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Abstract

This work addresses the problem of exploration in an unknown environment. For
linear dynamical systems, we use an experimental design framework and introduce
an online greedy policy where the control maximizes the information of the next
step. In a setting with a limited number of experimental trials, our algorithm has
low complexity and shows experimentally competitive performances compared to more
elaborate gradient-based methods. 1

1 Introduction
System identification is a problem of great interest in many fields such as econometrics,
robotics, aeronautics, mechanical engineering or reinforcement learning [1, 2, 3, 4, 5]. The
task consists in estimating the parameters of an unknown system by sampling trajectories
from it as fast as possible. To this end, inputs must be chosen so as to yield maximally
informative trajectories. We focus on linear time-invariant (LTI) systems. Let A ∈ Rd×d

and B ∈ Rd×m be two matrices; we consider the following discrete-time dynamics:

x0 = 0,

xt+1 = Axt +But + wt, 0 ≤ t ≤ T − 1
(1)

where xt ∈ Rd is the state, wt ∼ N (0, σ2Id) is a normally distributed isotropic noise with
known variance σ2 and the control variables ut ∈ Rm are chosen by the controller with the
following power constraint:

1

T

T−1∑
t=0

‖ut‖2 ≤ γ2. (2)

The system parameters (AB) := θ ∈ Rd×q (q = d+m) are unknown initially and are to be
estimated from observed trajectories (xt). The goal of system identification is to choose the
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inputs ut so as to drive the system to the most informative states for the estimation of θ. It
may happen that the controller knows B, in which case θ = A and q = m.

System identification is a primary field in control theory. It has been widely studied in
the field of optimal design of experiments [6, 7]. For LTI dynamic systems, classical optimal
design approaches provided results for single-input single-output (SISO) systems [3, 8] or
multi-input multi-output (MIMO) systems in the frequency domain or with randomized
time-domain inputs [9]. More recently, system identification received considerable attention
in the machine learning community, with the aim of obtaining finite-time bounds on the
estimation error for A [10, 11, 12]. In [13] and [14], the inputs are optimized in the frequency
domain to maximize an optimal design objective, with theoretical estimation rate guarantees.
In our approach, we directly optimize deterministic inputs in the time domain for MIMO
LTI systems. An important aspect of system identification is the quantity of computational
resource and the number of observations needed to reach a certain performance. We study
the computational complexity of our algorithms and compare their performance against each
other and against an oracle, both on average and on real-life dynamic systems.

1.1 Notations

In the rest of this work, we note θ? = (A?B?) the unknown parameter underlying the dynamics.
We suppose that the pair (A?, B?) is controllable: the matrix R? = (B?A?B? . . . A

d−1
? B?) has

rank d. Adopting the notations of [14], we define a policy π : (x1:t, u0:t−1)→ ut as a mapping
from the past trajectory to future input. The set of policies meeting the power constraint (2)
is noted Πγ. We note τ = (x1:T , u0:T−1) a trajectory, and we extend this notation to τ(π, T )
when the trajectory is obtained using a policy π up to time T . We denote by Eθ the average
for a dynamical system given by (1) (where the randomness comes from the noise wt and
possibly from the policy inducing the control ut).

1.2 Adaptive identification

Fix an estimator θ̂ : τ 7→ θ̂(τ) ∈ Rd×q, yielding an estimate of the parameters from a given
trajectory. Our objective is to play the inputs ut of a policy π ∈ Πγ so that the resulting
trajectory τ gives a good estimation θ̂(τ) for θ?. We measure this performance by the mean
squared error:

MSE(π) =
1

2
Eθ?
[∥∥∥θ̂(τ(π, T )

)
− θ?

∥∥∥2

F

]
. (3)

Of course, this quantity depends on θ? the true parameter of the system which is unknown.
A natural way of proceeding is to estimate θ? sequentially, as follows.

Definition 1 (Adaptive system identification). Given an estimate θ̂i of θ?, the policy for the
next sequence of inputs can be chosen so as to minimize a cost function F approximating
the MSE (3), using θ̂i as an approximation of θ?. Then, these inputs are played and θ?
is re-estimated with the resulting trajectory, and so on. We call planning the process of
minimizing F .
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This approach is summarized in Algorithm 1, which takes as inputs a first guess for
the parameters to estimate θ0 and a policy π0, the problem parameters σ and γ, a sched-
ule {t0,= 0, t1, . . . , tn−1, tn = T}, a cost functional F and an estimator θ̂. An adaptive

Algorithm 1 Sequential system identification

inputs initial guess θ0, π0, noise variance σ2, power γ2, cost functional F , estimator θ̂
output final estimate θT
for 0 ≤ i ≤ n− 1 do

run the true system ti+1 − ti steps
with inputs ut = πi(x1:t, u1:t−1)
θi = θ̂(x1:ti , u1:ti−1) . estimation
πi solves min

π∈Πγ
F (π; θi, ti+1) . planning

end for

identification algorithm is hence determined by a triplet (θ̂, F, {ti}). A natural estimator is
the least squares estimator θ̂ = θ̂LS which we define in Section 2.1. In the rest of this work,
we set θ̂ = θ̂LS.

Example 1 (Random policy). A naive strategy for system identification consists in playing
random inputs with maximal energy at each time step. This corresponds to the choice ti = i
and πi returning ut ∼ N (0, γ2/m).

Example 2 (Task-optimal pure exploration). In [14], the authors propose the following cost
function

F (π; θ, t) = tr
[(

Γt
(
τ(π); θ

))−1
]
, (4)

where Γt is defined in equation (8) below. As we will see in Section 2.2, this corresponds
to A-optimal experimental design. The authors show that this cost function approximates
the MSE in the long time limit at an optimal rate when T → +∞. In their identification
algorithm, they set ti = 2i × T0 for some initial epoch T0.

Example 3 (Oracle). An oracle is a controller who is assumed to choose their policy with
the knowledge of the true parameter θ?. It can hence perform one single, offline optimization
of F (π; θ, T ) = MSE(π) over {ti} = {0, T}. By definition, the inputs played by the oracle
are the optimal inputs for our problem of mean squared error system identification.

1.3 Contributions

In practice, systems have complex dynamics and can only be approximated locally by linear
systems. We still believe that in order to understand complex systems, we need to understand
identification of linear systems as on short time scales, we can approximate the complex
system with a linear one. In order to be practical, our identification algorithm needs to
interact as little as possible with the true system and to take decisions as fast as possible.
With previous notations, we are interested in cases where T is small (to ensure that in practice
the dynamics remains time-invariant and linear) and where the estimation and planning steps
need to be very fast in order to run the algorithm online.
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In this work, we explore a setting for linear system identification with hard constraints
on the number of interactions with the real system and on the computing resources used
for planning and estimation. To the best of our knowledge, finite-time system identification
guarantees are only available in the large T limit which makes the hypothesis of linear dynamic
quite unlikely. Using a framework based on experimental design, we propose a greedy online
algorithm requiring minimal computing resources. The resulting policy gives a control that
maximizes the amount of information collected at the next step. We show empirically that
for short interactions with the system, this simple approach can actually outperforms more
sophisticated gradient-based methods. We also propose a method to compute an oracle
optimal control, against which we can compare the different identification algorithms.

1.4 Related work

System identification has been studied extensively in the last decades [15, 1]. The question
of choosing the maximally informative input can be tackled in the framework of classical
experimental design [6, 16]. Several methods have been proposed for the particular case of
dynamic systems [17, 8, 9] A comprehensive study can be found in [3], with a focus on SISO
systems.

In the machine learning community, the last few years have seen an increasing interest in
finite-time system identification [12, 11, 18, 19]. These works typically derive theoretical error
rates for linear dynamic system estimation and produce high probability bounds guaranteeing
that the estimation is smaller than ε with probability greater than 1 − δ after a certain
number of samples. The question of designing optimal inputs is tackled in [13, 14]. The
authors derive an asymptotically optimal algorithm by computing the control in the frequency
domain. In [20], an approach to control partially nonlinear systems is proposed.

2 Background
It is convenient to describe the structure of the state as a function of the inputs and the
noise. By integrating the dynamics (1), we obtain the following result.

Proposition 1. The state can be expressed as xt = x̄t + x̃t with

x̄t =
t−1∑
s=0

At−1−sBus, x̃t =
t−1∑
s=0

At−1−sws. (5)

Note that that x̄t = Eθ[xt] solves the deterministic dynamics x̄t+1 = Ax̄t + But and x̃t
has zero mean and is independent of the control. The two terms x̄t and x̃t depend linearly
on the Bus and the ws respectively.

The data-generating distribution knowing the parameter θ can be computed using the
probability chain rule with the dynamics (1):

p(τ |θ) =
1√

2πσ2
exp

[
− 1

2σ2

T−1∑
t=0

‖xt+1 − Axt −But‖2
2

]
. (6)
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We define the log-likelihood (up to a constant):

`(τ, θ) = − 1

2σ2

T−1∑
t=0

‖xt+1 − Axt −But‖2
2

= − 1

2σ2
‖Y − Zθ>‖2

F,

(7)

where we have noted Y = (y0 . . . yT−1)> ∈ RT×d and Z = (z0 . . . zT−1
>) ∈ RT×q the observa-

tions and the covariates associated to the parameter θ. If θ = (AB), then yt = xt+1, zt =

(
xt
ut

)
.

If θ = A, then yt = xt+1 − But and zt = xt. We also note U = (u0 . . . uT−1
>) ∈ RT×m the

input matrix and X = (x0 . . . xT−1
>) ∈ RT×d the state matrix. We define the moment

matrix Mt =
t∑

s=0

ztzt
> and the Gramians of the system at time t:

Γt(τ ; θ) =
1

t
Eθ [Mt−1] (8)

and Gt(A) =
t−1∑
s=0

AsAs>. Note that Z>Z = MT

2.1 Ordinary least squares

Given a trajectory, a natural estimator for the matrix A? is the least squares estimator. The
theory of least squares provides us with a formula for the mean squared error with respect to
the ground truth, which can be used as a measure of the quality of a control.

Proposition 2 (Ordinary least squares estimator). Given inputs U and noiseW , the ordinary
least squares (OLS) estimator associated to the resulting trajectory X is

θ̂(τ) =
(
(Z>Z)−1Z>Y

)>. (9)

and its difference to θ? is given by(
θ̂(τ)− θ?

)>
= (Z>Z)−1Z>W

= Z+W,
(10)

where Z+ denotes the pseudo-inverse of Z. Noting θt the least squares estimator obtained
from the trajectory up to time t, we recall the recursive update formula

θt+1
> = M−1

t+1

(
Mtθt + ztyt

>). (11)

Proof. The least squares estimator minimizes the quadratic loss 1
2

T−1∑
t=0

‖xt+1 − Axt −But‖2
2,

which writes
1

2

∥∥Y − Zθ>∥∥2

F
=

1

2

d∑
j=1

‖Yj − Zθj‖2
2 (12)
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with Yj the j-th column of Y and θj the j-th row of θ. The d terms of the sum can be minimized
independently, with each θj minimizing the least squares of the vectorial relation Yj = Zβ.
The solution for θj is equal to θ̂j = (Z>Z)−1Z>Yj (see e.g. [21]). By concatenating the
columns, we obtain that θ̂> = (Z>Z)−1Z>Y , which proves (9). Substituting Y = Zθ?

> +W
yields (10). Note here that the controllability assumption on (A?, B?) ensures that Z can be
made full rank, and hence that the moment matrix Z>Z is invertible.

Definition 2 (OLS mean squared error). For a given trajectory τ generated with a matrix
A? and noise W , the Euclidean mean squared error (MSE) is

‖θ̂LS − θ?‖2
F =

∥∥((Z>Z)−1Z>W
)>∥∥2

2

= tr
[
Z(Z>Z)−2Z>WW>] . (13)

If the noise W and the covariates Z were independent, then the expected error would
reduce to the A-optimal design objective E[tr(Z>Z)−1]. It is not the case in our framework
since Z is generated with W .

2.2 Classical optimal design

The correlation between Z and W makes the derivation of a tractable expression for the
expectation of (13) complicated. In this section, we show how a more tractable objective
can be computed by applying theory of optimal experimental design [6, 22]. In the classical
theory of optimal design, the informativeness of an experiment is measured by the size of the
expected Fisher information.

Definition 3 (Fisher information matrix). Let `(τ, θ) = log p(τ |θ) denote the log-likelihood
of the data-generating distribution knowing the parameter θ. The Fisher information matrix
is defined as

I(θ) = −Eθ
[
∂2`(τ, θ)

∂θ2

]
∈ Rqd×qd. (14)

Proposition 3. For the LTI system (1),

I(θ) =
T

σ2
diag(ΓT , . . . ,ΓT ), (15)

the number of blocks being d. Furthermore, ΓT can be computed as

ΓT =
1

T

T−1∑
t=0

z̄tz̄
>
t + σ2Gt(A). (16)

Proof. The log-likelihood (7) can be separated into a sum over the θj as in (12). The quadratic
term in θj is ‖Zθj‖2

2 = θj
>Z>Zθj and the other terms are constant or linear. Differentiating

twice and taking the expectation gives Eθ[Z>Z], which yields the desired result after dividing
by −σ2. Following the decomposition (5), ztzt> = z̄tz̄

>
t + z̃tz̃

>
t + z̄tz̃

>
t + z̃tz̄

>
t . Taking the

expectation, we obtain E[ztzt
>] = z̄tz̄

>
t + σ2Gt(A). Summing over t yields the result. Note

that the first term is deterministic and depends on the control whereas the second term
depends on the noise and not on the control. Therefore, the expected moment matrix is the
sum of a noise term and of a deterministic control term.
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Table 1: Alphabetical design criteria.

Optimality Φ(λ1, . . . , λd)

A-optimality −
(
1/λ1 + · · ·+ 1/λd

)
D-optimality log λ1 + . . . log λd

E-optimality λ1

Definition 4. In classical optimal design, the size of the information matrix is measured by
some criterion Φ : S+

n (R)→ R+, which is a functional of its eigenvalues λ1, . . . , λd ≥ 0. The
quantity Φ(I) represents the amount of information brought by the experiment and should
be maximized.

Example 4. Some of the usual criteria are presented in Table 1.

The criteria are required to have properties such as homogeneity, monotonicity and
concavity in the sense of the Loewner ordering, which can be interpreted in terms of
information theory: monotonicity means that a larger information matrix brings a greater
amount of information, concavity means that information cannot be increased by interpolation
between experiments. We refer to [16] for more details.

The theory of classical optimal design leads to the definition of the following optimal
design informativeness functional.

Definition 5 (Optimal design functional). Let Φ denote an optimal design criterion. Then
the associated cost is defined as

FΦ(π; θ, t) = −Φ
[
Γt
(
τ(π); θ

)]
= −Φ

[
t−1∑
s=0

z̄sz̄
>
s + σ2Gs(A)

]
,

(17)

where the z̄s depend on the inputs us through (5).

Remark 1. We note from equation (5) that Z is affine in U . Hence, Z>Z is quadratic in U ,
and maximizing (17) efficiently is challenging even with concavity assumptions on Φ.

2.3 Small noise regime

The optimal design functional (17) can be related to the MSE in the small noise regime σ � γ.

Proposition 4. The A-optimal design functional (17) is aO(σ/γ) approximation of the MSE (3):

MSE(π) =
1

2
FA(π; θ?, T ) +O(σ/γ). (18)

Proof. We introduce the rescaled variables ζ = (1/γ)Z and ω = (1/σ)W which are of order 1.
Extending the notations of equation (5), Z = Z̄ + Z̃, where the first term is of order γ and
the second is of order σ. Therefore, Z = Z̄ + O(σ), or equivalently ζ = ζ̄ + O(σ/γ). By
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Proposition 7, ζ+ is differentiable at ζ̄ so ζ+ = ζ̄+ +O(σ/γ). Taking the squared norm and
using Cauchy-Schwartz inequality, we obtain∥∥ζ+ω

∥∥2
=
∥∥ζ̄+ω

∥∥2
+O(σ/γ). (19)

Furthermore,
E
[∥∥ζ̄+ω

∥∥2
]

= E
[
tr
(
ζ̄(ζ̄>ζ̄)−2ζ̄>ωω>

)]
= tr

[
(ζ̄>ζ̄)−1

]
.

(20)

Gathering (19) and (20), we obtain

1

2
E
[∥∥ζ+ω

∥∥2
]

=
1

2
tr
[
(ζ̄>ζ̄)−1

]
+O(σ/γ). (21)

Remark 2. In classical least squares regression, the covariates Z are independent of the
noise W . As a consequence, the minimziation of the mean squared estimation error leads to
the classical A-optimality criterion. This does not hold in general in our framework because
the signal and the noise are coupled by the dynamics (1). However, Proposition 18 shows that
this criterion does hold in the small noise regime at first order in σ/γ. Indeed, when σ � γ
the contribution of the noise to the signal is negligible because the deterministic part of the
signal is of order γ.

Remark 3. From Proposition 4 and the definition of A-optimality, we see that the MSE
approximately scales like 1/T when the number of observations increases. This is confirmed
by experiments.

3 Online greedy identification

3.1 One-step-ahead objective

A simple, natural approach for system identification consists in choosing a decision sequentially
at each time step. At each time t, the control ut is chosen with energy γ2 so as to maximize
a one-step-ahead objective. Then, a new observation xt is collected and the process repeats.
Following Section 2.2, ut can be chosen to maximize the value of FΦ at t+1. This corresponds
to the choice of functional F = FΦ and to the one-step schedule ti = i.

Upon choosing ut, the policy πt should select ut so as to maximize the design criterion Φ
applied on the one-step ahead, ut-dependent information matrix, the past trajectory x0:t being
fixed. The one-step-ahead information matrix is Ms−1 + EAs [zszs>], with s = t when B? is
estimated (because then then next ut-dependent covariate is zt) and s = t+ 1 if B? is known,
because then the next ut-dependent covariate is xt+1. Therefore, one-step ahead planning
yields the following optimization problem:

max
u∈Rm

Φ
(
M̄t + z(u)z(u)>

)
such that ‖u‖2 ≤ γ2,

(22)
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with

M̄t =

{
Mt−1 + σ2Gt(At) if θ = (A, B)

Mt + σ2Gt+1(At) if θ = A,
(23)

and

z(u) =


(
xt

u

)
if θ = (A, B)

Atxt +B?ut if θ = A.

(24)

Remark 4. With this greedy policy, the energy constraint imposed for one input ensures
that the global power constraint (2) is met.

The corresponding identification process is detailed in Algorithm 2. We will see in
Section 3.2 that problem (22) can be solved accurately and at a cheap cost. Moreover,
Algorithm 2 offers the advantage of improving the knowledge of θ? at each time step using
all the available information on the parameter to plan at each time step. This way, the bias
affecting planning due to the uncertainty about θ? is minimized. When planning is performed
over larger time sequences, a large bias could impair the identification of the system.

Algorithm 2 Greedy system identification
inputs initial guess θ0, noise variance σ2, power γ2, time horizon T , design criterion Φ
output final estimate θT
for 0 ≤ t ≤ T − 1 do

ut ∈ argmax
‖u‖2≤γ2

Φ
(
M̄t + z(u)z(u)>

)
play ut, observe xt+1

Mt+1 = Mt + xt+1xt+1
>

θt+1
> = M−1

t+1

(
Mtθt + xtyt

>)
end for

3.2 Solving the one-step optimal design problem

We show that the one-step ahead planning for online system identification is equivalent to a
convex quadratic program which can be solved efficiently.

Proposition 5. For D-optimality and A-optimality, there exists a symmetric matrixQ ∈ Rm×m

and b ∈ Rm the problem (22) is equivalent to

min
u∈Rd

u>Qu− 2b>u

such that ‖u‖2 ≤ γ2.
(25)

Proof. From Proposition 8, we find that

log det
(
M̄t + z(u)z(u)>

)
= log det M̄t

+ log
(
1 + z(u)>M̄t

−1
z(u)

)
.

(26)

9



Similarly, from Corollary 1 ,

−tr

[(
M̄t + z(u)z(u)>

)−1
]

= 1− tr
[
M̄t
−1
]

− 1

1 + z(u)>M̄t
−1
z(u)

.
(27)

Maximizing these quantities with respect to u amounts to maximizing z(u)>M̄t
−1
z(u). The

matrix M̄t
−1 is symmetric because the Mt and the Gt are symmetric, and so are its diagonal

submatrices. Given the affine dependence of z in u and the (possible) block structure of z
and Mt, z(u)>M̄t

−1
z(u) is of the form u>Qu−2b>u, up to a constant. We provide an explicit

formula for Q and b in the case where θ = A in Remark 5

We now characterize the minimizers of Problem (25). If a minimizer can be found in
the interior of the constraining sphere, then Q is positive semidefinite and the problem can
be tackled using unconstrainted optimization. We thus consider the equality constrained
problem

min
u∈Rd

u>Qu− 2b>u

such that ‖u‖2 = γ2.
(28)

Proposition 6. Note {αi} the eigenvalues of Q, and ui and bi the coordinates of u∗ and b
in a corresponding orthonormal basis. Then a minimizer u∗ satisfies the following equations
for some nonzero scalar µ:

ui = bi/(αi + µ) and
∑
i

bi
2

(αi + µ)2
= γ2. (29)

Proof. By the Lagrange multiplier theorem there exists a nonzero scalar µ such thatQu∗ − b = −µu∗,
where µ can be scaled such that Q+ µId is nonsingular. Inverting the optimal condition and
expanding the equality constraint gives the two conditions.

Problem (25) can hence be solved at the cost of a scalar root-finding and an eigenvalue
decomposition. In [23], bounds are provided so as to initialize the root-finding method
efficiently.

Remark 5. In the case where B? (i.e. θ = A), Q and b have the following expressions:

Q = −B>M̄t
−1
B, b = B>M̄t

−1
Atxt. (30)

4 Gradient-based identification
In this section, we propose a gradient-based approach to planning. In a sequential identification
scheme of Algorithm 1, the cost functions (3) and (17) can be optimized by projected gradient
descent. This builds on the following remark.
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Remark 6 (Differentiability of the functionals). The functionals (3) and (17) are differentiable
functions of the output. Indeed, X is an affine function of the inputs as shown in Proposition 1,
and the controllability of (A,B) guarantees that Z>Z is positive definite. Furthermore, the
operations of pseudo-inverse (see Proposition 7) and the optimal design criteria of Table 1
are differentiable over the set of positive definite matrices.

The gradients with respect to U can either be derived analytically (see [3], section 6
for the derivation of an adjoint equation) or automatically in an automatic differentiation
framework. We rescale U at each step to ensure the power constraint is met. The ti are chosen
arbitrarily. The computational complexity of the algorithm is linear in T : each gradient step
backpropagates through the planning time interval.

4.1 Gradient-based optimal design

We propose a gradient-based method to optimize U by performing gradient descent directly
on U in functional (17). Note that we optimize the inputs directly in the time domain,
whereas other approaches such as [14] perform optimization in the frequency domain by
restricting the control to periodic inputs.

4.2 Gradient through the oracle MSE

Given the true parameters θ? = (A?B?), the optimal control for the MSE minimizes the MSE
cost (3), as explained Example 3. However, the dependency between Z andW makes this func-
tional complicated to evaluate and to minimize with respect to the inputs, even when the true
parameters θ? are known. We propose a numerical method to minimize (3) using automatic
differentiation an Monte-Carlo sampling. Given one realization of the noise and inputs U , the
gradient of the squared error (13) can be computed automatically in an automatic differenti-
ation framework. Then, one can sample a batch of b noise matrices W1, . . . ,Wb ∼ N (0, σ2I)
and approximate the gradient of (3) by

∇MSE(U) ' 1

b

b∑
i=1

∇Utr
[
Z(Z>Z)−2Z>WiWi

>] . (31)

Although we do not have convergence guarantees due to the lack of structure of the objective
function, the gradient descent does converge in practice, to a control that outperforms the
adaptive controls.

5 Performance study

5.1 Complexity analysis

Definition 6 (Performance). Let θT denote the estimation produced by the learning algorithm
at the end of identification. The performance of the policy π is measured by the average
error over the experiments on the true system: ε = MSE(π). We study the performance of
our algorithms as a function of the number of observations T and C the computational cost.
We also introduce the computational rate c = C/T .

11



Algorithm 3 Planning by projected gradient descent
inputs At, σ, γ, T , η, Ht

output control U ∈ R(T−t)×m

for 0 ≤ j ≤ ngradient do
G(U) = F [X(U)|Ht]
U = U − η∇G(U)
U = (γ

√
T/‖U‖F)× U

end for

Algorithm 2 and the gradient identification algorithm have linear time complexity. Hence,
we define cgreedy and cgradient for a given number of gradient iterations. In practice, we find
that cgreedy � cgradient, where cgradient is the computational rate needed for the gradient descent
to converge. As pointed out in Remark 3, the squared error essentially scales like 1/T . This is
verified experimentally. Given the previous observations, we postulate that the performance
of our algorithms takes the form

ε(C, T ) = η(c)/T. (32)

We build an experimental diagram where we plot the average estimation error for θ? = A? as a
function of the two types of resource T and C for the gradient algorithm. Increasing C allows
for more gradient steps. We run trials with random matrices A? of size d = 4, with B = Id.
We set γ = 1, σ = 10−2, T ∈ [60, 220]. The gradient algorithm optimizes the A-optimality
functional (17) with a batch size of b = 100 and {ti} = {0, 10, T/2, T}. The obtained
performances are to be compared with those of the greedy algorithm (with the A-optimality
cost function), which has a fixed, small computational rate c. Our diagrams are plotted
on Fig. 1.

Our diagrams show that the greedy algorithm is preferable in a phase of low computational
rate: C < c× T , as suggested by (32). The phase separation corresponds to a relatively high
number of gradient steps. Indeed, the iso-performance along this line are almost vertical,
meaning that the gradient descent has almost converged. Furthermore, the maximum
performance gain of the gradient algorithm relatively to the greedy algorithm is of 10%.

5.2 Average estimation error

We now test the performances of our algorithms on random matrices, with the same settings
as in the previous experiment. For the gradient algorithm, the minimal number of gradient
iterations to reach maximum performance for was found to be ngradient = 120. For each
matrix A?, we also compute an oracle optimal control using Algorithm 3 with a batch size
of b = 100, and run a random input baseline (see Example 1), and the TOPLE algorithm of
[14].

Both the gradient algorithm and the greedy algorithm closely approach the oracle. The
former performs slightly better than the latter in average. However, the computational cost
of the gradient algorithm is far larger, as Table 2 shows. Indeed, the number of gradient
steps to reach convergence in this setting is found to be of order ngradient ' 100. Note that
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Figure 1: Experimental (T,C) diagram. Left Performance of the gradient algorithm, with
varying T and C (varying number of gradient steps). Right Relative performance of the
gradient algorithm with respect to the greedy algorithm: negative means that the gradient
performs better.

Table 2: Average computational rate for the different algorithms.

Random TOPLE[13] Gradient Greedy

c 1 nTOPLE × 0.02 ngradient × 0.5 2.36

the number of sub-gradient steps for the TOPLE algorithm is found to be nTOPLE ' 1000,
and so nTOPLE ' 20× ngradient.

0 20 40 60 80 100
t

10−2

10−1

‖A? − At‖F

random

greedy

gradient

oracle

TOPLE

Figure 2: Identification error for random A? averaged over 1000 samples.

5.3 Identification of an aircraft system

We now study a more realistic setting from the field of aeronautics: we apply system
identification to an aircraft system. We use the numerical values issued in a report from
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Table 3: Frobenius error for A? in the lateral system of the aircraft, T = 150. Our oracle
algorithm reaches an error of 8.0× 10−2. The computational time is expressed in an arbitrary
unit.

Random TOPLE [13] MSE gradient Greedy

Error 1.1× 10−1 8.6× 10−2 8.3× 10−2 8.2× 10−2

Time 1 55.7 25 1.13

the NASA [4]. The lateral motion of a Lockheed Jet star is described by the slideslip
and roll angles and the roll and yaw rates (β, φ, p, r)> := x. The control variables are the
aileron and rudder angles (δa, δr) := u. The linear dynamics for an aircraft flying at 573.7
meters/sec at 6.096 meters are given by the following matrix, obtained after discretization
and normalization of the continuous-time system [4]:

A? =


.955 −.0113 0 −.0284

0 1 .0568 0
−.25 0 −.963 .00496
.168 0 −.00476 −.993

 , (33)

B? = 0.1×


0 0.0116
0 0

1.62 .789
0 −.87

 , (34)

and σ = 1, γ ' 4 deg. We apply our algorithms on this LTI system. Our results are
summarized in Table 3.

As we can see, the greedy algorithm outperforms the gradient-based algorithms, both
in performance and in computational cost. This could be explained by the fact that the
signal-to-noise ratio in this system is of order 1, hence the estimation bias in planning is large
and it is more effective to plan one-step-ahead than to do planning over large epochs. We
obtain similar results for the longitudinal system of a C-8 Buffalo aircraft [4].

6 Conclusion
In this work, we explore a setting for linear system identification with hard constraints
on the number of interactions with the real system and on the computing resources used
for planning and estimation. We introduce a greedy online algorithm requiring minimal
computing resources and show empirically that for small values of interactions with the
system, it can actually outperform more sophisticated gradient-based methods. Extension of
this approach to optimal control for the LQR is an interesting direction of future research.
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7 Matrix calculus
Proposition 7. On a domain where X has linearly independent columns, X+ is a differen-
tiable function of X and

dX+ = −X+dXX+ +X+X+>dX>(I −XX+). (35)

Proof. See [24].

Lemma 1. Let A ∈ Rk×` and B ∈ Rn×m. Then

det(Ik,m + AB) = det(In,` +BA). (36)

Proposition 8. Let M ∈ Rd×d be a nonsingular matrix and x, y ∈ Rd. Then

det(M + xy>) = detM × (1 + y>M−1x). (37)

Proof.
M + xy> = M(I +M−1xy>) (38)

Apply Lemma 1:
det(M + xy>) = detM × det(Id +M−1xy>)

= detM × det(I1 + y>M−1x)

= detM × (1 + y>M−1x).

(39)

Proof. See [25].

Proposition 9. Let 0 < A ≤ B be positive definite matrices of Rd×d, and x ∈ Rd. Then

log det(A+ xx>)− log detA ≥ log det(B + xx>)− log detB. (40)

Proof. By Proposition 8,

log det(A+ xx>)− log detA = log(1 + x>A−1x) (41)

Since 0 < A ≤ B, both matrices are nonsingular and 0 < B−1 ≤ A−1. Hence,

log(1 + x>A−1x) ≥ log(1 + x>B−1x)

= log det(B + xx>)− log detB
(42)

Proposition 8 admits the following generalization.

Proposition 10. Let M ∈ Rd×d be a nonsingular matrix and let x1, . . . , xn, y1, . . . , y ∈ Rd.
Then

det

(
M +

n∑
i=1

xiyi
>

)
= detM

+
n∑
i=1

xi
>adj

(
M +

i−1∑
j=1

xjyj
>

)
yi

(43)

15



Proof. See [25].

Proposition 11. Let M ∈ Rd×d be a nonsingular matrix and x, y ∈ Rd. Then (M + xy>) is
nonsingular and

(M + xy>)−1 = (Id −
1

1 + x>M−1y
xy>)M−1 (44)

Corollary 1. Let M ∈ Rd×d be a nonsingular matrix and x, y ∈ Rd. Then

tr
[
(M + xy>)−1

]
= tr[M−1]− y>M−1x

1 + x>M−1y
(45)
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