) located at rtarget ∈ R2. The
arm senses the chemical signal emanated by the food source.
The control problem is to devise a control strategy based on
the sensory information to reach the target.

We define

ρ(s, t) = rtarget − r(s, t), ρ(s, t) = |ρ(s, t)| (4)

to be the vector and the Euclidean distance, respectively,
from every point along the rod to the target. The bearing
angle to the target with respect to the tangent vector along
the rod is denoted as α, so that

R(α(s, t))
rs(s, t)

|rs(s, t)|
=

ρ(s, t)

ρ(s, t)
(5)

where R(α) is the planar rotation matrix for rotating a vector
in R2 counterclockwise by the angle α.

A. Sensory model

In this paper, we assume the octopus arm has, at all times,
access to the following (chemo)sensory information:

1) Bearing information at each location along the arm α(s, t).

2) Arch-length of the closest point to the target, which we
denote by s̄(t) ∈ [0, L0] so that s̄(t) := arg min

s∈[0,L0]

ρ(s, t).

Remark 2: Estimating the bearing angle α from sensed
chemical concentration is a non-trivial problem and is out of
the scope of the current work. Future work will incorporate
biologically informed (chemo)sensing models [24], [25].
Moreover, the s̄ point may be interpreted as the point of
the arm receiving maximum chemical concentration.

target

Fig. 2: Schematic of the sensorimotor control: The sensory infor-
mation includes the angle α between the target vector ρ and the
tangent vector rs, and the arch-length s̄ of the closest point to
the target. The control is in the form of internal muscle couple
(illustrated in red) that actuates the arm from the base (s = 0) to
the closest point (s = s̄).

B. A biologically plausible feedback control law

Based on the experimental observations described in
Sec. I-A and the above sensory model, we propose the arm’s
feedback control law as

u(s, t) = −µ(s, t) sin(α(s, t)) (6)

where µ(s, t) ≥ 0 is a gain function, written as

µ(s, t) = µ̃EI(s)1{s ≤ s̄(t)} (7)

where µ̃ > 0 is a constant to be chosen. The indicator
function in (7) renders the rod passive beyond the s̄ point
(see Fig. 2).

Remark 3: The inspiration behind the proposed control
law comes from models of pursuit strategies such as classical
pursuit or motion camouflage. In particular, one might find
certain similarities between the feedback control law (6)
and the motion camouflage control law [15, Sec. 3]. These
connections are elucidated in the subsequent sections.

IV. ANALYSIS

In this section, we provide analytical results regarding the
behavior of the arm under the proposed feedback control law.
For simplicity, here we only consider a stationary target.

We express the spatial variation of the distance and angle
to the target (ρ, α) by using the kinematics of the rod (1)
and the definitions (4)-(5) as

ρs(s, t) = − cos(α(s, t))

αs(s, t) = −κ(s, t) +
1

ρ(s, t)
sin(α(s, t))

(8)

Remark 4: Analogy with planar pursuit: Note the similar-
ity between differential equations (8) in spatial domain and
governing equations in time domain of a unicycle pursuing a
stationary target (see the brief discussion in Appendix III and
compare with equations (A-3)). This gives an opportunity
to draw a parallel, by interchanging the spatial variable (s
for rod) and the temporal variable (t for pursuit trajectory).
Consider a virtual agent, initialized at the origin and oriented



toward the e1-axis (analogue to fixed boundary conditions
at the base of the rod r(0) = 0, θ(0) = 0), moving with
a constant unit speed (analogue to constant unit stretch of
the rod due to inextensibility and unshearability constraints).
Assume steering control of the agent is given by the curvature
κ of the rod. Then the temporal trajectory of such a virtual
agent would be exactly the same as the spatial configuration
of the rod.

In the light of this analogy, we investigate the equilibrium
of the rod under the proposed feedback control law, and in
particular its relation to the target.

A. Equilibrium analysis

Any equilibrium of the arm must satisfy the equations
of statics that are obtained from the dynamics (2) and the
boundary conditions (3) as

(EI(s)κ(s))s + (u(s))s = 0

Under the proposed feedback control law, an equilibrium is
found by solving the following equation for the curvature κ

κ(s) =
µ(s)

EI(s)
sin(α(s)) (9)

Notice the similarity between (9) and the steering control
law for motion camouflage (A-4). This implies the equilib-
rium configuration of the rod can be viewed as a motion
camouflage trajectory.

At the equilibrium, plugging (9) into (8) yields the closed-
loop system

ρs(s) = − cos(α(s))

αs(s) =

(
1

ρ(s)
− µ(s)

EI(s)

)
sin(α(s))

(10)

The equilibrium of the rod has two notable properties that
are described by the following proposition.

Proposition 4.1: (i) Suppose the target location is such
that ρ(0) ≤ L0. Then for all ε > 0 there exists a µ̃ > 0 large
enough such that ρ(s̄) ≤ ε for some s̄ ∈ [0, L0]. Physically
this corresponds to the arm reaching the target.

(ii) Suppose the target location is such that ρ(0) > L0.
Then for all ε > 0 there exists a µ̃ > 0 large enough such
that cos(α(L0)) ≥ 1− ε. Physically this corresponds to the
arm pointing toward the target.
A proof of the proposition is provided in Appendix II-A.
Numerical simulations that demonstrate these two cases are
given in Sec. V-A.

Remark 5: Time optimality of motion camouflage: It has
been shown that the motion camouflage law is a time-optimal
strategy to capture a target [14] (t is minimized). According
to the above analogy between the temporal variable in motion
camouflage and the spatial variable of the rod configuration,
we conclude that the location of the arm (s̄) that reaches the
target is minimized in [0, L0]. This leads to a hypothesis that
muscle energy expenditure is minimized under the proposed
control law, which is meaningful biophysically. However,
a rigorous analysis and supporting experimental study is a
subject of our future work.

B. Dynamic analysis

Proposition 4.2: Consider the dynamics of the arm (2)
with the feedback control law (6)-(7). Then the equilibrium
defined by (9) is (locally) asymptotically stable.

A proof of the proposition is given in Appendix II-B.

Remark 6: It is also of interest to analyze the trajectory of
the closest point s̄(t) during the pursuit maneuver. Intuitively,
the closest point moves directly toward the target, or in other
words it follows a classical pursuit trajectory [19]. We do
not include analysis of such kind in this paper on account of
space, but a numerical study is provided in Sec. V-B.

C. Special case: target at ∞
It has been pointed out that the octopuses sometimes seem

to be unable to correct the reaching movements after their
initiation of a bend propagation pattern [5]. This means that
bend propagation may be encoded in the octopus sensorimo-
tor control system as a primitive motion (not target-oriented).
In this subsection, we show that this type of primitive motion
can be obtained as a special case of our proposed feedback
control law.

Assume that the target position is parameterized by the
slope m as rtarget = (x∗, y∗) = (x∗,mx∗). Denote the angle
ϕ to be the orientation of the target vector ρ, so that

tanϕ =
y∗ − y
x∗ − x

=
m− y/x∗

1− x/x∗

Now let the target go to infinity by taking x∗ → ∞. This
yields ϕ → tan−1(m) for every point on the rod. It is also
trivial to see that θ(s̄)→ tan−1(− 1

m ). We also have

sinα = sin(ϕ− θ) =
1√

1 + m2
(m cos θ − sin θ) (11)

In this case we can explicitly calculate the equilibrium
configuration. The equilibrium according to (9) is now writ-
ten as

θs =
µ

EI

1√
1 + m2

(m cos θ − sin θ)

whose exact solution is given by

θ(s) = 2 tan−1

(√
1 + m2

m
tanh

(
1

2

∫ s

0

µ̃1{s′ ≤ s̄}ds′

+ tanh−1
(

1√
1 + m2

))
− 1

m

)
Remark 7: Given the slope m, the control law (6)-(7) does

not depend on the chemosensory information but is instead
a state feedback law on θ only. The slope m serves as
an estimate of the overall direction of the (virtual) target,
which is chosen before instigating the bend propagation
primitive. The feedback on θ indicates that local propriocep-
tive information (curvature) is needed for carrying out the
bend propagation movement. Studies [26], [27] have found
existence of proprioceptive cells around the intramuscular
nerve cords of the arms which are consistent with such a
hypothesis.
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Fig. 3: Simulation results of rod reaching a static target: We select six time instances for each rod configurations. The rod is shown in
faded purple with the muscle actuations illustrated in red for longitudinal muscles. A sequence of time snapshots are shown in blue for
curvature κ(s, t). (a) Two cases of reaching under no-obstacle setting with both rod and curvature profiles: Bend formation: The rod is
initialized as straight and it forms a bend towards the target. Black arrows indicate the following: 1. the rod bends at the base and points
towards the target; 2. the bend is formed; 3. the bend shifts from the mid-section to the tip; 4. the bend dissipates after the rod reaches the
target. Bend propagation: The rod has an initial bend which propagates toward the target. Black arrows indicate the following: 1. the base
curvature corrects the orientation of the rod toward the target; 2. the bend propagates. (b) Two cases of reaching under obstacle setting:
The rod performs a simple reaching movement with one obstacle present. Two obstacles create a scenario of mimicking the octopus
reaching through a hole to get the target on the other side (compare with Fig. 1(c)).

TABLE I: Parameters for models and numeric simulation

Parameter Description Numerical value

Rod model
L0 length of the undeformed rod [cm] 20
γbase rod base radius [cm] 1
γtip rod tip radius [cm] 0.1
ρ density [kg/m3] 1042
ζ damping coefficient [kg/s] 0.01
E Young’s modulus [kPa] 10

Drag model
ρwater water density [kg/m3] 1022
ctan tangential drag coefficient 0.155
cper normal drag coefficient 5.065

V. SIMULATION RESULTS

In this section, we show numerical simulations of rod
movements under our proposed sensory feedback control
law. The rod dynamics are solved using the open-source
software Elastica [28], [29]. In all simulations, the variable
γrod(s) = γtips/L0 +γbase(1− s/L0) gives the radius profile
of a tapered rod, based on measurements in real octopuses,
A(s) = π(γrod(s))2 and I(s) = A(s)2

4π are the cross sectional
area and second moment of area, respectively. For stability
of numerical simulations, a smooth function is used to
approximate the indicator function in (7). Parameter values
used in simulations are reported in Table I.

A. Reaching a static target

1) Bend formation: The rod is initialized to be straight. A
static target is presented right above the mid-section of the
rod. As can be seen from Fig. 3(a) on the left column,
the rod creates a bend at the arm mid-section (which is
also the closest to the target) oriented towards the target.
Once the bend is created, the control propagates the bend
towards the target while reorienting the arm at the base. The

local increase of curvature at the base stops when the target
is reached, at which point the equilibrium configuration is
obtained. The part of the rod between the bend point and
the tip remains passive throughout the whole movement. This
case is an example of the target within the reach of the arm
(Proposition 4.1(i)).

2) Bend propagation: The rod is initialized with a bent
configuration which is commonly seen in octopus arms. A
static target is presented in the direction the initial bend is
pointing to. The bend, initially close to the base of the rod,
is then propagated along the arm until the rod stabilizes in
a configuration that points toward the target (see Fig. 3(a),
right column). This case is an example of the target outside
the reach of the arm (Proposition 4.1(ii)).

3) Reaching in the presence of one obstacle: The rod is
initialized to be straight. A static target is above the rod
with an obstacle between the arm and the target. At first,
the rod forms a bend as described in the first case above.
When it encounters the obstacle, the passive portion of the
rod slides past the obstacle, eventually reaching the target
(see Fig. 3(b), left column).

4) Squeezing through a hole: In this case, two obstacles are
used to create a hole, mimicking the experiment illustrated
in Fig. 1(c). The rod is initialized to be straight along the
vertical direction. A static target is located on the other side
of the obstacles. The same feedback control successfully
drives the rod through the hole, squeezing and reaching to
the target (see Fig. 3(b), right column).

B. Pursuing a moving target

The proposed sensory feedback control law (6)-(7) is also
capable of pursuing a moving target. A target is initiated
above the mid-section of the rod and moved with constant



MC CPtarget point(b)
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Fig. 4: (a) The simulation result of the rod reaching a moving target:
The target moves from the right to the left as indicated by the
black arrow and is shown as a fade-in yellow sphere over six time
instances (from t = 0.0 [s] to t = 1.0 [s]). (b) Comparison of
trajectories: Three trajectories are compared for different pursuing
behaviors. Red solid line represents the trajectory of the point of the
rod (s̄) closest to the target under the proposed sensory feedback
control law (6)-(7). Orange dashed line denotes the trajectory of
a pursuer under motion camouflage strategy (A-4). Green dash-
dotted line marks the trajectory of a pursuer under classical pursuit
strategy (A-5). The same target from (a) is shown here as a blue
star with blue dotted trajectory.

speed (0.2 [m/s]) toward the left. Fig. 4(a) illustrates the
rod pursuing the target. A bend is first created and is then
propagated towards the tip, as the arm tries to follow the
target.

We compare the trajectory of the s̄ point (the closest point
to the target) with other two reference trajectories. One is a
pursuit trajectory using motion camouflage strategy (MC),
while the other employs classical pursuit strategy (CP). The
pursuer dynamics is given by (A-2) with constant speed
which is the average speed of the s̄ point from rod simulation.
For both motion camouflage and classical pursuit cases, we
take the control parameter χ = 25 in control laws (A-4)
and (A-5) (see Appendix III).

As depicted in Fig. 4(b), the trajectory of the s̄ point qual-
itatively matches the trajectory of classical pursuit strategy
rather than the motion camouflage stragety. This comparison
justifies our hypothesis (see Remark 6) that the closest point
along the rod follows a classical pursuit trajectory to chase
the target.

VI. COMPARISON WITH BEND PROPAGATION
EXPERIMENTS

In this section, we provide a comparison between results
from the proposed sensory feedback control and experi-

mental data of the bend propagation movement depicted in
Fig. 1(b). We used a two-camera system for video recording.
The experimental setup is similar to that of [8], [30], [31].

A. Arm reconstruction

1) Data processing: The image analysis software Fiji [32]
was used for processing videos of arm reaching behaviors.
Obtaining the centerline of the arm from video frames
requires the following steps: (i) background subtraction, (ii)
conversion to black-and-white images (binarization), and (iii)
skeletonization. This process of estimating the centerline
of the arm through skeletonization, is similar to previous
octopus arm tracking examples [30], [33]. Finally, data points
along the arm are manually marked for each video frame,
based on the locations of reference suckers, after overlaying
the obtained centerline on top of the arm in the background-
subtracted frames (see Fig. 5(b)). Each data point represents
the location of the same sucker across all video frames.

2) Data smoothing: In [31], a smoothing algorithm was
proposed to estimate all six modes of deformation from
marked data points on a slender body. The same algorithm
is used here, restricted to the planar case.

B. Bend velocity profile

In bend propagation movement, the peak of the curvature
profile provides the location of the bend point. We extract the
velocity of the bend point from the smooth reconstructed arm
(over forty-four frames). We also calculate the bend velocity
profile from the bend propagation simulation presented in
Sec. V-A (Fig. 3(a), right column). Noisy bend velocity
profiles are smoothed using a low-pass filter (cut-off fre-
quency of 1 Hz). Both of these profiles resemble a bell curve
as shown in Fig. 5(c). Notably, such bell-shaped velocity
profiles are prominently highlighted in octopus literature [1],
[2], and are naturally recovered here as outcome of our
control law.

VII. CONCLUSION AND FUTURE WORK

In this paper, a novel sensory feedback control law is
described for octopus arm movements. The sensor model is
motivated by behavioral experiments involving suckers. The
control law is inspired in equal part by experimental obser-
vations of bend propagation and pursuit strategies studied in
literature. For the proposed control law, analytical results are
obtained including characterization of the equilibrium and its
stability analysis. Several numerical simulation results show
life-like motions of the soft arm.

A salient contribution is the numerical comparison against
the experimental data of bend propagation in a freely moving
octopus arm. The control law is shown to recover the
characteristic bell shape of the bend velocity profile. The
comparison helps provide the first such explanation of bend
propagation using a feedback control law.

Future work will consider more realistic sensory models,
including partially observed chemosensory and propriocep-
tory signals, and extend our analysis to 3D scenarios.
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Fig. 5: (a) An image frame from the original video of an octopus doing bend propagation (also see Fig. 1(b)). (b) The original image is
processed by background subtraction, binarization, skeletonization to get an isolated arm with estimated centerline (in green). Then we
manually mark the data points (in red) along the estimated centerline according to certain suckers’ positions. The marked data points are
used for smooth arm reconstruction. (c) A quantitative comparison of bend velocity profile between the reconstructed octopus arm from
experiment and the arm from simulation. Both the velocity profiles are bell shaped.
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APPENDIX I
DRAG MODEL

The drag model is closely based upon [6], [8]. We write
the drag forces as

f drag = −1

2
%waterQ

[
Atanctanv1|v1|
Apercperv2|v2|

]
(A-1)

where %water is the density of water, Atan(s) = 2πγrod(s)
is the surface area of a unit length segment, and Aper =
2γrod(s) is the projected area of the unit length segment
in the plane perpendicular to the normal direction. Here
γrod(s) denotes the radius of the circular cross section of
the rod. The coefficients ctan and cper denote the tangential
and perpendicular drag coefficients. Typically, cper is much



larger than ctan. Finally, v1 and v2 are the components of the
velocity rt in the material frame, i.e., rt = v1a + v2b.

APPENDIX II
PROOFS

A. Proof of Proposition 4.1

At the outset, define Γ(s) := ρs = − cosα and denote
ρ0 = ρ(0).

(i) For this case, we necessarily have ρ0 ≤ L0. Here s̄ ≤
L0 is given. The proof is completed in the following two
steps:
Step 1: Define ρ1 ∈ (0, ρ0) such that µ̃ = 1

ρ1
+ c for some

c > 0. Then,

Γs = − sin2 α

(
µ̃− 1

ρ

)
≤ −c(1− Γ2), ∀ρ ≥ ρ1

Note that ρs = − cosα ≥ −1, which implies

ρ(s) ≥ ρ1 ∀s ≤ ρ0 − ρ1 =: s1

Therefore, it is guaranteed that Γs ≤ 0, ∀s ≤ s1. By
separation of variables and some calculations, we may derive

Γ(s) ≤ tanh
(
tanh−1 Γ0 − cs

)
, ∀s ≤ s1

where we denote Γ0 = Γ(0). We can therefore conclude that
Γ(s1) ≤ tanh

(
tanh−1 Γ0 − cs1

)
.

Note that for some ε1 > 0 sufficiently small, tanh(z) ≤
−1 + ε1 ⇔ z ≤ 1

2 ln
(

ε1
2−ε1

)
=: z0. Thus, if we take c to be

sufficiently large such that

c ≥ tanh−1 Γ0 − z0
s1

=: c1

then we are guaranteed to achieve Γ(s1) ≤ −1 + ε1 given
any small ε1 > 0 by using large enough µ̃ = 1

ρ1
+ c.

Step 2: Note that

Γs = − sin2 α

(
µ̃− 1

ρ

)
= − sin2 α

(
1

ρ1
+ c− 1

ρ

)
≤ 0, ∀ ρ ≥ ρ1

cρ1 + 1
=: ρ2

Similar to Step 1, we have ρ(s) ≥ ρ2 ∀s ≤ ρ0 − ρ2 =: s2.
For any ε > 0, choose ρ2 ≤ ε, i.e.,

c ≥ 1

ε
− 1

ρ1
=: c2

Then, by taking c ≥ max{c1, c2}, we have ρs = Γ(s) ≤
Γ(s1) ≤ −1 + ε1, ∀s1 ≤ s ≤ s2. Then, for any ε > 0, we
have

ρ(s2) = ρ0 +

∫ s1

0
ρs ds+

∫ s2

s1

ρs ds

≤ ρ0 +

∫ s1

0
tanh

(
tanh−1 Γ0 − cs

)
ds+ (−1 + ε1)(s2 − s1)

≤ ρ0 +
ln
(

cosh(b)
cosh(b−cs1)

)
c︸ ︷︷ ︸

h(c)

+(−1 + ε1)
cρ21

cρ1 + 1
≤ ε

where b = tanh−1 Γ0. One can derive that h′(c) < 0 for
c ≥ c1 and h(c) → ρ1 for c → ∞. Then, ∃c3 > 0 s.t.
ρ(s2) ≤ ε for c ≥ c3 and small enough ε1.

Note that for s ∈ [s2, s̄], we have µ̃ − 1
ρ(s) ≤ 0, α(s) ∈

(0, π2 ] and thus, αs > 0. Moreover, ρs = − cosα ≤ 0
for s ∈ [s2, s̄]. Hence, ρ(s̄) ≤ ρ(s2) ≤ ε by having
c ≥ max{c1, c2, c3}.

In conclusion, for all ε > 0, choose ρ1 ∈ (0, ρ0), ∃ε1, c
s.t. ε1 > 0 and c ≥ max{c1, c2, c3}, i.e., ∃µ̃ = 1

ρ1
+ c > 0

large enough so that ρ(s̄) ≤ ε for given s̄ ≤ L0.
(ii) For this case, we have ρ0 > L0 and s̄ = L0. The proof

is immediate by Step 1 in case (i) by choosing ρ1 = ρ0−L0,
i.e. s1 = s̄ = L0.

B. Proof of Proposition 4.2

In [10, Sec. III-E] it has been shown that if the internal
muscle forces and couples are expressible as gradients of
an energy function (called muscle stored energy function),
then the system maintains its Hamiltonian structure (with
damping) and (local) convergence to an equilibrium can be
readily shown. In the present case, we see that the internal
elastic couple is gradient of a quadratic elastic stored energy
function W e = 1

2EIκ
2. Note that for any time t, given some

curvature profile κ, the bearing angle α can be uniquely
determined, i.e. we may express α = α(κ). Then define
Wm =

∫
µ sin(α(κ)) dκ. Then it is clear that u in (6) is

gradient of the function Wm. This completes the proof.

APPENDIX III
PURSUIT STRATEGIES FOR A UNICYCLE

Consider a point particle (pursuer) on a plane pursuing
an evading target. The dynamics of a pursuer are described
by the following unicycle system (states are the position
(x(t), y(t)) and orientation ϑ(t)):

ẋ = v cosϑ, ẏ = v sinϑ, ϑ̇ = u (A-2)

Here, the dot notation is used for time derivatives. Assume
the pursuer moves at a constant speed v and the only control
is the steering rate u. The moving target’s dynamics can be
represented in a similar way. We assume the target is also
moving at a constant speed vtarget.

Let σ(t) be the distance between the pursuer and the target,
φ(t) is the bearing angle to the target, and ψ(t) is the bearing
angle of the pursuer with respect to the target. Then the time
evolution of (σ, φ) can be written as [20]

σ̇ = −v cosφ− vtarget cosψ

φ̇ = −u +
1

σ

(
v sinφ+ vtarget sinψ

) (A-3)

The motion camouflage control law [15] is the steering
control given by

u = χ

(
sinφ+

vtarget

v
sinψ

)
(A-4)

where χ > 0 is some large enough given constant.
The classical pursuit control law [19], [20] is the steering

control given by

u = χ sinφ+
1

σ

(
sinφ+

vtarget

v
sinψ

)
(A-5)

where χ > 0 is some large enough given constant.


