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Verification of Strong K-Step Opacity for Discrete-Event Systems

Xiaoguang Han, Kuize Zhang, and Zhiwu Li

Abstract— In this paper, we revisit the verification of strong
K-step opacity (K-SSO) for partially-observed discrete-event
systems modeled as nondeterministic finite-state automata. As
a stronger version of the standard K-step opacity, K-SSO
requires that an intruder cannot make sure whether or not a
secret state has been visited within the last K observable steps.
To efficiently verify K-SSO, we propose a new concurrent-
composition structure, which is a variant of our previously-
proposed one. Based on this new structure, we design an
algorithm for deciding K-SSO and prove that the proposed
algorithm not only reduces the time complexity of the existing
algorithms, but also does not depend on the value of K.
Furthermore, a new upper bound on the value of K in K-SSO
is derived, which also reduces the existing upper bound on K

in the literature. Finally, we illustrate the proposed algorithm
by a simple example.

I. INTRODUCTION

Opacity is a concealment property, which requires that the

secret information of a system cannot be distinguished from

its non-secret information to a passive observer (called an

intruder) who completely knows the system’s structure but

has only limited observations of its behavior. In other words,

an opaque system always holds the plausible deniability for

its “secrets” during its execution. Opacity adapts to the char-

acteristics of a variety of security and privacy requirements in

diverse dynamic systems, including event-driven systems [1],

[2], time-driven systems [3], [4], and metric systems [5].

The notion of opacity initially appeared in the computer

science literature [6] for analyzing cryptographic protocols.

Whereafter, various versions of opacity were introduced in

the context of discrete-event systems (DES), including Petri

nets [7], labelled transition systems [8], automata [9], etc. For

details see the recent surveys [1], [10] and the textbook [2].

Note that, in the literature the secrets of a system are modeled

by two ways: 1) a set of secret states, and 2) a set of secret

behaviors/traces. For the former, opacity is referred to as

state-based (e.g., [7]), while for the latter, opacity is referred

to as language-based (e.g., [8], [9]).

In automata-based formalisms, different notions of opac-

ity were proposed in the literature, including current-state

opacity (CSO) [11], initial-state opacity (ISO) [12], K-step
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opacity (K-SO) [13], infinite-step opacity (Inf-SO) [14]1,

and language-based opacity (LBO) [8], [9], [15]. Some more

efficient algorithms to check them have also been provided

in [16]–[18]. In particular, it was proven that the above-

mentioned five versions of opacity could be reduced to each

other in polynomial time when LBO is restricted the special

case that the secret languages are regular (cf., [16], [19],

[20]), while LBO is generally undecidable in finite-state

automata with ǫ-labeling functions (cf., [8]). Furthermore,

when a system is not opaque, a natural question to ask that

“how can one makes it opaque? This is opacity enforcement

problem, which has been extensively investigated using a va-

riety of techniques, including supervisory control [21]–[23],

insertion or edit functions [24]–[27], dynamic observers [28],

subobserver relationship [29], etc. In addition, verification

and/or enforcement of opacity have been extended to other

classes of models, see, e.g., [30]–[35]. Some applications of

opacity in real-world systems have also been provided in the

literature, see, e.g., [36]–[39].

Among various notions of opacity, the standard CSO

characterizes that an intruder cannot make sure whether

a system is currently in a secret state. In Location-Based

Services (LBS), however, a user may want to hide his/her

initial location or his/her location (e.g., visiting a hospital or

bank) at some specific previous instant. Such requirements

can be characterized by the standard ISO and K/Inf-SO. Note

that, as mentioned in [40]–[42], these four standard versions

of opacity have some limitations in practice. Specifically,

they cannot capture the situation that an intruder can never

infer for sure whether a system has passed through a secret

state based on his/her observations. In other words, even

though a system is “opaque” in the standard sense, the

intruder may necessarily determine that a secret state must

have been passed through. To this end, in [40], a strong

version of the standard K-SO called strong K-step opacity

(K-SSO) was proposed to capture that the visit of a secret

state cannot be inferred within the last K observable steps.

Inspired by [40], the notion of K-SSO was extended to

strong infinite-step opacity (Inf-SSO) in [41], which is a

strong version of the standard Inf-SO. Accordingly, two

algorithms have been provided to verify K-SSO and Inf-SSO

using the so-called K-step recognizer and 8-step recognizer,

respectively. In particular, the algorithm for verifying K-SSO

reduces time complexity of that in [40].

Recently, in our previous work [42], two strong versions

of the standard CSO and ISO, called strong current-state

1For convenience, the notion originally named CSO (resp., ISO, K-SO,
and Inf-SO) is categorized as standard CSO (resp., standard ISO, standard
K-SO, and standard Inf-SO) in this paper.
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opacity (SCSO) and strong initial-state opacity (SISO),

were proposed in nondeterministic finite-state automata, re-

spectively. Further, we developed a new methodology to

simultaneously verify SCSO, SISO, and Inf-SSO using a

concurrent-composition technique. We also proved that the

time complexity of the algorithm designed in [42] for veri-

fying Inf-SSO is lower than that in [41]. Motivated by the

results obtained in [42], in this paper, we proposed a new

concurrent-composition structure that is a variant of that

of [42] to do more efficient verification for K-SSO compared

with the results in [40], [41]. The main contributions of this

paper are as follows.

‚ Although the concurrent-composition structure pro-

posed in [42] can determine SCSO, SISO, and Inf-SSO,

it cannot be directly used to check K-SSO. To this end,

we propose a new concurrent-composition structure to

determine K-SSO, which is a variant of that of [42].

Based on the proposed new structure, we design an

improved algorithm for deciding K-SSO, which reduces

the time complexity from Op|Σo||Σuo||X |22pK`2q|X|q
proposed in [41] to Opp|Σo||Σuo| ` |Σ|q|X |22|X|q, i.e.,

the proposed algorithm does not depend on the value of

K .

‚ Using the proposed concurrent-composition structure,

a new upper bound on the value of K in K-SSO is

derived, i.e., |X̂|2|XzXS | ´ 1. We prove that a system is

Inf-SSO if and only if it is p|X̂ |2|XzXS | ´ 1q-SSO. This

also reduces the existing upper bound |X |p2|X| ´ 1q on

K derived in [41] when the size of a system is relatively

large.

The rest of this paper is arranged as follows. Section II

provides some basic notions needed in this paper. In Sec-

tion III, a new concurrent-composition structure is proposed,

based on which a more efficient verification algorithm for

K-SSO is designed, as well as an improved upper bound on

the value of K in K-SSO. Finally, we conclude this paper

in Section IV.

II. PRELIMINARIES

A nondeterministic finite-state automaton (NFA) is a

quadruple structure G “ pX, Σ, δ, X0q, where X is a finite

set of states, Σ is a finite set of events, X0 Ď X is a set of ini-

tial states, δ : X ˆ Σ Ñ 2X is the transition function, which

depicts the system dynamics: given states x, y P X and an

event σ P Σ, y P δpx, σq implies that there exists a transition

labeled by σ from x to y. We can extend the transition

function to δ : X ˆΣ˚ Ñ 2X in the recursive manner, where

Σ˚ denotes the Kleene closure of Σ, consisting of all finite

sequences composed of the events in Σ (including the empty

sequence ǫ). Details can be found in [43]. We use LpG, xq
to denote the language generated by G from state x, i.e.,

LpG, xq “ ts P Σ˚ : δpx, sq ‰ Hu. Therefore, the language

generated by G is LpGq “ Yx0PX0
LpG, x0q. G is called

a deterministic finite-state automation (DFA) if |X0| “ 1

and |δpx, σq| ď 1 for all x P X and all σ P Σ. When

G is deterministic, δ is also regarded as a partial transition

function δ : X ˆ Σ˚ Ñ X . For a sequence s P LpGq, we

denote its length by |s| and its prefix closure by P rpsq, i.e.,

P rpsq “ tw P LpGq : pDw1 P Σ˚qrww1 “ ssu. Further, for

a prefix w P P rpsq, we use the notation s{w to denote the

suffix of s after its prefix w.

In this paper, a DES of interest is modeled as an NFA G.

As usual, we assume that the intruder can only see partially

the behavior of G. To this end, Σ is partitioned into the set

Σo of observable events and the set Σuo of unobservable

events, i.e., Σo Y Σuo “ Σ and Σo X Σuo “ H. The

natural projection P : Σ˚ Ñ Σ˚
o is defined recursively by

(i) P pǫq “ ǫ, (ii) P psσq “ P psqσ, if σ P Σo, and (iii)

P psσq “ P psq, if σ P Σuo, where s P Σ˚. We extend

the natural projection P to LpGq by P pLpGqq “ tP psq P
Σ˚

o : s P LpGqu, see, e.g., [44] for details. Without loss of

generality, we assume that system G is accessible, i.e., all

its states are reachable from X0. A state x P X is called K-

step observationally reachable if there exists an initial state

x0 P X0 and a sequence s P LpG, x0q such that x P δpx0, sq
and |P psq| “ K , where K P N is a natural number.

To study the verification of strong K-step opacity of

G “ pX, Σ, δ, X0q, we assume that G has a set of secret

states, denoted by XS Ď X . Then, XNS “ XzXS is

the set of non-secret states. Consider an n-length sequence

s “ s1s2 . . . sn P Σ˚, x0 P X0, and xi P X , i “ 1, 2, . . . , n,

if xk`1 P δpxk, sk`1q, 0 ď k ď n ´ 1, we call x0

s1Ñ
x1

s2Ñ x2

s3Ñ ¨ ¨ ¨
snÑ xn a run generated by G from x0 to xn

under s. For brevity, we write x0

s
Ñ xn (resp., x0

s
Ñ) when

x1, x2, . . . , xn´1 (resp., x1, x2, . . . , xn) are not specified.

Note that x0

s
Ñ xn (resp., x0

s
Ñ) may denote more than

one run based on the nondeterminism of G, which depends

on the context. A run x0

s1Ñ x1

s2Ñ x2

s3Ñ ¨ ¨ ¨
snÑ xn (resp.,

x0

s1Ñ x1

s2Ñ x2

s3Ñ ¨ ¨ ¨ ), abbreviated as x0

s
Ñ xn (resp.,

x0

s
Ñ), is called non-secret if xi P XNS, i “ 0, 1, 2, ¨ ¨ ¨ , n

(resp., i “ 0, 1, 2, ¨ ¨ ¨ ).

III. VERIFICATION OF STRONG K -STEP OPACITY

A. Notion of strong K-step opacity

In [40], the authors proposed a notion of strong K-step

opacity (K-SSO) for a DFA G. Specifically, G is said to be

strongly K-step opaque (K-SSO)2 w.r.t. Σo and XS if for

all st P LpG, x0q such that δpx0, sq P XS and |P ptq| ď K ,

there exists w P LpG, x0q such that P pwq “ P pstq and for

all w̄ P P rpwq, if |P pw{w̄q| ď K , then δpx0, w̄q R XS . In

this subsection, we reformulate the definition of K-SSO in

nondeterministic finite-state automata. And then, we do K-

SSO verification using the proposed concurrent-composition

structure, which reduces the (worst-case) time complexity of

the previous algorithms in [40], [41].

Definition 3.1 (K-SSO): Given a system G “ pX, Σ, δ,

X0q, a projection map P w.r.t. the set Σo of observable

events, and a set XS Ď X of secret states, G is said to be

strongly K-step opaque (K-SSO) w.r.t. Σo and XS (where

2In this paper, the terminology “K-SSO” is the acronym of both “strong
K-step opacity” and “strongly K-step opaque”, which depends on the
context.



K P N) if

p@ run x0

s
Ñ xs

t
Ñ xt : x0 P X0 ^ xs P Xs ^ |P ptq| ď Kq

pD run x1
0

s1

Ñ x1
s

t1

Ñ x1
tqrpx1

0 P X0q ^ pP ps1q “ P psqq^

pP pt1q “ P ptqq ^ px1
s

t1

Ñ x1
t is non-secretqs. (1)

Remark 3.1: Obviously, K-SSO in Definition 3.1 is more

general than the notion in [40] or [41]. In plain words, if

a system is K-SSO, then an external intruder cannot make

sure whether the system is/was in a secret state within the

last K observable steps. Compared with the standard K-SO

proposed in [13], K-SSO has a higher-level confidentiality.

In other words, K-SSO implies the standard K-SO, but the

converse is not true.

B. Structure of concurrent composition

In this subsection, we propose a new information structure

using a concurrent-composition approach to verify K-SSO in

Definition 3.1. Note that, the proposed information structure

is a variant of that proposed in [42]. Later on, we will show

that the time complexity of using the proposed concurrent-

composition structure to verify K-SSO is lower than those

in [40], [41] and our proposed algorithm does not depend on

the value of K . In order to present this structure, we need

to introduce the notions of initial-secret subautomaton and

non-secret subautomaton.

Given a system G “ pX, Σ, δ, X0q and a set XS Ď X

of secret states. We first recall the notion of standard subset

construction of G called an observer, which is defined by

ObspGq “ pXobs, Σobs, δobs, Xobs,0q, (2)

where Xobs Ď 2XztHu stands for the set of states, Σobs “
Σo stands for the set of observable events, δobs : Xobs ˆ
Σobs Ñ Xobs stands for the (partial) deterministic transition

function defined as follows: for any q P Xobs and σ P Σobs,

we have δobspq, σq “ tx1 P X : Dx P q, Dw P Σ˚
uo s.t. x1 P

δpx, σwqu if it is nonempty, Xobs,0 “ tx P X : Dx0 P
X0, Dw P Σ˚

uo s.t. x P δpx0, wqu stands for the (unique)

initial state. For brevity, we only consider the accessible part

of observer ObspGq. We refer the reader to [44] for details

on ObspGq.

Remark 3.2: According to Definition 3.1, K-SSO reduces

to the standard CSO when K “ 0. Therefore, 0-SSO can be

determined using the observer ObspGq. Specifically, G is 0-

SSO if and only if there exists no reachable state q P Xobs

such that q Ď XS , see [11] for details. Hence, from now

on we always assume K ě 1 when we use the following

proposed concurrent-composition approach to determine K-

SSO.

To study verification of K-SSO (K ě 1), the state set Xobs

of ObspGq is partitioned into three disjoint parts: Xs
obs, Xns

obs,

and X
hyb
obs , i.e., Xobs “ Xs

obs Y Xns
obs Y X

hyb
obs , where Xs

obs “
tq P Xobs : q Ď XSu, Xns

obs “ tq P Xobs : q Ď XNSu, and

X
hyb
obs “ tq P Xobs : q X XS ‰ H ^ q X XNS ‰ Hu. Note

that the superscript “hyb” of X
hyb
obs stands for the acronym

of “hybrid”.

Now we construct a subautomaton of G called an initial-

secret subautomaton, denoted by

Ĝ “ pX̂, Σ̂, δ̂, X̂0q, (3)

which is obtained from G by: 1) replacing its initial state

set X0 with X̂0 “ XS , and 2) computing the part of G

reachable from X̂0 as Ĝ. Note that Ĝ can be computed from

G in time linear in the size of G. In particular, when G is

deterministic, the time complexity of computing Ĝ reduces

to Op|Σ||X |q.

We also construct another subautomaton of G called a

non-secret subautomaton, denoted by

G̃ “ pX̃, Σ̃, δ̃, X̃0q, (4)

whose set of initial states is defined as X̃0 “ tx P X : Dq P
X

hyb
obs s.t. x P q X XNSu. And then in G we delete all secret

states and compute the part of G reachable from X̃0 as G̃.

The time complexity of computing G̃ from G is exponential

in the size of G. Note that when we delete a secret state, all

transitions attached to that state are also deleted.

Next, we construct a new observer of G̃, denoted by G̃obs,

which is a minor variant of standard observer ObspG̃q. The

unique difference between them is the set of initial states.

Specifically, we construct G̃obs “ pX̃obs, Σ̃obs, δ̃obs, X̃obs,0q,

where the initial state set is X̃obs,0 “ tXNS Xq : q P X
hyb
obs u.

Based on the above preparation, we propose an informa-

tion structure called the concurrent composition of Ĝ and

G̃obs, which will be used to verify K-SSO in Definition 3.1.

Definition 3.2 (Concurrent Composition): Given a system

G “ pX, Σ, δ, X0q and a set XS Ď X of secret states, the

concurrent composition of Ĝ and G̃obs is an NFA

CcpĜ, G̃obsq “ pX̂cc, Σ̂cc, δ̂cc, X̂cc,0q, (5)

where

‚ X̂cc Ď X̂ ˆ 2X̃ stands for the set of states;

‚ Σ̂cc “ tpσ, σq : σ P Σ̂ou Y tpσ, ǫq : σ P Σ̂uou stands for

the set of events;

‚ δ̂cc : X̂ccˆΣ̂cc Ñ 2X̂cc is the transition function defined

as follows: for any state px, qq P X̂cc and any event

σ P Σ̂,

(i) when q ‰ H,

(a) if σ P Σ̂o, then

δ̂ccppx, qq, pσ, σqq “ tpx1, q1q : x1 P δ̂px, σq^

q1 “ δ̃obspq, σq if δ̃obspq, σq is well-defined, q1 “ H

otherwiseu;

(b) if σ P Σ̂uo, then

δ̂ccppx, qq, pσ, ǫqq “ tpx1, qq : x1 P δ̂px, σqu;

(ii) When q “ H,

(a) if σ P Σ̂o, then

δ̂ccppx, Hq, pσ, σqq “ tpx1, Hq : x1 P δ̂px, σqu;

(b) if σ P Σ̂uo, then

δ̂ccppx, Hq, pσ, ǫqq “ tpx1, Hq : x1 P δ̂px, σqu;



‚ X̂cc,0 “ tpx, yq : pDq P X
hyb
obs q s.t. rpx P XS Xqq^py “

XNS X qqsu Ď X̂0 ˆ X̃obs,0 stands for the set of initial

states.

Remark 3.3: The concurrent composition CcpĜ, G̃obsq in

Definition 3.2 is a variant of that of [42]. The key differences

between them are as follows: 1) set of initial states, and

2) composite objects. Intuitively, CcpĜ, G̃obsq captures that

for all xs P XS and all s P LpG, xsq whether there

exists an observation α P LpG̃obs, yq such that P psq “ α

and the initial state y of G̃obs satisfies y “ qzXS for

some q satisfying xs P q P X
hyb
obs . In addition, for a

sequence e P LpCcpĜ, G̃obsqq, we use the notations epLq and

epRq to denote its left and right components, respectively.

Further, P peq denotes P pepLqq or epRq because P pepLqq “
P pepRqq “ epRq, which depends on the context.

C. Verification for strong K-step opacity

In this subsection, we are ready to present the main result

on the verification of K-SSO using the proposed concurrent

composition CcpĜ, G̃obsq.

Theorem 3.1: Given a system G “ pX, Σ, δ, X0q, a pro-

jection map P w.r.t. the set Σo of observable events, and a

set XS of secret states, let CcpĜ, G̃obsq be the corresponding

concurrent composition. G is K-SSO w.r.t. Σo and XS with

K ě 1 if and only if there exists no state of the form p¨, Hq
in CcpĜ, G̃obsq that is observationally reachable from X̂cc,0

within K-steps.

Proof pñq By contrapositive, assume that there exists

a state px, Hq in CcpĜ, G̃obsq that is k-step observationally

reachable from X̂cc,0, where k ď K . By the construction

of CcpĜ, G̃obsq, we have that there exists an initial state

pxs, yq P X̂cc,0 and a sequence e P LpCcpĜ, G̃obsq, pxs, yqq
with |P peq| “ k such that px, Hq P δ̂ccppxs, yq, eq, where

xs P XS X q, y “ XNS X q, and q P X
hyb
obs . Further,

By the constructions of Ĝ and G̃obs, we have that: 1)

x P δ̂pxs, epLqq, and 2) δ̃obspy, epRqq is not well-defined.

Item 1) means x P δpxs, epLqq. Item 2) means, by the

constructions of G̃, that for all x1
s P y and all t1 P Σ̃˚ with

P pt1q “ epRq, it holds δ̃px1
s, t1q “ H. On the other hand,

since txsu Y y Ď q P X
hyb
obs , by the construction of ObspGq,

we conclude that: 1) in G there exists an initial state x0 P X0

and a sequence s P LpG, x0q such that xs P δpx0, sq, and

2) for each x1
s P y, there exists an initial state x1

0
P X0

and a sequence s1 P LpG, x1
0q with P ps1q “ P psq such

that x1
s P δpx1

0
, s1q. Therefore, for the run x0

s
Ñ xs

epLq
Ñ x

generated by G with |P pepLqq| “ k ď K , there exists no run

x1
0

s1

Ñ x1
s

t1

Ñ x1 with P ps1q “ P psq and P pt1q “ P ptq such

that its subrun x1
s

t1

Ñ x1
t is non-secret. By Definition 3.1, G

is not K-SSO w.r.t. Σo and XS .

pðq Also by contrapositive, assume that G is not K-SSO

w.r.t. Σo and XS . By Definition 3.1, we conclude that in

G: 1) there exists a run x0

s
Ñ xs

t
Ñ xt, where x0 P X0,

xs P XS, and P ptq “ k ď K , and 2) there exists no run

x1
0

s1

Ñ x1
s

t1

Ñ x1
t such that x1

s

t1

Ñ x1
t is non-secret, where x1

0 P
X0, P ps1q “ P psq, and P pt1q “ P ptq. By the construction

of Ĝ, item 1) means xt P δ̂pxs, tq. By the construction of

G̃, item 2) means δ̃px1
s, t1q “ H for all x1

s P y :“ XNS X q,

where xs P q P X
hyb
obs , t1 P Σ̃˚, and P pt1q “ P ptq. By the

construction of G̃obs, we further obtain δ̃obspy, P pt1qq “ H.

Then, by the construction of CcpĜ, G̃obsq, we conclude that

there exists a sequence e P LpCcpĜ, G̃obsqq with epLq “ t

and epRq “ P pt1q such that pxt, Hq P δ̂ccppxs, yq, eq. Since

|P peq| “ |P pepLqq| “ |P ptq| “ k, state pxt, Hq is k-step

observationally reachable from X̂cc,0 in CcpĜ, G̃obsq. ˝

Based on Theorem 3.1, a verification procedure for K-

SSO can be summed up as the following Algorithm 1.

Algorithm 1 Verification of K-SSO

Input: A system G “ pX, Σ, δ, X0q, a set Σo of observable

events, and a set XS of secret states.

Output: “Yes” if G is K-SSO w.r.t. Σo and XS , “No”

otherwise.

1: Compute the observer ObspGq of G

2: if there exists a reachable state q P Xobs such that q Ď
XS then

3: G is not 0-SSO w.r.t. Σo and XS , return “No”

4: stop

5: else

6: Construct the initial-secret subautomaton Ĝ of G

7: Construct the non-secret subautomaton G̃ of G

8: Compute the observer G̃obs of G̃

9: Compute the corresponding CcpĜ, G̃obsq
10: Use the “Breadth-First Search Algorithm” in [45] to

find whether there exists a state of form p¨, Hq in

CcpĜ, G̃obsq that is observationally reachable from

X̂cc,0 within K-steps

11: if such a state p¨, Hq in CcpĜ, G̃obsq exists then

12: return “No”, stop

13: else

14: return “Yes”, stop

15: end if

16: end if

Remark 3.4: We highlight the main advantages of using

the proposed concurrent composition CcpĜ, G̃obsq to deter-

mine K-SSO compared with the existing algorithm in [41].

First, computing ObspGq, Ĝ, G̃, G̃obs, and CcpĜ, G̃obsq take

time Op|Σo||Σuo||X |22|X|q, Op|Σ||X |2q, Op|Σ||X |2`2|X|q,

Op|Σo||Σuo||X |22|X|q, and Op|Σ||X |22|X|q, respectively.

Hence, the overall (worst-case) time complexity of verifying

K-SSO using Algorithm 1 is Opp|Σo||Σuo| ` |Σ|q|X |22|X|q.

In comparison, the algorithm in [41] using K-step recognizer

has time complexity Op|Σo||Σuo||X |22pK`2q|X|q. Therefore,

our proposed algorithm leads to a considerable improvement

compared with that in [41]. Second, by Theorem 3.1, we

know that the proposed concurrent composition CcpĜ, G̃obsq
for determining K-SSO does not depend on the value of K ,

whereas the algorithm in [41] depends on the value of K .

In other words, for each given K , it needs to construct the

corresponding recognizer, see [41] for details.

Example 3.1 ([41]): Let us consider the system G shown

in Fig. 1 in which the set of secret states is XS “ t5, 7u. By

applying Algorithm 1, we obtain the corresponding ObspGq,



Ĝ, G̃, G̃obs, and CcpĜ, G̃obsq, which are depicted in Fig. 2.

In CcpĜ, G̃obsq there exists a state p8, Hq that is 2-step ob-

servationally reachable from the initial-state p7, t1, 2, 3, 4uq.

Therefore, by Theorem 3.1, G is 1-SSO w.r.t. Σo and XS ,

but not K-SSO for any K ą 1. This conclusion coincides

with that obtained in [41].

0

u

a

a

a b

c
b

3 4 5

1 2
u

u

6 7 8

b

,b c

Fig. 1. The system G considered in Example 3.1, where Σo “ ta, b, cu,
Σuo “ tuu, and X0 “ t0u.
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Fig. 2. The constructed automata: ObspGq, Ĝ, G̃, G̃obs, and CcpĜ, G̃obsq
for the system G in Fig. 1.

D. An improved upper bound on K in strong K-step opacity

In [41], the authors proposed a notion of strong infinite-

opacity (Inf-SSO) and investigated its verification. Recently,

our previous work reduces the time complexity of [41] for

determining Inf-SSO, see [42] for details. Furthermore, the

authors in [41] shown that Inf-SSO and p|X |p2|X| ´1qq-SSO

are equivalent. This indicates that p|X |p2|X| ´1qq is an upper

bound on the value of K in K-SSO. In fact, this upper bound

is conservative. In this subsection, we propose a new upper

bound on the value of K in K-SSO by using the proposed

concurrent composition CcpĜ, G̃obsq, which is smaller than

that in [41]. And then, we establish an equivalent relationship

between K-SSO and Inf-SSO.

Now we are ready to derive the new upper bound on the

value of K in K-SSO. Specifically, by Definition 3.1, we

conclude readily that if a system G is K-SSO w.r.t. Σo and

XS , then it is also K 1-SSO for any K 1 ď K . Conversely, if

G is not K-SSO with K ą |X̂ |2|XzXS |´1, by Definition 3.1,

we can know that in G: 1) there exists a run x0

s
Ñ xs

t
Ñ xt,

where x0 P X0, xs P XS , and P ptq “ k ď K , and 2) there

exists no run x1
0

s1

Ñ x1
s

t1

Ñ x1
t such that x1

s

t1

Ñ x1
t is non-

secret, where x1
0

P X0, P ps1q “ P psq, and P pt1q “ P ptq.

Thus, we can obtain that state pxt, Hq in CcpĜ, G̃obsq is

k-step observationally reachable from X̂cc,0 (see “ð” part

in the proof of Theorem 3.1). Since CcpĜ, G̃obsq has at

most |X̂|2|XzXS | states, there exists a k1 ď |X̂|2|XzXS | ´ 1

such that pxt, Hq is k1-step observationally reachable from

X̂cc,0. By Theorem 3.1, G is not k1-SSO. Hence, it is

not p|X̂|2|XzXS | ´ 1q-SSO. This means that the result of

determining K-SSO using Theorem 3.1 does not depend on

the value of K when K ě |X̂|2|XzXS | ´ 1. Therefore, a

new upper bound on K in K-SSO is |X̂|2|XzXS | ´ 1, which

reduces the previous upper bound of |X |p2|X| ´ 1q derived

in [41] when the size of system G is relatively large.

The following two corollaries improve the corresponding

results (cf., Theorem 5.2 and Corollary 5.1) in [41]. Note

that, we here omit their proofs, since they can be directly

obtained from Definition 3.1 and Theorem 3.1.

Corollary 3.1: Given a system G “ pX, Σ, δ, X0q, a

projection map P w.r.t. the set Σo of observable events, and

a set XS of secret states, G is K-SSO w.r.t. Σo and XS if

and only if it is mintK, |X̂|2|XzXS | ´ 1u-SSO w.r.t. Σo and

XS .

Corollary 3.2: Given a system G “ pX, Σ, δ, X0q, a

projection map P w.r.t. the set Σo of observable events, and

a set XS of secret states, G is Inf-SSO w.r.t. Σo and XS if

and only if it is p|X̂ |2|XzXS | ´ 1q-SSO w.r.t. Σo and XS.

IV. CONCLUDING REMARKS

In this paper, we revisited the verification of strong K-

step opacity for partially-observed discrete-event systems. A

new concurrent-composition structure was proposed. Using

it, we provided an improved verification algorithm for strong

K-step opacity, which has time complexity Opp|Σo||Σuo| `
|Σ|q|X |22|X|q compared with time complexity Op|Σo||Σuo|
2|X|`|X|2

q (resp., Op|Σo||Σuo| |X |22pK`2q|X|q) of the previ-

ous algorithm in [40] (resp., [41]). Furthermore, we derived a

new upper bound of |X̂ |2|XzXS |´1 in strong K-step opacity,

which also reduces the previous upper bound of |X |p2|X|´1q
given in [41].

In the future, we plan to exploit the proposed concurrent-

composition approach to do more efficient enforcement for

strong K-step opacity compared with the enforcement algo-

rithms obtained in [41]. It would be of interest to extend

the previously-proposed approach [42] to design algorithms

for enforcing strong current-state opacity, strong initial-state

opacity, and strong infinite-step opacity.
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