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Abstract

We consider two high-order tuners that have been shown to have accelerated performance, one
based on Polyak’s heavy ball method and another based on Nesterov’s acceleration method. We
show that parameter estimates are bounded and converge to the true values exponentially fast when
the regressors are persistently exciting. Simulation results corroborate the accelerated performance
and accelerated learning properties of these high-order tuners in comparison to algorithms based
on normalized gradient descent.

1 Introduction

Adaptive control is dedicated to online decision making and parameter learning in dynamic systems
in real-time [143,/5]. The problem often consists of addressing two types of errors, one related to
performance, and another related to parameter learning. The goal is to have both the performance
error and parameter error converge to zero in real time. As the complexity of the dynamic systems
increases and the performance specifications become more stringent, it is of importance that both of
these convergences are fast. This paper addresses both of these properties in the context of a high-order
tuner.

High-order tuners have their start in [6], where a class of continuous time dynamic systems with
parametric uncertainties was considered and an adaptive law that allowed the generation of parameter
estimates using a high-order tuner was proposed rather than a standard gradient algorithm that is
of first-order. Parameter learning with these high-order tuners was addressed in [7,[8]. Robustness
properties using these tuners was addressed in [9]. All of these discussions have focused entirely on
continuous-time dynamic systems.

In parallel with these developments, a body of work has been ongoing in the optimization community
to address accelerated convergence of the performance error [10,/11], and studied at length in machine
learning and optimization [12,/13], and identification [14}[15]. The idea here is to identify methods
by which the performance error can converge to zero faster. As this has broad implications on a
large number of problems in control, machine learning, and optimization, the impact of success in
these investigations can be a significant one. The focus in all of these problems however is only on
the performance error, often embodied by an overall loss function. They do not focus on parameter
learning or the speed of parameter convergence, which is the focus of this paper.

In this paper, we consider a class of discrete-time nonlinear systems whose parameters are constant
and unknown. The goal is to design an estimator that will learn the parameters using real-time data.
It is shown that under conditions of persistent excitation, high-order tuners can be utilized to ensure
accelerated learning, i.e., exponential convergence of the parameter estimates to their true value. This
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problem has been addressed at length in continuous-time both using standard gradient based adaptive
laws [1,/2] and high-order tuners |7/8]. Parameter convergence has been addressed in discrete-time only
using gradient laws in [5l{16] but not using high-order tuners. Together with the results in [10l/11}/144[15],
this paper lays the foundation for new algorithms that can provide both accelerated performance and
accelerated learning, and represents its main contribution. Our focus is on high-order tuners that
are based on two popular methods, one based on the Heavy Ball (HB) method [10] that includes a
momentum-like terms, and the other based on Nesterov’s algorithm (NA) |11] that includes terms based
on both momentum and acceleration. While these approaches can be used readily for static problems
of decision-making, when dynamic features are present, there needs to be significant variations in the
underlying algorithm [14}/15]. As shown in these papers, appropriate variations need to be made when
the underlying regressors vary with time, using which a bounded parameter estimation approach can
be derived. No discussions were carried out, however, in [14,/15] regarding accelerated learning.

The main challenge that a high-order tuner introduces for establishing accelerated learning in pa-
rameters is the presence of additional state variables that introduces a filtering action between the
exogeneous signal that is persistently exciting and the parameter that is to be estimated. These state
variables have to be shown to behave in a way such that the excitation is transmitted through them
without any attenuation, thereby allowing the estimate to continue converging to the true value. This
property is even more difficult to establish in a discrete-time system than a continuous-time one due
to the underlying support set properties and challenges in ensuring that the step sizes in the up-
dates remain bounded. We successfully addressed these challenges through novel tools that leverage
both properties of the high-order tuner and those of persistent excitation. This is in contrast to its
continuous-time counterparts where exponential convergence of the parameter estimates to their true
values is obtained by appealing primarily to specific properties of persistent excitation.

The paper is organized as follows. Section [2| presents problem statement. Section [3] and section [4]
contain the main results of the paper. Section [3]shows the exponential convergence of the HB method.
Section [] shows the exponential convergence of the NA algorithm. We show simulation results in
Section [5 and provide concluding remarks in Section [6]

2 Problem Statement

We consider a class of discrete-time nonlinear plant models of the form
n m p
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where a;, b7 and ¢ are unknown parameters that are constant and need to be identified, and d is
a known time-delay. The function f, is an analytic function and is assumed to be such that the
system in is bounded-input-bounded-output (BIBO) stable. Denote zx_1 = [yr_1,---,Yr_n] and

Vk—d-1 = [Uk—1—dy- -, Uk—m—_d| . We rewrite in the form of a linear regression
T p*

Yk = (bk 9 9 (2)
where ¢ = [z,;'—_l, v;—_d_l, f1 (z,j_17 v,;r_d_l), el fp(z,;r_h v,;r_d_l)]—r is a regressor determined by exoge-
nous signals and 0* = [a},...,a%,b],..., b5 ], ... ,CZ}T is the underlying unknown parameter vector.
We propose to identify the parameter 8* as 6 using an estimator

. T

Y = ¢k ekta (3)

which leads to a prediction error ~
Cyk = qb;—elm (4)



where ey 1, = §r — yr is the output prediction error and 0 = 6 — 0% is the parameter error. The

goal of parameter identification is to design an iterative procedure such that the parameter error Hékﬂ
converges to zero exponentially fast.

The iterative procedure for estimating the parameters is based on a squared loss function,

1 1~ ~
Li(0k) = 56@2,,16 = 59;@95291«, (5)

where the subscript k£ in Lj denotes kth iteration. In the literature, a normalized gradient descent

algorithm has been shown to be stable although having a slow convergence rate [5]

VL (6k)
N

where N}, is a normalizing signal and is defined as Ny = 1 + ||¢||>. The following definitions will be

utilized for proving the main results.

9k+1:9k—a 0<a<?2, (6)

Definition 2.1. The regressor ¢y is said to satisfy the persistent excitation (PE) condition over an
interval AT, if for all unit vectors w € R™,

k—1

> ez ™

i=k—AT

Definition 2.2 (From [17]). For any fixed p € [1,00), a sequence of scalars £ = {£, &1, ...} is defined
to belong to ¢, if

k 1/p
I€lloe = (klggo > ||&|P> < o0, (8)
=0

When p = o0, € € l if
1€l = sup 1€l < o0 (9)

3 Main Result 1: Accelerated Learning with Heavy Ball Method

The idea behind the Heavy Ball method can be explained as follows. Rather than using only the past
iterate 0y to determine 6y 1, the Heavy Ball method uses the past two iterates 85, and 6;_;1 so that an
additional momentum term may contribute to an accelerated convergence of the loss function. This
takes the form of a higher-order tuner of the form

VL(6 ~
Opt1 = O — 7# + B0k — Ok—1), (10)

where 4 and 8 are hyperparameters and the last term corresponds to the momentum addition. This
high-order tuner can be rewritten in the form of two first-order iterates

VL(0
D1 = Uk — 77’}\(&“1),

Ors1 = 0 — B(Or — Vi),

where 8 and « are the positive constants that will be suitably chosen. We denote this as an HB
algorithm. It is easy to show that the estimates 9 and 6 are bounded using the following Lyapunov
function:

(11)
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Vie = ~ 119 = 0°[* + — 16 — ? (12)
gl gl



foral 0 < f<2and 0 <y < % [14]. In what follows, we show that the HT in guarantees
accelerated learning. A few parameters are defined first.

Let

We define

where

fi2 =

H3 =

11 21
c1 = ] Co = 39
- €
~ maxg {VN;}
0< A<, (13)

€1
0<n< ——.
v|1 - B

= min{p, p2, pis}, (15)

_ayn?

AT
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(1+~AT)2 !

1
(1= ).
c1 AT< Ay

Theorem 3.1. If the regressor ¢y satisfies the definition in , with0 < B <2 and 0 < v < w,
the update law in will result in (1) O — 0* € Lo, O — Vg € Loo, and (i1) Vi, < exp (fu L%J) Vo,
where p is defined in .

Theorem [3.1] (i) establishes boundedness of the parameter estimates and Theorem m (ii) shows that
exponential convergence of the parameter error towards zero occurs if ¢y, is persistently exciting. In
order to prove these results, we will examine the behavior of the parameter estimates over an interval
AT over which ¢y is persistently exciting.

Proof. Expanding AV := Vi1 — Vi, we have
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proving Theorem (i).

Summing Vi from Vi_ar to Vi, we have

Vi = Vi—aT
=V Vi + -+ Va1 — Viear
k—1 k—1
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where we applied the Cauchy-Schwarz inequality for the second inequality. We consider two cases:
|19k_aT — 0%]|> > M Vi_ar and ||9_ar — 0%||> < My Vi_ar, where X satisfies .
Case 1: |[0x_ar — 0*[|> > MYVi_ar

(a) If Wy > n||0k—ar — 0%, where n satisfies , then
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Considering , and , we have
Vi < (1 —p)Viear,

where p is defined in . Collecting the terms, we obtain

k
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proving Theorem [3.1] (ii). O

Remark. It should be noted that the proof of Theorem followed by considering two different cases.
In case 1, we assumed that the parameter error in ¥ was a significant fraction of the overall Lyapunov
function. We showed then that a decrease in Vj, is either due to the nature of the high order tuner,
or persistent excitation of ¢;. In case 2, the parameter difference between 6 and ¥ was a significant
fraction of the Lyapunov function, which directly leads to a decrease in Vi due to the nature of the

HB algorithm in .

4 Main Result 2: Accelerated Learning with Nesterov’s Ac-
celeration

The idea behind the second HT is motivated by [11] and an important stability-preserving variation
of the same proposed in [14]. Similar to 7 this high-order tuner uses not just the past iterate 6y



to determine 61, but also 8;_;. However, in addition to the momentum term, an acceleration-based
addition is included as well. A simplified version of the Nesterov’s algorithm in [11] is of the form

,YVLk(ek + B0k — br—1)) | >

O = O — N + B0 — Or—1), (22)

where 4 and /3 are hyperparameters and the second term corresponds to the momentum addition, as
it computes the gradient based on an updated parameter estimate. It was shown in [14] that such
an update cannot be shown to be stable when adversarial regressors, which may be time-varying, are
present. An important modification of the same was introduced, which can be expressed in the form
of two first-order iterates

VL (Orkq1)
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where 8 and 7 are chosen such that 0 < f < 1 and 0 < v < 51(61_;2). We denote this as the NA

algorithm. The update law in was shown in [14] to be stable using as the Lyapunov function.
Before stating the main result, we define a few parameters.

Let
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We now state our second main result:



Theorem 4.1. If the regressor ¢y satisfies the PE definition in @, with 0 < f < 1 and 0 <
v < Bg(i_ﬁf), the update law in will result in (i) 9 — 0% € Lo, O — Uy € Lo, and (i) Vi, <
exp (—u L%J) Vo, where p is defined in .

Proof. Expanding AV := Vi1 — Vi, we have
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proving Theorem (i)

Summing V from Vi_ar to Vi, we obtain
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where we applied the Cauchy-Schwarz inequality for the second inequality.
Case 1: ||[9x_ar — 0[] > MyVi_aT, where )\ satisfies .
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Note that from (25)), e > yn(1 — 3). Therefore
AT
> — — —0*|| > 0.
Wy > 1+7AT[62 (1 = B)]|[—ar — 07| >0 (30)
Substitute into , we obtain
Vi = Vi—ar < —CixT Wg
AT
< —cg———lea — (1 — B)P||9k—ar — 0%
> —C (1 +’)/AT)2[€2 ’777( 6)] || k—AT ||
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Case 2: ||79k—AT — 9*”2 < M Vi_ar
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Y 0
we immediately get
10k—ar — Vp—ar|® > (1 = NyViear (32)
(a) If Wy > (||0k—ar — Or—arl|, where ( satisfies , then we have
Vie = Vie—ar < 7047C 0k—ar — x—ar|?
< —C47C2(1 = )7Vi-ar
Thus
Ve < |1 @E%Q(l—/\) Vi AT (33)



(b) If WQ § <||9k—AT — ﬂk—AT”a then
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The term W3 can be upper-bounded by
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Therefore, we have

W3 < (W1 + Wz).

Thus

vB(1+ AT)
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From , & > 0. Considering ,

1
Vi = Vi—ar < *%EWE

A

L 2
—c3——E|Op—AT — Vp—
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1
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Considering (29)), (31)), (33) and (34)), we have
Vie < (1 = p)Vi—ar,

where p is defined in . Collecting terms, we obtain

k
< ol
Vi < exp( 1% {ATJ) Vo,
proving Theorem (ii). O

Remark. While Theorem[3.Iaddressed the accelerated learning property of the HB algorithm, Theorem
addressed the same property using the NA algorithm. The difference between the two algorithms is
that while HB computes gradient first and momentum next, NA does the computation in the reversed
order. This reversed-order computation leads to an extra gradient term, which appears in the third
equation in . It is the distinction between ), and 6}, that introduces additional challenges in proving
the accelerated learning property of the NA algorithm. This required an addition of two subcases in
case 2 where we have shown that in each subcase, because of the structure of the extra gradient and
properties of persistent excitation, the properties of ), still transfer to 6y, resulting in exponentially
fast parameter convergence.

5 Numerical Simulations

5.1 Output Error Convergence with Constant Inputs

We first establish the fast convergence of the output error to zero with the HB and the NA algorithms
using numerical studies, which was shown analytically in [14]. Consider a linear regression problem



with parameter 6* = [20, —3,1]T. We assume that the regressor ¢y, is piecewise constant, with a jump
at iteration 251 from [1,—2,1]7 to [2,—1,-2]T. We compare the three algorithms in (6], and
. The hyperparameters are chosen as follows:

8 =0.5,

~v = 0.0938, (35)

a =5 = 0.0469
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Figure 1: Output errors of the three algorithms.

It is clear from Fig. [I} which shows the output error in log scale, that both HB and NA are significantly
faster than normalized gradient descent algorithm. This corroborates the results in , and .

5.2 Parameter Error Convergence with Persistent Excitation

Consider the same regression problem with parameter §* = [20,—3,1]" but now with persistently
exciting regressors. The inputs for identifying parameters are defined as

o = [1,2sin(k), 2sin(2k)] .

We adopt the same hyperparameters as defined in . Fig. [2| shows parameter error convergence for
the three algorithms.

From the simulations, we can see that both HB and NA have very similar convergence behavior. It is
interesting to note that the two algorithms are faster than normalized GD in parameter convergence
as well. This demonstrates that HT algorithms are of immense value, as they are capable of resulting
in both accelerated performance and accelerated learning.

6 Conclusion

Two high-order tuning algorithms, one based on Polyak’s Heavy Ball method and another based on
Nesterov’s acceleration, have been discussed in this paper. The main results of the paper are that
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Figure 2: Parameter errors of the three algorithms.

the parameter estimates based on the two algorithms are guaranteed to be bounded, and that if the
regressors are persistently exciting, they are proved to converge to the true values. Numerical results
show that these two algorithms result both in accelerated performance and accelerated learning when
compared to the normalized gradient descent algorithm. These results clearly demonstrate the strong
potential that these high-order tuners can have in real-time decision making. For future work, we
will look into how a regularization term in the loss function can affect the overall performance of the
mentioned algorithms when disturbances and unmodeled dynamics are present.
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