
ETH Library

Data-Driven Robust Congestion
Pricing

Master Thesis

Author(s):
Wang, Yize

Publication date:
2021-06-27

Permanent link:
https://doi.org/10.3929/ethz-b-000523902

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000523902
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

The text font of “Automatic Control Laboratory” is DIN Medium

C = 100, M = 83, Y = 35, K = 22

C = 0, M = 0, Y = 0, K = 60

Logo on dark background

K = 100

K = 60

pantone 294 C

pantone Cool Grey 9 C

Automatic Control Laboratory

Master’s Thesis

Data-Driven Robust Congestion Pricing

Yize Wang
June 27, 2021

Advisors
Prof. Dr. Dario Paccagnan

Prof. Dr. John Lygeros

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

Data-Driven Robust Congestion Pricing

Wang Yize

Harbin, June 2, 2021

Abstract

Self-interested routing is often inefficient in traffic networks. Economists and computer scientists
have proven that imposing proper tolls on congested roads, i.e., congestion pricing, can effectively
improve network efficiency by reducing the total travel time experienced by all users. However,
most researches focus on deterministic demands, while uncertainties are rarely studied. As a
result, the tolls designed for the deterministic demands may behave undesirably when the actual
demands deviate from the expectation. Existing solutions for uncertain demands mostly require
a particular structure of either the network or the uncertainty, which motivates us to investigate
a robust congestion pricing scheme for general networks that guarantees the toll performance
under unknown uncertainties.

This thesis combines congestion pricing and scenario approach, a general framework for data-
driven robust optimization, and formulates the robust toll design task as a bi-level optimization.
Taking observed scenarios into account, we are able to design robust tolls that perform well when
actual demands respect the same distribution with no knowledge of the distribution required.
Besides exact algorithms, we also propose approximate ones to solve the NP-hard bi-level opti-
mization within a reasonable time. We illustrate that the robustness can be quantified, and the
toll-setter can compromise between robustness and performance. Finally, we demonstrate with
numerical examples that the designed tolls can deal with uncertainties in unseen scenarios.

Keywords Congestion pricing, data-driven decision making, scenario approach, game theory,
robust optimization

i

ii

Acknowledgment

First, I would like to thank Prof. Dr. Dario Paccagnan for supervising me during the unforget-
table six-month research. His insightful advice, broad knowledge, patient instruction have always
encouraged me to explore more and further. The research topic was a completely new field for me,
but with Dario’s invaluable help, I managed to learn relevant knowledge quickly and make some
contributions to the scientific society. He not only supported me through numerous meetings and
discussions but also exerted an imperceptible influence on my personality, with his persistence,
humility, optimism and decisiveness. It is my greatest honor to have Dario as my supervisor,
and my greatest regret to not be able to meet Dario in person due to the pandemic of COVID-19.

I also would like to thank Prof. Dr. John Lygeros. Among all lectures I had in my life, no
one intrigues me more than Linear System Theory. John’s lecture serves as a perfect bridge
between mathematics and engineering, connecting my past knowledge. He also brought me the
opportunity to know Dario and to get involved in the enjoyable research.

Furthermore, I would like to thank Dr. Kiril Solovey for providing me with a fast implementa-
tion of the traffic-assigning algorithm. The implementation sped up my algorithm more than ten
times and made it possible to conduct experiments on huge networks. I would like to thank Prof.
Dr. Marco Claudio Campi for proposing the wonderful scenario approach framework. Without
his prior work on the scenario approach, my thesis would be impossible. I would also like to
thank Yilun Zhang for selflessly sharing his knowledge on optimization theory and numerical
solver. Frequent discussions with him greatly encouraged me during the unexpected lockdown.

Moreover, I have my warmest gratitude to my family, Wenying Zhu, Aoming Liu, Chao Jing,
Chenyu Zhou, Gaoxiang Shen, Guohui Gao, Hao Yu, Huimin Zhang, Jingyang Shen, Lanyi Yang,
Linfeng Xu, Mafu Zhang, Modi Liu, Qi Zeng, Tianwei Lan, Wencan Huang, Xiang Li, Xingyun
Zhou, Xinyu Sun, Yan Wu, Yimeng Lu, Yu Dai, Yukai Lin, Yunzhe Pan and Zepeng Shao.
Without their company, I cannot overcome all the difficulties and accomplish my thesis.

Finally, I would like to thank Mr. Lixin Tang, ETH Zurich, and China Scholarship Council for
financially supporting my study.

No matter what difficulties and challenges we face, as a community with a shared future, hu-
mankind should abandon prejudice and unite and move forward in the long course of history.

iii

iv

Abbreviations

OD Origin-Destination
NP Nondeterministic Polynomial Time
BPR U.S. Bureau of Public Roads
OPT Optimization
SA Scenario Approach
UE User Equilibrium
SO Social Optimum
NLP Non-Linear Programming
LLP Lower-Level Programming
BLP Bi-Level Programming
PoA Price of Anarchy
MC Marginal Cost
MCT Marginal-Cost Tolls
Iter Iteration
TH Threshold
VFW Vanilla Frank-Wolfe Algorithm
CFW Conjugate Frank-Wolfe Algorithm
BFW Bi-Conjugate Frank-Wolfe Algorithm
N/A Not Available
LP Linear Programming
QP Quadratic Programming
MILP Mixed-Integer Linear Programming
MIQP Mixed-Integer Quadratic Programming
SLSQP Sequential Least SQuares Programming

v

vi

Contents

Abstract i

Acknowledgment iii

Abbreviations v

1 Introduction 1
1.1 Related Work . 3

2 Formulation 5
2.1 Traffic Assignment Model . 5

2.1.1 Network Model . 5
2.1.2 Cost Model . 6
2.1.3 Latency Model . 7

2.2 Equilibrium and Efficiency . 8
2.2.1 Wardrop Equilibrium . 8
2.2.2 Price of Anarchy . 9

2.3 Toll Design . 10
2.3.1 Deterministic Toll Design by Bi-Level Optimization 10
2.3.2 Marginal-Cost Toll . 11
2.3.3 Scenario Approach . 13
2.3.4 Robust Toll Design by Scenario Optimization 15

3 Algorithms for Globally Optimal Solution 17
3.1 Model Reformulations . 17
3.2 Magnitude Scaling . 21
3.3 Approximation for Polynomial Latency Function 22
3.4 Initialize with Feasible Point . 23
3.5 Support Subsample Evaluation . 24
3.6 Experiments . 25

3.6.1 Scenario Generation . 25
3.6.2 Result Analysis . 26
3.6.3 Discussion . 26

4 Algorithms for Suboptimal Solution 29
4.1 Greedy Numerical Gradient Descent Algorithm 29

4.1.1 Model Reformulation . 29
4.1.2 Frank-Wolfe Algorithm . 29
4.1.3 Greedy Numerical Gradient Descent Algorithm 31
4.1.4 Delta Tau . 33

4.1.5 Toll Post-Process . 33
4.1.6 Cache for PoA . 34
4.1.7 Step Size Determination . 34
4.1.8 Multi-Start Strategy . 37
4.1.9 Result Analysis . 38
4.1.10 Toll Performance Comparison . 41
4.1.11 Performance on Partially-Taxable Networks 43

4.2 Structure-Fixing Algorithm . 44
4.2.1 Model Formulation . 44
4.2.2 Preliminary Result Analysis . 45
4.2.3 Discussion . 46

4.3 Discussion . 47

5 Conclusion and Outlook 49

Bibliography 51

Chapter 1

Introduction

As a result of crowded megacities, the rapid growth of automotive vehicles, and inadequate trans-
portation facilities, traffic congestion has been globally considered as a severe social problem,
which causes uncountable waste of time and money [35, 39]. One of the main reasons for such
traffic inefficiency is the selfish behavior of traffic participants [16, 15, 38]. That is, the social
transportation cost is worse than the optimal one due to participants’ tendency to minimize
their individual travel costs. The traffic flow resulting from selfishness is commonly modeled as a
Wardrop equilibrium and has been extensively studied, for example in [2, 37, 46]. The Wardrop
model describes the traffic assignment as a non-atomic non-cooperative game, with each road
equipped with a convex latency function. There is a set of origin-destination pairs, called com-
modities, and each commodity has an amount of traffic flow to deliver, called demand. Given the
network structure and commodities, the Wardrop equilibrium can be obtained through convex
programming [2].

In order to mitigate the inefficiency caused by selfish behavior, researchers proposed congestion
pricing schemes to incentivize rational individuals to behave in a socially-desirable manner. For
instance, by imposing tolls on roads, some drivers are discouraged from using the overcrowded
links and deviate to previously-unfavored ones, leading to a better social traffic flow [33, 2].

The seminal work [2] proves that charging marginal-cost tolls on all roads will ensure the resulting
Wardrop equilibrium coincides with the socially optimal allocation. However, three main issues
are prohibiting its application in real-world traffic systems. First, all links are required to be tax-
able for marginal-cost tolls to take effect. Although highways can be easily taxed, it is currently
impossible to impose tolls on every single community street. Second, the value of margin-cost
tolls may be arbitrarily large. Third, commodities and their corresponding demands are assumed
to be known exactly, while they actually vary constantly and cannot be pre-measured. As a con-
sequence, the flow-independent margin-cost taxation can even exaggerate congestion due to the
mismatch between the actual and predicted demands, i.e., not robust to uncertainties [5, 45].

To tackle the first two problems, we can utilize a bi-level optimization, where the upper level
optimizes the social cost by choosing bounded tolls, and the lower level describes the Wardrop
equilibrium determined by the upper-level decision variables. The bi-level optimization has been
proven to be NP-hard and thus is computationally demanding. There are many techniques pro-
posed to solve the bi-level optimization, for example [14, 40, 30, 1]. However, in the worst case,
the complexity of mathematical programming grows exponentially with the network scale and
can quickly incur an infeasible computational cost.

1

To handle the uncertainty problem, we resort to the robust optimization framework - scenario
approach. The scenario approach is regarded as a powerful methodology for data-driven decision
making [7, 8]. The algorithm first collects some recorded scenarios and looks for the solution that
optimizes the objective function in the worst case of these scenarios. Interestingly, the scenario
theory probabilistically guarantees the solution’s performance when the decisions are applied
to unseen scenarios. [11] even generalizes the scenario approach theory to consider non-convex
optimizations.

In this thesis, we propose several algorithms to compute probabilistically robust optimal restricted
tolls by combining the bi-level optimization and the scenario approach. We utilize the math-
ematical programming solver Gurobi to locate the robust globally optimal solution for small
networks. For large networks where obtaining the global one is difficult, we present a numer-
ical gradient-descent algorithm to compute suboptimal tolls efficiently. We remark that even
the solutions are computed approximately, the scenario approach allows us to probabilistically
guarantee the performance under uncertainties.

2

1.1 Related Work

Researchers have investigated many tolling mechanisms to deal with the inefficiency of the equi-
librium in the Wardrop model. [25, 3, 26, 24] compute the optimal tolls for parallel-arc single-
commodity networks with affine latency functions where only subnetworks are taxable. [3] shows
that toll upper bounds can be respected, and [24] generalizes the type of latency functions. [4]
derives the optimal bounded tolls and the best-possible performance guarantee as a function of
toll upper bounds. However, [25] shows that if taxable edges form a strict subset of all edges,
it would be NP-hard to compute optimal taxes for general networks even with affine latency
functions and two commodities.

In the case of general networks and multi-commodities, [24] proposes three heuristic algorithms
to arrive at approximately optimal tolls. [43] adopts a numerical method to compute optimal
tolls for general subnetworks. With strong assumptions, [12] simplifies the problem into a single-
level convex optimization by assuming that the same arcs will be used before and after they are
taxed. [18] deals with multi-commodity series-parallel networks numerically via longest-path-first
flow decomposition. [29, 30, 49, 50, 47, 48, 17] tackle the tolling problem as a bi-level optimiza-
tion. However, [27] proves that the simple version of the bi-level problem with linear objective
functions and linear constraints is already NP-hard. Even worse, checking whether a solution is
locally optimal has also been proved to be NP-hard [44].

When the uncertainty of the demands is taken into account, [13] studies conditions under which
the optimal tolls are demand-independent given all links are taxable. [21] proposes a numerical
demand-robust tolling mechanism for general networks. [22] presents two approximation meth-
ods to compute robustly optimal tolls.

The scenario approach is proposed in [6, 7, 8], which illustrate how the probabilistic robustness
can be achieved for convex programs, and [10] steps further to consider relaxing the constraints in
order to comprise between the performance and the robustness. The author’s later works [11, 9]
generalize the theory to non-convex cases and argue that the robustness cannot be evaluated
until the non-convex programs are solved.

In this thesis, we consider general traffic networks with multiple commodities. Integrating the sce-
nario approach, we propose both exact and approximate algorithms to compute probabilistically-
robust tolls based on seen scenarios. All algorithms can be applied to partially-taxable networks
and respect prescribed toll upper bounds. The approximate algorithm can find an approximate
local optimum of the NP-hard toll-designing optimization in a reasonable time. Finally, we
demonstrate with numerical examples that the designed tolls perform well in unseen scenarios,
and the policymaker can compromise between performance and robustness.

3

4

Chapter 2

Formulation

2.1 Traffic Assignment Model

2.1.1 Network Model

Consider a directed traffic network G = (V,E). V and E are the sets of vertices and edges with
cardinality of NV and NE , respectively. A directed edge is represented as e = (v1, v2) starting
from vertex v1 and terminating at vertex v2. We then associate network G with a commodity
set C, which has NK origin-destination pairs, C =

(
(o1, d1), . . . , (oNK , dNK)

)
. For ith commodity

(oi, di), we have to deliver a certain value of traffic flow, called demand and denoted by di. We
further represent the traffic flow on edge e caused by ith commodity as f ie. Let fe collect all
traffic flows on edge e of all commodities,

fe =

NK∑
i=1

f ie. (2.1)

A flow is feasible for the network and the commodity set if for each commodity:

1. the net flow of this commodity out of the origin is equal to the demand;

2. the net flow of this commodity into the destination is equal to the demand;

3. the net flow of this commodity out of other vertices is 0.

These conditions are mathematically formulated as

∑
e:o=v

f ie −
∑
e:d=v

f ie =

di if v = oi

−di if v = di

0 otherwise
, ∀i ∈ {1, . . . , NK}, (2.2)

where oi and di are the origin and destination of the ith commodity (oi, di).

We additionally require flows to be non-negative on all directed edges, i.e.,

f ie ≥ 0,∀e ∈ E, i ∈ {1, . . . , NK}. (2.3)

Next we impose a common assumption before elaborating our traffic model.

Assumption 1 (Existence of Feasible Flow). There exists at least one feasible flow for network
G and commodity set C.

5

For the ease of notation, we define flow vector fk ∈ RNE
+ , whose jth entry describes the traffic flow

on the jth edge of the kth commodity. Finally, we declare collective edge flow vector fE ∈ RNE
+

and overall flow vector f ∈ RNE+NENK
+

fE =

 f1
...

fNE

 , f i =

 f i1
...

f iNE

 , f =

fE
f1

...
fK

 , fE =

NK∑
k=1

fk. (2.4)

Now, by properly defining matrix A ∈ Z(NE+NKNV)×(NE+NKNE) and vector b ∈ RNE+NKNV , we
can compactly express (2.1, 2.2, 2.3) in linear form

Af = b,

f ≥ 0,

where A and b are usually sparse.

Note that the network model defined here is called the link-based formulation while the other
type is the path-based formulation. Since in the later one, the number of flow variables grows
exponentially with respect to the number of links while in the link-based one linearly, we will
adopt the link-based formulation throughout.

2.1.2 Cost Model

We consider edges as congestible resources, and the players have to pay some latency costs
when utilizing them. The cost is determined by the load-dependent latency function le, a non-
negative, differentiable, and non-decreasing convex function. le is a function of cumulative flows
of all commodities on the edge e, that is, fe. The social cost incurred on edge e is defined as
fele(fe), i.e., flow times latency. Summing the costs from all edges yields the total social cost

Csoc =
∑
e

fele(fe). (2.5)

On the other hand, the individual cost f iele(fe) incurred on edge e depends on the collective flow
fe and the ith-commodity flow f ie. The total individual cost for the ith commodity is

Ciind =
∑
e

f iele(fe).

If drivers are charged traffic tolls for using some links, the individual cost should also include the
monetary discouragement and be generalized as

C̃iind =
∑
e

f ie
(
le(fe) + siτe

)
, (2.6)

where τe is the toll charged for using link e, and the player sensitivity si indicates how much the
ith commodity values the cost of one unit of time (latency) compared to one unit of money (toll).
For simplicity, we assume players from all commodities share the same sensitivity and drop si in
(2.6) by including the sensitivity into the toll.

Assumption 2 (Homogeneous Players). All players from all commodities share the same sen-
sitivity, that is, s1 = · · · = sK .

6

2.1.3 Latency Model

We require latency functions to be non-decreasing, non-negative, differentiable and convex.
Among many possible function types, the affine latency function is one of the most popular
choices in the literature because of its mathematical simplicity, which assumes that the traffic
latency grows linearly to the traffic flow on a road.

Definition 3 (Affine Latency Function). The affine latency function l : R+ → R+ admits the
form l(f) = af + b with non-negative coefficients a and b.

Networks equipped with affine latency functions have been widely investigated in [37, 25, 3,
26, 24]. However, such functions cannot properly reflect how real traffic systems work, because
the latency experienced by drivers does not simply grow linearly to the traffic load. Instead,
the U.S. Bureau of Public Roads proposed a strongly-convex polynomial function to respect the
congestion properties of real roads [31].

Definition 4 (BPR Latency Function). The Bureau of Public Roads latency function l : R+ →

R+ admits the form l(f) = t0

(
1 +B

(
f
C

)P)
with non-negative coefficients t0, B, C and P .

In the BPR latency function, t0 is the free-flow travel time, f is the flow on the link, and C is the
capacity, which is the maximum number of vehicles that can pass through a cross section of this
road. This function well approximates the real travel time - when the road is at low occupation
(f � C), the users’ travel time is close to the free-flow travel time as users do not affect each
other much. But if the road is highly congested (f ≈ C or f > C), the users will suffer from a
quick growth of the travel time as the total on-link traffic flow increases, because the polynomial
term stands out. Figure 2.1 illustrates the function values and the growth rates of these two
latency function types.

0 20 40 60 80 100
Flow (vehicles/minute)

0

5

10

15

20

25

30

35

40

Tr
av

el
 T
im

e
(m

in
ut
es

)

Affine Latency Function
BRP Latency Function
Capacity

(a) Latency Function Values

0 20 40 60 80 100
Flow (vehicles/minute)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

De
riv

at
iv
e
of
 Tr
av
el
 T
im
e

Affine Latency Function
BRP Latency Function
Capacity

(b) Latency Function Derivatives

Figure 2.1: Latency Function Comparison. Blue curve: affine latency function with a = 0.1 and
b = 1.0; Orange curve: BRP latency function with t0 = 1.0, C = 25, P = 4 and B = 0.15.

Due to the strong convexity and the satisfactory approximation of the real traffic behaviors, we
will only consider the BRP latency function throughout this thesis.

7

2.2 Equilibrium and Efficiency

2.2.1 Wardrop Equilibrium

As the fundamental concept of the game theory, Nash equilibrium characterizes a set of strate-
gies where no single player can reduce his individual cost by unilaterally altering his strategy.
However, in real traffic systems, there are always too many players to be efficiently analyzed.
Therefore we utilize the non-atomic model where there are infinitely many players for each com-
modity. Every single player controls only a negligible portion and thus can be considered to have
no impact on other players. This motivates the Wardrop equilibrium concept and Wardrop gives
two main principles in [46], which can be summarized into the following two definitions.

Definition 5 (User Equilibrium). The feasible traffic flows satisfying the following property are
at Wardrop equilibrium: For each commodity, all non-zero-flow paths share the same cost, which
is less than those that would be experienced by a player on any unused path.

Wardrop equilibrium flows are also referred to as user equilibrium flows because no single agent
can unilaterally reduce his cost by choosing another path. The user equilibrium is the result of
players’ selfishness and thus can be often inefficient for the whole traffic system.

Interestingly, Beckman shows in [2] that the user equilibrium coincides with the solution to the
following convex optimization:

min
f

∑
e

∫ fe

0
le(t) dt (OPT-UE)

subject to:
Af = b

f ≥ 0

The intuitive explanation is that the sufficient and necessary optimality conditions of (OPT-UE)
coincide with Definition 5. The underlying reason is that the non-atomic non-cooperative game
above is a potential game, and the objective function in (OPT-UE) is the potential function.
When the potential function is minimized, users are at equilibrium.

Finally, we define socially optimal traffic flows.

Definition 6 (Socially Optimal Flow). The feasible traffic flow f∗ that minimizes the overall
travel costs for players from all commodities are socially optimal, i.e., f∗ minimizes (2.5).

Mathematically, the socially optimal traffic flow solves the following convex optimization:

min
f

∑
e

fele(fe) (OPT-SO)

subject to:
Af = b

f ≥ 0

As a result of Assumption 1, the solutions to (OPT-UE) and (OPT-SO) always exist. Moreover,
because of the strongly-convex objective function and convex constraint set, (OPT-UE) and
(OPT-SO) are convex optimizations which admit a unique solution.

Theorem 7 (Existence and Uniqueness). Under Assumption 1, there exists a unique solution
to both (OPT-UE) and (OPT-SO).

8

To highlight the differences between the UE and SO flows, we introduce the simple Pigou’s
network. As shown in Figure 2.2, in UE all players choose the upper link because the latency is
always less than or equal to 1.0, while in SO half of the players choose the upper one. The social
costs of these two cases are 1.0 and 0.75 respectively.

(a) User Equilibrium Flows (b) Socially Optimal Flows

Figure 2.2: User Equilibrium and Socially Optimal Flows in Pigou’s Network. There are two
nodes in this network: "origin" denoted by o, and "destination" denoted by d. Two edges connect
o to d, with latency functions l1(f1) = 1 and l2(f2) = f2. The commodity has a demand of 1.0.

2.2.2 Price of Anarchy

Non-cooperative equilibrium is known to be inefficient due to agents’ selfish routing tendency,
who only want to minimize their individual costs without caring about the social cost [34, 15].
To quantitatively evaluate the inefficiency, [28, 32] introduce the concept of price of anarchy.

Definition 8 (Price of Anarchy). The price of anarchy is the ratio between the worst social cost
at a user equilibrium and the optimal social cost, mathematically defined as

PoA =
maxf∈Feq Csoc(f)

minf∈F Csoc(f)
,

where F is the set of all feasible flows, and Feq is the set of all user equilibrium flows.

According to Theorem 7, the price of anarchy can be simplified to the ratio between the social
cost of the (unique) user equilibrium flow and the (unique) social optimal flow, that is

PoA =
Csoc (fue)

Csoc (f so)
.

9

2.3 Toll Design

2.3.1 Deterministic Toll Design by Bi-Level Optimization

The task of designing optimal tolls for a given network and commodities can be intrinsically
formulated as a bi-level optimization, where the lower level defines that the flow is at the user
equilibrium and the upper level optimizes the social cost over the feasible space of tolls T. We
assume that all users value time equally so we can convert monetary cost to time cost. Let τ
denote the time cost converted from the monetary cost. Then, the bi-level optimization reads

min
τ∈T

∑
e

fele(fe) (BLP)

subject to:

f = arg min
f

∑
e

∫ fe

0
le(t) + τe dt (LLP)

Af = b

f ≥ 0

For simplicity, we will omit T in the left part of the thesis. Note that given τ , the lower level is
convex in both the objective function and the constraint set, and thus is a convex optimization.
To solve (BLP), we substitute (LLP) with KKT conditions,

l1(f1) + τ1
...

lNE
(fNE

) + τNE

0
...
0

− µ+A>λ = 0 (2.7)

Af = b (2.8)
f ≥ 0 (2.9)
µ ≥ 0 (2.10)

µ>f = 0. (2.11)

Here, (2.7), (2.8, 2.9), (2.10), (2.11) are called stationarity, primal feasibility, dual feasibility
and complementary slackness, respectively. µ is the dual variable of f , and we adopt the same
superscripts and subscripts for µ as f . For the ease of notation, we represent the gradient of the
objective function in (2.7) as ∇C(f) and compress (2.9), (2.10), (2.11) into 0 ≤ f ⊥ µ ≥ 0.

With the transformation above, the bi-level optimization (BLP) becomes a single-level non-linear
non-convex optimization in the compact form:

min
τ ,f ,µ,λ

∑
e

fele(fe) (NLP)

subject to:

∇C(f)− µ+A>λ = 0

Af = b

0 ≤ f ⊥ µ ≥ 0 (2.12)

10

Note that due to the existence of the bi-linear constraint (2.12), the non-convex problem (NLP)
is still NP-hard and thus cannot be solved in reasonable time, making the computational expense
formidable for large networks. However, if all links are unlimitedly taxable, marginal-cost tolls
are known to be a solution to the above optimization [33, 2].

2.3.2 Marginal-Cost Toll

As defined in [42], the marginal cost is the change in the total cost that arises when the quantity
produced changes by one unit. In the context of traffic system, the total cost (social cost incurred
by one link) is fele(fe) and the marginal cost is defined as the derivative of the social cost with
respect to the on-link traffic flow fe, i.e.,

d (fele(fe))

dfe
= le(fe) + fel

′
e(fe). (MC)

The marginal-cost toll is then defined as fel
′
e(fe) - the additional term in (MC) compared to the

latency function le(fe).

Definition 9 (Marginal-Cost Toll). The marginal-cost toll for link e with flow fe and latency
function le is fel

′
e(fe).

According to Definition 9, the marginal-cost toll for the affine latency function is

fel
′
e(fe) = afe,

and for the BPR latency function is

fel
′
e(fe) = t0BP

(
fe
C

)P
,

where fe should be the socially-optimal volume of flow.

Next, we show why marginal-cost tolls incentivize the socially optimal flow. First we consider
the user equilibrium subject to marginal-cost tolls. Pluging in the marginal-cost tolls into the
objective function of (OPT-UE) gives:

∑
e

∫ fe

0
l̃e(t)dt =

∑
e

∫ fe

0

(
le(fe) + fel

′
e(fe)

)
dt

=
∑
e

fele(fe)
∣∣∣fe
0

=
∑
e

fele(fe). (2.13)

Since (2.13) coincides with the objective function of (OPT-SO) and the constraint sets are
the same, we can conclude that the solutions to (OPT-UE) and (OPT-SO) are identical when
marginal-cost tolls are imposed, that is, the marginal-cost tolls force the user equilibrium flows
to be the socially optimal flows.

Theorem 10. Marginal-cost tolls incentivize the socially optimal flow when all users value time
equally.

To compute the flow-independent marginal-cost tolls, we can first calculate the socially optimal
flow f∗, and multiply the flow by the derivative of the latency function, i.e., f∗e l

′
e(f
∗
e).

11

A natural question is "How well marginal-cost tolls can do in the case of uncertain demands"
because in reality, we can only estimate the demands instead of knowing them exactly. Unfor-
tunately, the performance of such tolls is not guaranteed under uncertainties [5, 45]. We take an
example of the famous Braess’s network in Figure 2.3.

Figure 2.3: Braess’s Network. The latency functions are l1(f1) = 10f1, l2(f2) = f2 + 50,
l3(f3) = f3 + 50, l4(f4) = f4 + 10, l5(f5) = 10f5. The demand to be delivered from o to d is 6.0.

Next, we scale the demand and see how social cost curves and price of anarchy curves vary with
respect to the scale factor. From Figure 2.4, we observe that the marginal-cost tolls cannot
guarantee the improvement of PoA, and can even make the system less efficient under some
conditions. This motivates us to design tolls that are robust in the face of uncertain demands.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Scale Factor

0

100

200

300

400

500

600

700

So
cia

l C
os

t

(a) Performance on Social Cost

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Scale Factor

1.00

1.05

1.10

1.15

1.20

1.25

Pr
ice

 o
f A

na
rc
hy

PoA with Tolls
PoA without Tolls

(b) Performance on Price of Anarchy

Figure 2.4: Performance of Marginal-Cost Tolls. τ1 = 30, τ2 = 3, τ3 = 3, τ4 = 0, τ5 = 30.

12

2.3.3 Scenario Approach

In order to be robust to uncertain demands, we can collect demand data from multiple days and
periods, for example, all afternoons in a whole year. The demands may be regarded as random
variables which belong to an unknown distribution. The toll design task can now be interpreted
as a data-driven decision making task.

The scenario approach as a general methodology for the data-driven optimization is well-suited
for the task. In this section, we will summarize key assumptions and conclusions in [11]. For
detailed derivations, please refer to Campi’s studies on the scenario approach [8, 7, 9, 20, 10, 11].

Scenario Approach Setup: Let ∆ be a probability space with a probability measure P. An
element δ ∈ ∆ is called a scenario. We call

(
δ(1), . . . , δ(m)

)
a sample which consists of m

independently-drawn scenarios from ∆. Each δ(i) is regarded as an observation (scenario). Θ
is a decision space without any pre-defined properties. The decision maker is given the sample(
δ(1), . . . , δ(m)

)
and makes a decision based on a function Am : ∆m → Θ. We call the decision

θ∗m = Am
(
δ(1), . . . , δ(m)

)
the scenario decision. A natural feasibility assumption is forced for the

scenario approach:

Assumption 11 (Feasibility Assumption). To every scenario δ ∈ ∆, there is an associated con-
straint set Θδ ∈ Θ, which identifies the decisions that are admissible for the situation represented
by δ. For all m = 1, 2, . . . and for any sample

(
δ(1), . . . , δ(m)

)
, it holds that Am

(
δ(1), . . . , δ(m)

)
∈

∆δ(i) for all i = 1, . . . ,m.

The robustness of the scenario decision θ∗m means how well it generalizes to unseen situations
δ ∈ ∆. We say that θ∗m generalizes to δ if θ∗m ∈ Θδ, otherwise, violates δ. Formally, we give the
definition of the probabilistic robustness.

Definition 12 (Violation Probability). The violation probability of a given decision θ ∈ Θ is
defined as

V(θ) := P{δ ∈ ∆ : θ /∈ Θδ}.

For a given reliability parameter ε ∈ (0, 1), we say that θ ∈ Θ is ε-feasible if V(θ) < ε.

A prominent feature of the scenario approach in the non-convex setting is that we cannot assert
the robustness until we solve θ∗m. In other words, the robustness can only be a posterior com-
puted, which is also called the walk-and-judge scheme. The robustness depends on the cardinality
of the support subsample, defined as follows.

Definition 13 (Support Subsample). Given a sample
(
δ(1), . . . , δ(N)

)
∈ ∆N , a support sub-

sample S for
(
δ(1), . . . , δ(N)

)
is a k-tuple of elements extracted from

(
δ(1), . . . , δ(N)

)
, i.e., S =(

δ(i1), . . . , δ(ik)
)
with i1 < i2 < · · · < ik, which gives the same solution as the original sample,

that is,

Ak
(
δ(i1), . . . , δ(ik)

)
= AN

(
δ(1), . . . , δ(N)

)
.

A support subsample is called irreducible if no element can be further removed from S leaving
the solution unchanged.

We define a function BN to determine the support subsample. Let BN map a sample to the
set of support subsample indices, i.e., BN :

(
δ(1), . . . , δ(N)

)
7→ {i1, . . . , ik}, i1 < · · · < ik and(

δ(i1), . . . , δ(ik)
)
is a support subsample. Note that neither BN nor the support subsample is

unique. Finally, we cite the key theorem of the scenario approach, proven in Section III of [11].

13

Theorem 14. Suppose the Assumption 11 holds true, and set a value β ∈ (0, 1) (confidence
parameter). Let ε : {0, . . . , N} → [0, 1] be a function such that

ε(N) = 1 (2.14)
N−1∑
k=0

(
N

k

)
(1− ε(k))N−k = β. (2.15)

Then, for any AN , BN , and probability P, it holds that

PN{V(θ∗N) > ε(s∗N)} ≤ β. (2.16)

s∗N in (2.16) means the cardinality of a support subsample. The conclusion (2.16) should be
interpreted as "the violation probability of the scenario decision θ∗N is no larger than ε(s∗N) with
the confidence of 1−β". The confidence parameter β is given by the decision maker. ε(k) defined
by (2.14) and (2.15) prescribes a family of functions, and is thus not unique. Here, we offer a
simple choice of ε(k)

ε(k) :=

1 if k = N,

1− N−k

√
β

N(Nk)
otherwise. (2.17)

In Figure 2.5, we illustrate the impact of the cardinality of the sample N and the confidence
parameter β on the function ε(k).

0 250 500 750 1000 1250 1500 1750 2000
k

0.0

0.2

0.4

0.6

0.8

1.0

ε(
k)

N=500
N=1000
N=2000

(a) Sample Cardinality’s Impact

0 200 400 600 800 1000
k

0.0

0.2

0.4

0.6

0.8

1.0

ε(
k)

β=10−6

β=10−8

β=10−10

β=10−12

(b) Confidence Parameter’s Impact

Figure 2.5: Reliability Parameter

One can easily observe that all four curves in Figure 2.5b are close to each other. This is not a
coincidence and is the result of (2.17).

ε(k) = 1− exp

(
log

(
N−k

√
β

N
(
N
k

)))

= 1− exp

(
− 1

N − k
log

1

β
− 1

N − k
logN

(
N

k

))
≤ 1

N − k
log

1

β
+

1

N − k
logN

(
N

k

)
(2.18)

(2.18) shows that ε(k) is logarithmically dependent on β, which indicates that we can ask for a
very small β without significantly influencing ε(k).

14

2.3.4 Robust Toll Design by Scenario Optimization

To design robust tolls based on previous observations, we now resort to the scenario approach.
To utilize the scenario approach, we solve the tolls that optimize the empirical worst-case social
cost over all seen scenarios.

Recall the non-linear formulation (NLP), the demands only affect the vector term b. For a given
demand vector of scenario i, we highlight the dependence on the scenario by substituting b with
b(i), i ∈ {1, . . . , NS}, where NS is the number of scenarios. For scenario i, the optimization to
minimize the social cost is as follows.

min
τ ,f (i),µ(i),λ(i)

∑
e

f (i)
e le(f

(i)
e)

subject to:

∇C(f (i), τ)− µ(i) +A>λ(i) = 0

Af (i) = b(i)

0 ≤ f (i) ⊥ µ(i) ≥ 0

To minimize the worst-case social cost, we adopt the epigraphical formulation. Let H be the
worst-case social cost. We then look for the set of tolls that optimize H.

min
H,τ ,f (i),µ(i),λ(i)

H (SA-H)

subject to:

H ≥
∑
e

f (i)
e le(f

(i)
e),∀i ∈ {1, . . . , NS}

∇C(f (i), τ)− µ(i) +A>λ(i) = 0

Af (i) = b(i)

0 ≤ f (i) ⊥ µ(i) ≥ 0.

We are interested in solving (SA-H) because the scenario approach provides a quantification of
robustness. Since the constraints on τ are the same for both seen and unseen scenarios, the
optimal solution τ ∗ to (SA-H) is always admissible for unseen scenarios, which makes Assump-
tion 11 true. Then, the conclusion drawn from (2.16) reads "the probability that the social cost
of an unseen scenario is higher than H∗ is no bigger than ε(s∗N) with the confidence of 1 − β,
where H∗ solves (SA-H)."

15

When the decision maker is interested in the efficiency instead of the social cost, (SA-H) may be
adapted to consider PoA.

min P (SA-P)
subject to:

P ≥ Csoc(f
(i)
ue)

Csoc(f
(i)
so)

f (i)
ue = arg min

∑
e

∫ f
(i)
ue,e

0
le(t) + τe dt, ∀i

Af (i)
ue = b(i)

f (i)
ue ≥ 0

f (i)
so = arg min

∑
e

f (i)
so,ele(f

(i)
so,e), ∀i

Af (i)
so = b(i)

f (i)
so ≥ 0

The decision variables in this bi-level optimization are P , τ , f (i)
ue , and f

(i)
so .

16

Chapter 3

Algorithms for Globally Optimal
Solution

The Gurobi Optimizer is a commercial optimization solver for mathematical programming, which
can guarantee the global optimality of the solution for common programming types, for example,
mixed-integer linear programming and mixed-integer quadratic programming [23]. Therefore,
we will utilize the Gurobi Optimizer to locate the globally optimal solutions for the previously-
mentioned optimizations.

3.1 Model Reformulations

We consider the worst-case social-cost optimization (SA-H) and demonstrate the possible refor-
mulations. From (2.4), one can notice that with the non-negativity of the flow vector fk, the
collective flow vector fE is assured to be non-negative. The fact motivates us to remove the
bound constraints on fE and the corresponding complementary slackness constraints.

min
H,τ ,f (i),µ(i),λ(i)

H (SA-H-R1)

subject to:

H ≥
∑
e

f (i)
e le(f

(i)
e),∀i ∈ {1, . . . , NS}

∇C(f (i), τ)− µ(i) +A>λ(i) = 0

Af (i) = b(i)

0 ≤ fk(i) ⊥ µk(i) ≥ 0,∀k ∈ {1, . . . , NK}.

By reformulation (SA-H-R1), we remove 3NE constraints in total - NE constraints for each of
the primal feasibility, dual feasibility and complementary slackness. The number of decision vari-
ables is 1 +NE + 2NENS + 2NKNENS +NKNVNS . More specifically, H introduces 1 decision
variable, τ introduces NE , f (i) introduces (NE +NENK)NS , µ(i) introduces NENKNS , and λ(i)

introduces (NE +NKNV)NS .

17

Although the Gurobi Optimizer is able to deal with the bi-linear constraint (2.12), it is still wise
to explicitly linearize this constraint by exploiting the zero-product structure. We achieve the
linearization with the big-M notation.

First, we demonstrate with a minimal example ab = 0, a ≥ 0, b ≥ 0, which means either non-
negative a or non-negative b is 0 (inclusive or). We introduce an auxiliary binary variable
δ ∈ {0, 1} and a large positive number M . Then, consider the following conditions.

0 ≤ a ≤Mδ (Big-M)
0 ≤ b ≤M(1− δ)
δ ∈ {0, 1}

(Big-M) reads a = 0, 0 ≤ b ≤ M if δ = 0, otherwise 0 ≤ a ≤ M, b = 0. Since M is a large
number, we can relax the upper bound without improperly reducing the search space, that is,
a = 0, b ≥ 0 if δ = 0, otherwise a ≥ 0, b = 0. Theoretically, we would like M to be +∞ because
the relaxation will be strictly equivalent to the original constraints. However, in practice, too
large M will cause fatal numerical errors and make the model unstable. Moreover, the default
precision of the Gurobi Optimizer is 10−6 and with too large M , the solver may terminate
undesirably. An empirical choice of M is one or two orders larger than a and b. We now employ
the big-M notation to linearize the previous formulation (SA-H).

min
H,τ ,f (i),µ(i),λ(i),δ(i)

H (SA-H-R2)

subject to:

H ≥
∑
e

f (i)
e le(f

(i)
e),∀i ∈ {1, . . . , NS}

∇C(f (i), τ)− µ(i) +A>λ(i) = 0

Af (i) = b(i)

0 ≤ f (i) ≤Mδ(i)

0 ≤ µ(i) ≤M
(
1− δ(i)

)
δ(i) ∈ {0, 1}NE+NENK ,

where δ(i) is one-to-one related to f (i) and µ(i), and adopts the same superscripts and subscripts.
The number of decision variables is 1 +NE + 4NENS + 3NKNENS +NKNVNS , with 1 for H,
NE for τ , (NE +NENK)NS for f (i), µ(i) and δ(i), and (NE +NKNV)NS for λ(i).

Although (SA-H-R2) significantly increases the number of decision variables and constraints, it
simplifies the constraint structure by replacing the bi-linear constraints with the linear ones.
If affine latency functions are used, (SA-H-R2) turns out to be a mixed-integer quadratically
constrained programming, in which the Gurobi Optimizer is specialized.

18

Finally, we combine the ideas of (SA-H-R1) and (SA-H-R2) to propose a third reformulation.

min
H,τ ,f (i),µ(i),λ(i),δ(i)

H (SA-H-R3)

subject to:

H ≥
∑
e

f (i)
e le(f

(i)
e),∀i ∈ {1, . . . , NS}

∇C(f (i), τ)− µ(i) +A>λ(i) = 0

Af (i) = b(i)

0 ≤ fk(i) ≤Mδk(i)
,∀k ∈ {1, . . . , NK}

0 ≤ µk(i) ≤M
(
1− δk(i)

)
,∀k ∈ {1, . . . , NK}

δk
(i) ∈ {0, 1}NE+NENK ,∀k ∈ {1, . . . , NK}

The number of decision variables is 1 +NE + 2NENS + 3NKNENS +NKNVNS , with 1 for H,
NE for τ , (NE +NENK)NS for f (i), NENKNS for µ(i) and δ(i), and (NE +NKNV)NS for λ(i).
Compared with (SA-H-R1), (SA-H-R3) introduces NKNENS binary decision variables.

Next, we take the famous Sioux Falls network for example to compare the computational effi-
ciency of these formulations. As shown in Figure 3.1, the network structure and demand data
are provided by Ben Stabler [41]. Briefly speaking, there are 24 nodes, 76 edges, and 528 com-
modities in the Sioux Falls network, and each link is equipped with a BPR latency function.

Figure 3.1: Sioux Falls Network

19

The computational times for only one sample are listed in Table 3.1 and the information of the
test environment in Table 3.2. The number of origin-destination pairs (commodities) means how
many ODs we take into account. Take 30 ODs for example, we considered only the first 30 OD
pairs. With 528 ODs, all commodities are considered.

Table 3.1: Computational Time vs Formulations and OD Pair Numbers (Unit: Second)

Formulation 30 ODs 40 ODs 50 ODs 100 ODs 528 ODs
SA-H 11.12 48.11 37.58 220.61 1765.52

SA-H-R1 16.64 33.70 36.95 191.80 1743.88
SA-H-R2 2.97 9.35 11.50 35.82 918.08
SA-H-R3 1.40 4.04 6.92 14.41 423.85

Table 3.2: Test Environment Information

Item Parameter
Model Dell XPS 15 9570

Processor Intel R© CoreTM i5-8300H CPU @ 2.30GHz
RAM 16.00 GB

System 64-bit Windows 10 Pro
Solver Gurobi 9.1.2

Table 3.1 shows that all three reformulations can improve the computational efficiency and the
reformulation SA-H-R3 performs best.

20

3.2 Magnitude Scaling

In this section, we address a numerical issue that will appear when the BRP latency functions are

adopted. Recall the function form l(f) = t0 + t0B
(
f
C

)P
. The capacity coefficient C presenting

in the denominator is usually a huge number. With the common setting B = 0.15, P = 4, the
coefficient t0B

(
1
C

)P can be super tiny and even less than the machine epsilon. We have to scale
the flow f to overcome the numerical problem. Let C0 be the scaling factor, the BRP latency
function is turned into

l(f) = t0 + t0B

(
f

C

)P
= t0 + t0B

(
fC0

CC0

)P
= t0 + t0B

(
C0

C

)P (f

C0

)P
l(f̄) := t0 + t0B

(
C0

C

)P
f̄P .

where f̄ is the scaled flow. Note that C0 is a constant applied on the BRP latency functions
on all edges, i.e., C0 does not change with edges. When C0 is properly chosen, the numerical
issue will be greatly mitigated. For example, in the Sioux Falls network, the coefficient range
of the optimization (OPT-UE) is [2 × 10−9, 1 × 101], while [5 × 10−1, 5 × 104] after a proper
scaling. Therefore, we replace the flows in the original formulation with the scaled ones to avoid
the numerical problem. After the solutions are obtained, we then retrieve the actual flows by
multiplying C0 back, f = C0f̄ .

We offer four intuitive choices of C0, the minimum, average, median, and maximum of all capac-
ities. Nash flows of the Sioux Falls network are computed with these scaling factors and reported
in Table 3.3. We highlight that in spite of the uniqueness of the solution to (OPT-UE), the
Gurobi Optimizer returns different results due to the numerical precision.

Table 3.3: Scaling Factor Comparison

Variable C0 = min C C0 = avg C C0 = mid C0 = max C GT 1

f1 4532.91 4550.17 4529.57 4851.10 4494.66
f2 8132.91 8150.17 8134.92 8451.10 8119.08
...

...
...

...
...

...
f75 10261.12 10231.78 10262.40 10186.65 10259.52
f76 7847.43 7875.60 7843.25 8013.35 7861.83

Optimal Objective 4.23137e+6 4.23141e+6 4.23137e+6 4.23743e+6 4.23134e+6
Relative Error 0.007%� 0.017%� 0.007%� 1.439%� 0.000%�

1Edge flows from [41] are taken as the ground truth.

21

3.3 Approximation for Polynomial Latency Function

The Gurobi Optimizer is specialized in dealing with the linear and quadratic function in the
objective function and constraints. Other types of functions, such as polynomial and exponential
functions, are approximated by piece-wise linear functions. Take the BRP latency function with
the scaled flow for example, Figure 3.2 shows the BRP function and its linear approximation,
with the maximal relative difference highlighted. Note that these pieces are linearly-spaced, that
is, they share the same length of the projection on the x axis. More sophisticated approximation
is possible, for example, the Ramer–Douglas–Peucker algorithm - add pieces where the relative
error is greater than a threshold.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Scaled Flow

4

6

8

10

12

14

Va
lu
e
of
 L
at
en

cy
 Fu

nc
tio

n

 13.2%

(a) 3 Pieces

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Scaled Flow

4

6

8

10

12

14

Va
lu
e
of
 L
at
en

cy
 Fu

nc
tio

n

 4.6%

(b) 5 Pieces

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Scaled Flow

4

6

8

10

12

14

Va
lu
e
of
 L
at
en

cy
 Fu

nc
tio

n

 1.2%

(c) 10 Pieces

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Scaled Flow

4

6

8

10

12

14

Va
lu
e
of
 L
at
en

cy
 Fu

nc
tio

n

 0.3%

(d) 20 Pieces

Figure 3.2: Piece-wise Linear Approximation with Different Pieces

22

Figure 3.3 shows that the maximal relative error of the approximation drops quickly as the
number of pieces increases, at the cost of the computational efficiency.

0 10 20 30 40 50
Number of Pieces

0

2

4

6

8

10

M
ax

im
al
 R
el
at
iv
e
Er
ro
r (
%
)

Figure 3.3: Number of Pieces and Maximal Relative Error

3.4 Initialize with Feasible Point

When solving the scenario optimization on a middle-sized network, the Gurobi Optimizer may
spend a huge amount of time in finding a feasible point. In most cases, providing a feasible initial
point to the solver can significantly reduce the computational time because the Gurobi Optimizer
will then be aware of an upper bound of the objective function. Therefore, we demonstrate a
method to find a initial feasible point quickly.

First, set all tolls to be zero, i.e., τ = 0, and compute the equilibrium flows eqf
(i) for all sce-

narios. Fixing τ and eqf
(i) in the reformulated optimization will make the bi-linear constraints

linear. Thus we can efficiently solve the scenario optimization and obtain µ(i), λ(i) and H. As
a result, (H, τ = 0,f (i) = eqf

(i),µ(i),λ(i)) is a feasible point of the scenario optimization.

23

3.5 Support Subsample Evaluation

After obtaining the optimal solution for the scenario optimization, we are interested in the
support subsample as declared in Definition 13, especially an irreducible one. Campi proposes
a greedy algorithm to search for one support subsample in [11]. We adapt the algorithm to our
scenario optimization in Algorithm 1.

Algorithm 1: Campi’s Greedy Algorithm for Support Subsample
Result: An irreducible support subsample Sirr
Set S ←

(
δ(1), . . . , δ(N)

)
and compute the optimal solution τ ∗ ← AN (S);

for i = 1, . . . , N do
Set S̄ ← S \ δ(i) and compute the optimal solution τ̄ ← A|S̄|(S̄);

if τ ∗ = τ̄ then
Set S ← S̄;

end
end
return S

Algorithm 1 basically iterates all scenarios, removing those which do not contribute to the solu-
tion. In spite of the intuitiveness, the algorithm requires the scenario optimization to be solved
for NS + 1 times. Since each query may take quite a while, we propose a much faster greedy
algorithm by exploiting the problem structure in Algorithm 2.

Algorithm 2: Greedy Algorithm to Construct Support Subsample
Result: A support subsample Sr
Set S ← ∅;
Compute the optimal solution τ ∗ ← AN

((
δ(1), . . . , δ(N)

))
;

Sort all scenarios in the descending order of the social cost given τ ∗;
for i = 1, . . . , N do

Set S ← S ∪ δ(i) and compute the optimal solution τ ← A|S|(S);
if τ ∗ = τ then

Break;
end

end
return S

Algorithm 2 cumulatively collects scenarios that contribute to the solution. The scenarios are
sorted in the descending order so that the one with higher social cost will be taken into account
sooner. Note that the output Sr is not guaranteed irreducible but usually small enough. This
algorithm involves NS + 1 scenario optimizations at most. Unlike Algorithm 1 whose each
optimization in the for-loop involves NS − 1 scenarios, Algorithm 2 starts with 1 scenario and
increases the number by one each time until NS .

24

3.6 Experiments

3.6.1 Scenario Generation

For demonstrative purposes, we take the demands in [41] as the expectation and generate demand
scenarios from different distributions, such as the uniform, Gaussian, and Poisson distribution,
as are illustrated in Figure 3.4.

800 850 900 950 1000 1050 1100 1150 1200
Demand

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Pr
ob

ab
ilit

y
Uniform
Gaussian
Poisson

Figure 3.4: Different Distributions. The expectations are all 1000. The uniform distribution
ranges from 800 to 1200; The Gaussian distribution has a standard deviation of 100.

Consider the Braess’s network in Figure 2.3, we generate 365 scenarios from the uniform distri-
bution, simulating the data collected through a year. The demands are ranged from 4.8 to 7.2,
with 20% variations around the expected value 6. Figure 3.5 illustrates these sampled demands.

5.0 5.5 6.0 6.5 7.0
Sampled Demand

0

10

20

30

40

Nu
m
be

r o
f S

am
pl
es

Figure 3.5: Sampled Demands from Uniform Distribution

25

3.6.2 Result Analysis

The scenario optimization gives the probabilistically-robust optimal tolls τ ∗ = [11, 0, 0, 0, 11] and
the optimal worst-case social cost H∗ = 644. The cardinality of the support subsample found
by Algorithm 1 is 1, implying the support subsample is actually irreducible. Per Therorem 14,
we conclude: the violation probability of H ≤ H∗ is no larger than 0.068 with the confidence of
1 − 10−6. To verify the argument, we draw another 10, 000 random scenarios and compute the
social costs given τ ∗.

400 450 500 550 600 650
Social Cost

0

200

400

600

800

1000

1200
Nu

m
be

r o
f S

am
pl
es

Figure 3.6: Social Cost Histogram

We present the histogram of the social costs in Figure 3.6 and highlight H∗ with a red dashed
line. There are 32 scenarios causing a social cost larger than 644, i.e., P{H > H∗} = 0.0032.
We repeated the experiment 100 times and P{H > H∗} < 0.068 is always true. Such behavior
is as expected because Theorem 14 guarantees that P{H > H∗} < 0.068 holds true with the
confidence of 1− 10−6 - almost unlikely to violate.

3.6.3 Discussion

It is well-known that the inefficiency of the Braess’s network can be completely eliminated by
removing the middle link 4, or equivalently imposing an infinite toll on it. The scenario optimiza-
tion, however, found another solution leading to the same optimal objective due to the intrinsic
non-convexity. Besides the unlimited tolls, we can also easily restrict the tolls under some upper
bounds. For example, if we allow τe = 5 at most, the corresponding robust optimal tolls will be
τ = [4.7, 0, 0, 5, 4.7].

Thanks to the simple structure of the Braess’s network, we can analytically compute the minimal
optimal tolls. To compare with the previous solution, we impose tolls only on the link 1 and 5.
When the user equilibrium coincides with the social optimum, users should have no incentive to
alter from the social optimum. Per Definition 5, the cost accumulated along any path should be
less than or equal to the paths not used. At the socially optimal flows, half of players choose the
upper way and the others choose the lower way, with nobody passing through the link 4, i.e.,
f1 = f2 = f3 = f5 = 0.5d, f4 = 0. Symmetrically, we impose τ on both the link 1 and 5. The

26

tolls enforcing the socially optimal flow should follow the inequality.

l1(f1) + τ + l3(f3) ≤ l1(f1) + τ + l4(f4) + l5(f5) + τ

l3(f3) ≤ l4(f4) + l5(f5) + τ

f3 + 50 ≤ f4 + 10 + 10f5 + τ

0.5d+ 50 ≤ 0 + 10 + 5d+ τ

τ∗ ≥ 40− 4.5d

When the demand is at minimum 4.8, the minimal optimal toll is 18.4, while at maximum 7.2, the
toll is 7.6. The solution returned by the scenario approach is 11, exactly within [7.2, 18.4], which
means the obtained solution cannot always force the socially-optimal flow. In fact, it was not
even intended to robustly incentivize the socially-optimal flow because the goal was to robustly
minimize the worst-case social cost. One who is interested in the inefficiency mitigation should
resort to (SA-P) instead of (SA-H). The reformulations are very similar to the ones introduced
in this chapter and thus are omitted.

If we explicitly state that only the middle link is taxable, the scenario approach will give intuitive
tolls τ = [0, 0, 0, 13, 0]. Once again, we can compute the minimal tolls analytically as follows.

l1(f1) + l3(f3) ≤ l1(f1) + l4(f4) + τ + l5(f5)

l3(f3) ≤ l4(f4) + τ + l5(f5)

f3 + 50 ≤ f4 + 10 + τ + 10f5

0.5d+ 50 ≤ 0 + 10 + τ + 5d

τ∗ ≥ 40− 4.5d

Interestingly, the derivation shows that imposing a toll on the middle link is equivalent to im-
posing the same toll on both the link 1 and the link 5.

As for the computational cost, it takes as much as a whole day to solve the scenario approach
with 365 scenarios for the extremely simple Braess’s network. The fact discourages any further
application in the real traffic systems. The formidable computational cost for the global optimum
motivates us to turn to a decent suboptimal solution instead. Therefore, in the next chapter, we
will propose several algorithms to trade the performance for the efficiency.

27

28

Chapter 4

Algorithms for Suboptimal Solution

4.1 Greedy Numerical Gradient Descent Algorithm

4.1.1 Model Reformulation

Let us take a second look at (SA-P). Note that f (i)
so does not depend on τ or P , which enables

us to pre-compute f (i)
so before starting the scenario optimization. For the ease of notation, we

denote the corresponding social cost as a constant C∗soc
(i). Further, define P (i) to be the price of

anarchy of the ith scenario. Reformulate (SA-P) as follows.

min P (SA-P-2)
subject to:

P = maxP (i)

P (i) =

∑
e f

(i)
ue,ele(f

(i)
ue,e)

C∗soc
(i)

f (i)
ue = arg min

∑
e

∫ f
(i)
ue,e

0
le(t) + τe dt

Af (i)
ue = b(i)

f (i)
ue ≥ 0

Given τ , we can efficiently compute f (i)
ue with many traffic assignment algorithms, such as the

Frank-Wolfe algorithm, and once we have f (i)
ue , we can directly obtain P (i) as well as P . In other

words, the objective P can be regards as a function of τ solely. The fact motivates us to propose
a numerical gradient descent algorithm to reduce the worst-case PoA iteratively.

4.1.2 Frank-Wolfe Algorithm

The Frank-Wolfe algorithm is an iterative first-order optimization algorithm for the constrained
convex optimization [19], well suited for solving (OPT-UE). The algorithm is stated as follows.
Suppose D is a compact convex set in a vector space and f : D → R is a convex, differentiable
real-valued function. The Frank-Wolfe algorithm solves the following optimization problem

min
x

f(x) (FW)

subject to: x ∈ D.

29

The algorithm is formalized in Algorithm 3.

Algorithm 3: Frank-Wolfe Algorithm
Result: The optimal solution x∗ to (FW)
Let k ← 0 and let x0 be any point in D;
Step 1. Direction-finding subproblem:

Solve sk ← arg mins∈D s>∇f(xk);
Step 2. Step size determination:

Set α← 2
k+2 or line search for α← arg minα∈[0,1] f(xk + α(sk − xk));

Step 3. Update:
Let xk+1 ← xk + α(sk − xk), let k ← k + 1 and go to Step 1;

return xk

In the initialization step, x0 can be any feasible traffic flow. Step 1 simply corresponds to solve
the shortest path for each commodity and assign the whole demand of this commodity along the
shortest path (all-or-nothing link flows). The Dijkstra’s shortest path algorithm can tackle Step 1
efficiently. Step 1-3 forms a complete iteration, and we usually terminate the algorithm after a
pre-set number of iterations or when the objective value varies within a super small threshold.

There are two widely-used variants of the vanilla Frank-Wolfe algorithm (VFW), namely, conju-
gate Frank-Wolfe algorithm (CFW) and bi-conjugate Frank-Wolfe algorithm (BFW). Take the
Sioux Falls network for example, we demonstrate in Figure 4.1 how the relative objective gap of
(OPT-UE) between two iterations varies with respect to the number of iterations.

0 10 20 30 40 50 60
Number of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Re
la
tiv

e
Ga

p
be

tw
ee

n
Ite

ra
tio

ns

Vanilla Frank-Wolfe
Conjugate Frank-Wolfe
Biconjugate Frank-Wolfe

(a) Early Stage

60 70 80 90 100 110 120
Number of Iterations

0.000

0.002

0.004

0.006

0.008

0.010

Re
la
tiv

e
Ga

p
be

tw
ee

n
Ite

ra
tio

ns

Vanilla Frank-Wolfe
Conjugate Frank-Wolfe
Biconjugate Frank-Wolfe

(b) Late Stage

Figure 4.1: Convergence of Different Frank-Wolfe Algorithms

Although these three algorithms all quickly reduce the relative gap in the early stage, the bicon-
jugate one surpasses other two in the late stage, in terms of smoothness and performance. To
quantitatively compare their performance, we set different thresholds for the relative gap and
record the iterations and time they take to converge, in Table 4.1.

30

Table 4.1: Iteration and Time before Convergence of Different Frank-Wolfe Algorithms. The
algorithms are evaluated with different convergence thresholds (TH). The numbers of iterations
and the time before convergence are specified while N/A means the algorithm did not converge
within 1000 iterations.

Algorithm
TH 1e-2 TH 1e-3 TH 1e-4 TH 1e-5

#Iter Time #Iter Time #Iter Time #Iter Time

VFW 30 0.249s 132 0.576s N/A N/A N/A N/A

CFW 21 0.311s 56 0.418s 204 0.974s N/A N/A

BFW 19 0.270s 44 0.380s 84 0.523s 301 1.365s

As a result, we choose the biconjugate Frank-Wolfe algorithm as the traffic assignment algorithm
because it excels at both the performance and efficiency. However, we should be aware that in
spite of the high precision, the algorithm will not converge to an exact value due to the numerical
error, which will be passed to and augmented by later calculations.

4.1.3 Greedy Numerical Gradient Descent Algorithm

The scalar-valued function P is generally non-differentiable in τ , that is, the gradient is not
well-defined everywhere. Therefore, in this chapter we talk about the gradient in a generalized
sense. We will approximate the gradient by the numerical partial derivatives. At points where
P is non-differentiable or even discontinuous, the numerical gradient does not make sense and
the gradient descent may even worsen the objective. Fortunately, our numerical gradient descent
algorithm will not be invalidated given proper adaptions as shown later. Per gradient definition,

∇P (τ) =

∂P
∂τ1
...
∂P
∂τNE

 = lim
δτ→0

P (τ1+δτ,τ−1)−P (τ1−δτ,τ−1)

2δτ
...

P (τNE
+δτ,τ−NE

)−P (τNE
−δτ,τ−NE

)

2δτ

≈

P (τ1+δτ,τ−1)−P (τ1−δτ,τ−1)

2δτ
...

P (τNE
+δτ,τ−NE

)−P (τNE−δτ,τ−NE
)

2δτ

 , (4.1)

where τ−i refers to τ1, . . . , τi−1, τi+1, . . . , τNE
, i.e., all other tolls except τi. In most cases, there

are upper bounds and lower bounds (usually 0) for tolls so we modify (4.1) to respect the bounds.

∇P (τ) ≈

P (τ1+min(δτ,τ+1 −τ1),τ−1)−P (τ1−min(δτ,τ1−τ−1),τ−1)

min(δτ,τ+1 −τ1)+min(δτ,τ1−τ−1)
...

P (τNE
+min(δτ,τ+NE

−τNE
),τ−NE

)−P (τNE
−min(δτ,τNE

−τ−NE
),τ−NE

)

min(δτ,τ+NE
−τNE

)+min(δτ,τNE
−τ−NE

)

 , (4.2)

where τ+
i and τ−i mean the upper bound and lower bound of the toll on link i. (4.2) means that

if the function augment is outside the feasible region, we project the augment onto the bound
and adapt the gradient calculation correspondingly.

31

We should be aware that each gradient (4.2) involves 2MτNs traffic assignments, where Mτ is
the number of taxable links. Although one traffic assignment can be solved efficiently, 2MτNs is
usually a huge number. For example, consider the Sioux Falls network with 76 edges all taxable.
If we collect 365 samples, each gradient involves 27, 740 traffic assignments. However, most of
the scenarios have no effect on the solution and the support subsamples. Therefore, we propose
a greedy algorithm to lazily take scenarios into account.

Algorithm 4: Greedy Numerical Gradient Descent
Input: maximal iteration Kmax, convergence iteration Kconv, initial tolls τ 0,

delta tau δτ , step size decision function γ(·), convergence threshold θ;
Result: Suboptimal tolls τ and support subsample S;
k ← 0, kconv ← 0;
i← arg maxi∈{1,...,Ns} P

(i);
S0 ← {i};
while k < Kmax do

while True do
∇P̄k ← (4.2) with δτ, τ k,Sk;
τ̄ k+1 ← τ k − γ(k)∇P̄k;
ī← arg maxi∈{1,...,Ns} P

(i)(τ̄ k+1);
if ī ∈ Sk then

τ k+1 ← τ̄ k+1;
Pk+1 ← P (τ k+1);
Break

else
Sk ← Sk ∪ {̄i}

end
end
Sk+1 ← Sk;
k ← k + 1;
if |Pk+1 − Pk| < θ then

kconv ← kconv + 1;
if kconv = Kconv then

Break
end

else
kconv ← 0

end
end
Return τ k,Sk

The key idea of Algorithm 4 is that, at each iteration, we compute the numerical gradient ∇P̄k
only with respect to the current support subsample set Sk. We try a tentative toll τ̄ k+1 from
the numerical gradient descent and verify whether the support subsample set remains the same.
If not, include the one that violates the most into the support subsample set and repeat the
verification. The variable kconv means the number of consecutive iterations that the difference
between the previous and current P is within a threshold θ. If the difference of PoA between
two iterations stays within the threshold θ for a given number of consecutive iterations Kconv,
we say the gradient descent algorithm converges. As a result, Sk is a support subsample set, and
thus we obtain the cardinality of the support subsample for free.

32

4.1.4 Delta Tau

The choice of δτ requires careful consideration. A large δτ cannot well approximate the partial
derivative, while a small δτ causes virtually invisible change in the real social cost - however,
the social cost is computed by the numerical algorithm and is susceptible to the numerical error.
It is highly possible that the numerical error is much greater than the real social cost change.
Figure 4.2 shows how the price of anarchy varies during the gradient descent iterations.

0 10 20 30 40 50
Number of Iteration

1.00

1.02

1.04

1.06

1.08

1.10

Pr
ice

 o
f A

na
rc
hy

δτ=0.01
δτ=0.05
δτ=0.10
δτ=0.50
δτ=1.00
δτ=2.00
δτ=5.00
δτ=10.0

Figure 4.2: Different Delta Tau. The experiment was conducted in the Sioux Falls network with
the nominal demands, all parameters kept consistent except for δτ .

As a result, δτ = 0.01 gives the worst result while δτ = 0.10 performs best.

4.1.5 Toll Post-Process

Toll Rounding: The gradient descent algorithm is likely to return tolls with a large decimal
place. We would like to reduce the decimal place in order to improve the numerical stability.
Moreover, in reality tolls are expected to be regular number with a small decimal place. Figure 4.3
shows the price of anarchy curve with respect to the iteration number given different rounding
schemes.

0 10 20 30 40 50
Number of Iteration

1.00

1.02

1.04

1.06

1.08

1.10

Pr
ice

 o
f A

na
rc
hy

No Rounding
0 Decimal Place
1 Decimal Place
2 Decimal Place

Figure 4.3: Toll Rounding

When tolls are rounded to integers, the price of anarchy curve is a horizontal line because the
step size was not able to change the toll value more than 1, and the tolls stay the same after
rounding. Afterwards, we will round all tolls to two decimal places.

33

Toll Projection: Since the gradient descent algorithm above does not explicitly deal with the
bounding constraints of tolls, we need to project tolls back to the feasible region to respect
bounds. One simple method is element-wise projecting infeasible tolls onto their bounds.

4.1.6 Cache for PoA

In the second while loop of Algorithm 4, we may compute∇P̄k multiple times. Each computation
requires the traffic assignment 2Mτ |Sk| times. However, we only need to assign the traffic for the
newly-introduced scenario into the support subsample. For example, assume at some iteration
k, the current subsample set is Sk = {1, 2} and after the verification, we decide that we have
to add scenario 3 to the support subsample set. To compute ∇P̄k, instead of all 6Mτ traffic
assignments, we only need to assign 2Mτ times for the newly-included scenario 3, because the
4Mτ traffic assignments have already been finished when we get Sk = {1, 2}. Therefore, we
utilize a cache to temporarily store P (i) to avoid repeated calculation. The cache should be reset
after each iteration.

4.1.7 Step Size Determination

We adopt a piece-wise function to determine the step size γ,

γ(k) =

{
500
k k ≤ 20

25000
k2

k > 20
, (4.3)

where k is the number of iterations. We use a common step size choice for the first piece, and
accelerate the diminishing by a quadratic denominator k2 in the second piece. The numerators
are chosen to make γ continuous at k = 20.

0 5 10 15 20 25 30 35 40
Number of Iterations i

0

100

200

300

400

500

St
ep

 S
ize

 γ

γ=500/i
γ=10000/i2

Figure 4.4: Step Size γ

The numerical derivative computed with (4.2) may be very large and cause the objective value to
fluctuate a lot. To mitigate the unstable fluctuation, we force the tolls to vary only within a small
range, by normalizing them when the infinity norm exceeds a certain threshold, for example, 1,

τ k+1 = τ k −
γk∇P (τ k)

max (1, ‖τ k‖∞)
. (4.4)

Because the objective function is somewhere non-differential and even discontinuous, the descent
along the generalized numerical gradient may worse the objective as seen in Figure 4.2. To
suppress the backfire, we propose an algorithm to greedily search for a desirable step size. The
key idea to progressively explore toll candidates that are most likely to reduce the objective

34

function. It also makes use of a set OPEN, which is a current list of nodes that could potentially
be a desirable one. Let O(·) denote the objective function to minimize, and tuple (τ l, τ r) denote
a node in the OPEN set. OPEN is a priority queue, and nodes with lower O(τ l) + O(τ r) are
associated with higher priority. Finally, let τ k refer to the toll in the previous iteration, and
τ k+1 is the toll computed by the gradient descent (4.4). The algorithm is formulated as follows.

Algorithm 5: Greedy Binary Search for Step Size
Input: Previous toll τ k, toll from gradient descent τ k+1, maximal iterations imax;
Result: Desirable toll τ such that O(τ) ≤ O(τ k);
if O(τ k) > O(τ k+1) then

return τ k+1

end
Add (τ k, τ k+1) to OPEN;
while i < imax do

(τ l, τ r)← the first node in OPEN;
Remove the first node in OPEN;
τ ← (τ l + τ r)/2;
if O(τ) < O(τ k) then

return τ
end
Add (τ l, τ) to OPEN;
Add (τ , τ r) to OPEN;
i← i+ 1

end
Return τ k and terminate gradient descent

If the algorithm cannot find a desirable toll within imax iterations, the gradient descent will
terminate and take τ k as the final toll. We illustrate the algorithm with an simple example,
where the objective function only takes one scalar-valued parameter. Figure 4.5 shows the
objective function O against the toll τ . At some iteration k, τk = 0 and τk+1 = 1. The algorithm
first verifies O(τk+1) > O(τ) and enters the while loop. Then by progressively explore 0.5 and
0.25, the algorithm finally finds a desirable toll τ = 0.125 and returns it. We also highlight that
the best tolls at 0.8 cannot be found by this algorithm.

0.0 0.2 0.4 0.6 0.8 1.0
τ

−2

0

2

4

6

8

10

12

O

(0,1)

(0.25, 6.7)

(0.125, 0.6)

(0.5, 6.22)

(1.0, 12.0)

Figure 4.5: Greedy Binary Search for Step

35

If the price of anarchy curve resulting from the gradient descent algorithm is already monotoni-
cally decreasing until convergence without Algorithm 4.5, the step search will not take any effect.
Otherwise, Figure 4.6 highlights possible outcomes regarding the efficiency (number of iterations
before convergence) and performance (the final price of anarchy).

0 5 10 15 20 25 30
Number of Iterations

1.020

1.025

1.030

1.035

1.040

1.045

1.050

Pr
ice

 o
f A

na
rc
hy

With Step Search
Without Step Search

(a) Less Iterations Better Performance

0 5 10 15 20 25 30
Number of Iterations

1.020

1.025

1.030

1.035

1.040

1.045

1.050

Pr
ice

 o
f A

na
rc
hy

With Step Search
Without Step Search

(b) Less Iterations Worse Performance

0 5 10 15 20 25 30
Number of Iterations

1.020

1.025

1.030

1.035

1.040

1.045

1.050

Pr
ice

 o
f A

na
rc
hy

With Step Search
Without Step Search

(c) More Iterations Better Performance

0 5 10 15 20 25 30
Number of Iterations

1.020

1.025

1.030

1.035

1.040

1.045

1.050

Pr
ice

 o
f A

na
rc
hy

With Step Search
Without Step Search

(d) More Iterations Worse Performance

Figure 4.6: With and Without Greedy Binary Search for Step Size

36

4.1.8 Multi-Start Strategy

The greedy binary search algorithm for a desirable step size may terminate early and reduce
the price of anarchy only slightly. A natural idea to improve the performance is starting the
gradient descent algorithm from multiple initial tolls. The descending tracks of different initials
are independent and thus can be processed in parallel. Figure 4.7 exemplifies the multi-start
PoA of the Sioux Falls network with the nominal demands. The initial tolls are generated from
the uniform distribution on [0, 1]. We then started the gradient descent without (Figure 4.7a)
and with (Figure 4.7b) the step size search algorithm. Note that the initial toll samples are the
same for these two cases.

0 5 10 15 20 25 30
Number of Iterations

1.020

1.025

1.030

1.035

1.040

1.045

1.050

Pr
ice

 o
f A

na
rc
hy

(a) Without Step Search

0 5 10 15 20 25 30
Number of Iterations

1.020

1.025

1.030

1.035

1.040

1.045

1.050

Pr
ice

 o
f A

na
rc
hy

(b) With Step Search

Figure 4.7: Multi-start Gradient Descent

Besides the better performance, the multi-start strategy also provides a richer result. All the ini-
tial points go through a complete numerical gradient descent process, and thus we can take them
as independent experiments. Each experiment returns a worse-case price of anarchy and a sup-
port subsample set. In other words, these multiple initial points also bring multiple performance-
robustness pairs. Some initial points may result in a better performance at the cost of a large
support subsample set, and others in the other way around. The decision-maker can prioritize
the performance or the robustness based on the preference.

37

4.1.9 Result Analysis

With all the modifications, we finally present results on the Sioux Falls network. Assume all
links are taxable. We generate 100 demand scenarios from the uniform distribution with different
variations. The variation means how much at most the demand scenario can deviate from the
nominal demands. For example, with 5% variation and the nominal demand of 100, the demand
scenario is a random variable uniformly distributed in [100(1−5%), 100(1+5%)]. Figure 4.8-4.12
report the performance and robustness under different variation settings with 50 initial points.
When the numerical gradient descent algorithm terminates, each initial point corresponds to a
performance-robustness pair, presenting as a point in the figure. The performance is evaluated
based on the worse-case price of anarchy while the robustness is quantified by the reliability
parameter, which can be inferred from the cardinality of the support subsample set. We also fit
the curves with a generalized inverse proportional function and an exponential function.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Support Subsample Cardinality

1.00

1.01

1.02

1.03

1.04

1.05

1.06

W
or
st
-c
as
e
Pr
ice

 o
f A

na
rc
hy
 P

y1= b
x+ a + c

y2= ae−bx+ c

(a) PoA and Support Subsample

0.20 0.25 0.30 0.35 0.40 0.45 0.50
Reliability Parameter ε

1.00

1.01

1.02

1.03

1.04

1.05

1.06

W
or
st
-c
as
e
Pr
ice

 o
f A

na
rc
hy

 P

y1= b
x+ a + c

y2= ae−bx+ c

(b) PoA and Reliability

Figure 4.8: Performance and Robustness (Variation: 1%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Support Subsample Cardinality

1.00

1.01

1.02

1.03

1.04

1.05

1.06

W
or
st
-c
as
e
Pr
ice

 o
f A

na
rc
hy
 P

y1= b
x+ a + c

y2= ae−bx+ c

(a) PoA and Support Subsample

0.20 0.25 0.30 0.35 0.40 0.45 0.50
Reliability Parameter ε

1.00

1.01

1.02

1.03

1.04

1.05

1.06

W
or
st
-c
as
e
Pr
ice

 o
f A

na
rc
hy

 P

y1= b
x+ a + c

y2= ae−bx+ c

(b) PoA and Reliability

Figure 4.9: Performance and Robustness (Variation: 2%)

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Support Subsample Cardinality

1.00

1.01

1.02

1.03

1.04

1.05

1.06
W
or
st
-c
as
e
Pr
ice

 o
f A

na
rc
hy
 P

y1= b
x+ a + c

y2= ae−bx+ c

(a) PoA and Support Subsample

0.20 0.25 0.30 0.35 0.40 0.45 0.50
Reliability Parameter ε

1.00

1.01

1.02

1.03

1.04

1.05

1.06

W
or
st
-c
as
e
Pr
ice

 o
f A

na
rc
hy

 P

y1= b
x+ a + c

y2= ae−bx+ c

(b) PoA and Reliability

Figure 4.10: Performance and Robustness (Variation: 5%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Support Subsample Cardinality

1.00

1.01

1.02

1.03

1.04

1.05

1.06

W
or
st
-c
as
e
Pr
ice

 o
f A

na
rc
hy
 P

y1= b
x+ a + c

y2= ae−bx+ c

(a) PoA and Support Subsample

0.20 0.25 0.30 0.35 0.40 0.45 0.50
Reliability Parameter ε

1.00

1.01

1.02

1.03

1.04

1.05

1.06

W
or
st
-c
as
e
Pr
ice

 o
f A

na
rc
hy

 P

y1= b
x+ a + c

y2= ae−bx+ c

(b) PoA and Reliability

Figure 4.11: Performance and Robustness (Variation: 10%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Support Subsample Cardinality

1.00

1.01

1.02

1.03

1.04

1.05

1.06

W
or
st
-c
as
e
Pr
ice

 o
f A

na
rc
hy
 P

y1= b
x+ a + c

y2= ae−bx+ c

(a) PoA and Support Subsample

0.20 0.25 0.30 0.35 0.40 0.45 0.50
Reliability Parameter ε

1.00

1.01

1.02

1.03

1.04

1.05

1.06

W
or
st
-c
as
e
Pr
ice

 o
f A

na
rc
hy

 P

y1= b
x+ a + c

y2= ae−bx+ c

(b) PoA and Reliability

Figure 4.12: Performance and Robustness (Variation: 20%)

39

Let Figure 4.13 and Figure 4.14 collect all these fitted curves.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Support Subsample Cardinality

1.00

1.01

1.02

1.03

1.04

1.05

1.06

W
or
st
-c
as
e
Pr
ice

 o
f A

na
rc
hy
 P

Demand Variation: 1%
Demand Variation: 2%
Demand Variation: 5%
Demand Variation: 10%
Demand Variation: 20%

(a) Generalized Inverse Proportional Function

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Support Subsample Cardinality

1.00

1.01

1.02

1.03

1.04

1.05

1.06

W
or
st
-c
as
e
Pr
ice

 o
f A

na
rc
hy
 P

Demand Variation: 1%
Demand Variation: 2%
Demand Variation: 5%
Demand Variation: 10%
Demand Variation: 20%

(b) Exponential Function

Figure 4.13: PoA and Support Subsample Curve Fitting

0.20 0.25 0.30 0.35 0.40 0.45 0.50
Reliability Parameter ε

1.00

1.01

1.02

1.03

1.04

1.05

1.06

W
or

st
-c

as
e

Pr
ice

 o
f A

na
rc

hy
 P

Demand Variation: 1%
Demand Variation: 2%
Demand Variation: 5%
Demand Variation: 10%
Demand Variation: 20%

(a) Generalized Inverse Proportional Function

0.20 0.25 0.30 0.35 0.40 0.45 0.50
Reliability Parameter ε

1.00

1.01

1.02

1.03

1.04

1.05

1.06

W
or

st
-c

as
e

Pr
ice

 o
f A

na
rc

hy
 P

Demand Variation: 1%
Demand Variation: 2%
Demand Variation: 5%
Demand Variation: 10%
Demand Variation: 20%

(b) Exponential Function

Figure 4.14: PoA and Reliability Parameter Curve Fitting

As the maximal variation increases, more and more points are scattered in the left part of the
figure, which can be interpreted that more variation leads to more robustness. This may seem
counter-intuitive at first, but if we pause to consider how the algorithm actually operates, this
fact becomes obvious - small variations mean the PoA of different scenarios are close to each
other, making the condition ī ∈ Sk in Algorithm 4 less likely to happen, so the algorithm will
collect more scenarios into the support subsample set, leading to less robustness.

40

4.1.10 Toll Performance Comparison

In this section, we compare the performance of the margin-cost tolls and probabilistically ro-
bust tolls from the scenario approach. We exemplify the Sioux Falls network with 5% demand
variation. As stated in Section 4.1.8, the multi-start strategy provides multiple toll sets with
different performance-robustness properties. We take two sets of tolls for instance. Let Toll1
and Toll2 refer to the purple point (0.240, 1.037) and the orange point (0.295, 1.020) in Fig-
ure 4.10b, respectively. Toll1 is selected for its better robustness (second smallest reliability
parameter ε), and Toll2 stands out because of the excellent balance between performance and
robustness.

We start the comparison by plotting the toll values on the 76 edges in Figure 4.15. We can
observe that the marginal-cost tolls have large magnitudes and fluctuations while the largest toll
value from the scenario approach is only 2.21.

1 10 20 30 40 50 60 70 76
Edge Index

0

10

20

30

40

50

60

To
ll
Va

lu
e

MCT
Toll1
Toll2

Figure 4.15: Toll Value Comparison

To compare the performance and robustness, we generate 36, 500 new scenarios with 5% variation,
and compute the social cost with these different tolls. To better illustrate the performance, we
also include the social cost of Wardrop equilibrium flow without any tolls.

1.015 1.020 1.025 1.030 1.035 1.040 1.045
Price of Anarchy

0

250

500

750

1000

1250

1500

1750

2000

Nu
m
be

r o
f S

am
pl
es

Toll1
Toll2
Toll-Free

Figure 4.16: Toll Performance Comparison (Variation: 5%)

Figure 4.16 shows the histogram of PoA. The vertical dashed lines are at 1.037 and 1.020. When
we charge Toll1, there are 143 (0.39%) scenarios whose PoA is greater than 1.037, while given
Toll2, 121 (0.33%) scenarios perform worse than PoA 1.020. Both Toll1 and Toll2 improve
the network efficiency effectively, compared to the toll-free PoA, illustrated with the blue bars.

41

However, we did not include the performance of marginal-cost tolls in Figure 4.16 because they
almost incentivize the optimal traffic flows, and most of scenarios accumulate in a single bar
at PoA 1.00. Although the marginal-cost tolls are robust in this experiment, they achieve the
seemly good performance in an unwanted way - large toll values almost prohibit everyone from
using some links, and the links are taxed extremely unevenly, as shown in Figure 4.15.

We continue to compare the performance on the Sioux Falls network with 20% variation in
Figure 4.17. We can notice that the three areas are significantly "fatter" because PoAs of the
scenarios are more different with more variation. In this experiment, Toll1 corresponding
to (0.240, 1.034) results in 654 (1.79%) scenarios with a larger PoA than 1.034, and Toll2
corresponding to (0.295, 1.024) results in 617 (1.69%) scenarios with a larger PoA than 1.024.

1.015 1.020 1.025 1.030 1.035 1.040 1.045
Price of Anarchy

0

250

500

750

1000

1250

1500

1750

2000

Nu
m
be

r o
f S

am
pl
es

Toll1
Toll2
Toll-Free

Figure 4.17: Toll Performance Comparison (Variation: 20%)

In conclusion, the numerical gradient descent algorithm can find multiple sets of tolls, which
achieve desirable performance and guarantee probabilistic robustness.

42

4.1.11 Performance on Partially-Taxable Networks

Finally, we consider the partially-taxable networks. Assume that only half of roads in the Sioux
Falls network can be charged. We randomly pick 38 roads from all 76 roads and run the greedy
numerical gradient descent algorithm with 50 initial points. The relation between the price of
anarchy and the support subsample cardinality is shown in Figure 4.18a. We pick the toll set
with the best worst-case price of anarchy (highlighted in red) and impose them on the network.
We run the experiment with 36,500 new scenarios and illustrate the resulting social costs in
Figure 4.18b. Note that the only difference between Figure 4.16 and Figure 4.18b is that the
latter includes the red area.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Support Subsample Cardinality

1.00

1.01

1.02

1.03

1.04

1.05

1.06

W
or
st
-c
as

e
Pr
ice

 o
f A

na
rc
hy

 P

(a) PoA and Support Subsample

1.015 1.020 1.025 1.030 1.035 1.040 1.045
Price of Anarchy

0

250

500

750

1000

1250

1500

1750

2000

Nu
m
be

r o
f S

am
pl
es

Toll (Half Tollable)
Toll1
Toll2
Toll-Free

(b) Toll Performance Comparison

Figure 4.18: Performance and Robustness (Variation: 5%, Half-taxable)

We can observe that the red toll set performs worse than the orange one. Intuitively, the more
roads we can tax, the more control we have of the network. When we are only able to tax half
roads, the best performance naturally declines. However, the best performance is not simply a
function of the number of taxable roads since each road contributes differently to the inefficiency.
In the case that we only want to tax a certain number of roads, it is hard to choose the taxable
roads because we cannot easily evaluate their potential inefficiency.

Figure 4.18b also shows that the red toll set performs better than the magenta one, since the
PoA of the red one (1.037) is smaller than the PoA of the magenta one (1.032). On the other
hand, the number of the scenarios with a higher PoA of the red dash vertical line is 423, much
more than that of the magenta one - 79. The fact reminds us that we should never discuss
performance solely without robustness, or vice versa, because the performance and robustness
always come as a bounded pair.

In conclusion, the numerical gradient descent algorithm also applies to partially-taxable networks.

43

4.2 Structure-Fixing Algorithm

4.2.1 Model Formulation

In this section, we offer a different perspective of computing suboptimal traffic tolls. First, recall
the formulation (SA-H-R1), the main hardness comes from the bi-linear constraint,

fke
(i) ≥ 0, uke

(i) ≥ 0, fke
(i)
uke

(i)
= 0, ∀e, k, i,

which is equivalent to

fke
(i) ≥ 0, uke

(i)
= 0 or fke

(i)
= 0, uke

(i) ≥ 0, ∀e, k, i.

Note that these two conditions are not mutually exclusive since fke
(i)

= 0, uke
(i)

= 0 lives in both.

When the Gurobi Optimizer solves (SA-H-R1) as a mixed-integer nonlinear programming prob-
lem, the solver explores at most 2NENMNS branches, where NK , NM , NS are the number of
commodities, edges, and scenarios, respectively. If we know which condition to respect a prior,
i.e., fke

(i)
= 0 or uke

(i)
= 0, the bi-linear constraints will degenerate to simple linear constraints.

Therefore, a possible way to relax the bi-linear constraint is pre-fixing the condition. To achieve
a reasonable relaxation, we first force the following assumption.

Assumption 15 (Flow Structure Fixing Assumption). The unused links in all scenarios are the
same in the pre-toll equilibrium, and remain unused in the post-toll equilibrium.

Whereas the assumption is somewhat strong from a theoretical standpoint, it makes good sense
in practice because the decision maker would not expect toll imposition to significantly alter the
link usage. Instead, they are more interested in shifting a portion of people from some routes to
others [12].

We are motivated to first compute the pre-toll equilibrium, and record the flows at equilibrium,
eqf

k
e , with superscript (i) discarded because the assumption makes sure the sign stays consistent

among all scenarios. The relaxed optimization is then formulated as

min
H,τ ,f (i),µ(i),λ(i)

H (SA-H-SF)

subject to:

H ≥
∑
e

f (i)
e le(f

(i)
e), ∀i ∈ {1, . . . , N}

∇C(f (i), τ)− µ(i) +A>λ(i) = 0

Af (i) = b(i)

fke
(i) ≥ 0, uke

(i)
= 0 if eqfke ≥ 0,∀e, k

fke
(i)

= 0, uke
(i) ≥ 0 if eqfke = 0,∀e, k.

By fixing the traffic flow structure, we turn the non-convex scenario optimization into a convex
one (SA-H-SF), which can be solved very efficiently. More interestingly, the decision maker will
be able to comprise between robustness and performance by applying techniques provided by [10].

44

4.2.2 Preliminary Result Analysis

To better illustrate the performance of the structure-fixing algorithm, we consider the determin-
istic case with the nominal demands and solve the optimization (NLP) with the structure-fixing
adaption.

min
H,τ ,f ,µ,λ

∑
e

fele(fe) (NLP-SF)

subject to:

∇C(f , τ)− µ+A>λ = 0

Af = b

fke ≥ 0, uke = 0 if eqfke ≥ 0,∀e, k
fke = 0, uke ≥ 0 if eqfke = 0,∀e, k.

Take the Braess’s network for example, we scale the nominal demand by a scaling factor, and
compare the price of anarchy with and without tolls, obtained with the structure-fixing algorithm.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Scale Factor

1.00

1.05

1.10

1.15

1.20

1.25

Pr
ice

 o
f A

na
rc
hy

Without Tolls
With Tolls

Figure 4.19: Structure-Fixing Tolls on Braess’s Network

Figure 4.19 shows structure-fixing tolls can incentivize the optimal traffic flows for any scale
factor greater than 0.606 because Assumption 15 does not exclude the optimal solution in this
case. However, for a scale factor smaller than 0.606, the algorithm was not able to improve the
traffic efficiency, since edge 2 and 3 in Figure 2.3 were not used in the pre-toll equilibrium and
thus we could not use them later.

We can also obtain the break point 0.606 mathematically. Given a small scale factor α, the users
would like to choose the path via edges 1, 4, 5. When some players start to use the path via edges
1, 3, the costs along these two paths should be the same, per Definition 5:

l1(f1) + l4(f4) + l5(f5) = l1(f1) + l3(f3)

l1(αd) + l4(αd) + l5(αd) = l1(αd) + l3(0)

10αd+ 10αd+ 10 + 10αd = 10αd+ 50

α =
40

11d
= 0.606

Note that the fluctuation of the curve in Figure 4.19 comes from the numerical error.

45

Next, we consider a more complex network - the Sioux Falls network. We scale all the demands
and illustrate in Figure 4.20 the price of anarchy with and without the structuring-fixing tolls.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Scale Factor

1.00

1.01

1.02

1.03

1.04

1.05

Pr
ice

 o
f A

na
rc
hy

Without Tolls
With Tolls

Figure 4.20: Structure-Fixing Tolls on Sioux Falls Network

We can observe that the performance is quite limited but still the "With Tolls" curve is never
below the "Without Tolls" one. In other words, in the deterministic case, structure-fixing tolls
can at least remain PoA, if cannot improve. The fact can be simply explained - "Without Tolls"
is a feasible point of (NLP-SF) and certainly results in a suboptimal objective, while "With
Tolls" gives the optimal objective of (NLP-SF).

4.2.3 Discussion

The unsatisfactory performance of (NLP-SF) comes from the strong Assumption 15, which pro-
hibits us from exploring numerous possible candidates, i.e., performance is sacrificed for efficiency.
Due to the poor performance, it is of little value to continue to the scenario optimization. Since
(SA-H-SF) is almost equivalently to one node in (SA-H-R1), future work is to design a sophis-
ticated scheme to locate potentially desirable nodes, i.e., specially designed branching scheme.
The evolutionary algorithm may be a good starting point to design a branch-exploring strategy.

46

4.3 Discussion

Besides the two algorithms proposed in this chapter, we also tested the existing numerical opti-
mization algorithms to compute a locally optimal solution. For example, trust-region constrained
algorithm and sequential least squares programming (SLSQP) algorithm.

Trust-region constrained algorithm requires the gradient and Hessian matrix of the objective
function, as well as the Jacobian and Hessian matrices of the constraints. For the scenario opti-
mization, we can easily obtain these required components and start the algorithm. However, the
computational time is unacceptably long even for a small network. Moreover, the locally optimal
solution performs even worse than no tolls at all. The reason is that the scenario optimization
is too complex with many decision variables and constraints. The decision variables have com-
plicated impacts on the objective function, and thus the locally optimal solution behaves in an
undesirable way.

SLSQP requires only the Jacobian matrix of the objective function and constraints. As a se-
quential algorithm, it outperforms trust-region constrained algorithm in computational efficiency.
However, SLSQP does not deal with the cases involving singular matrices. As for the perfor-
mance, SLSQP provides a solution as poor as the trust-region constrained algorithm.

47

48

Chapter 5

Conclusion and Outlook

Congestion pricing has been a popular topic for policy makers. In this thesis, we propose several
algorithms to compute the probabilistically robust tolls based on the collected scenarios. We also
illustrate the performance and robustness of these tolls under uncertainties. We highlight that
the numerical gradient descent algorithm will be of most value in practice due to its satisfying
efficiency and performance. Specifically, on the Sioux Falls network, where demands vary within
5%, we can draw the conclusion "with the computed tolls, the probability that the PoA exceeds
1.02 is no larger than 0.295 with confidence 1− 10−6" given 100 previously-observed scenarios.

Besides the algorithms mentioned in this thesis, there may exist other algorithms to compute the
robust optimal tolls. We would like to offer some possible directions for interested researchers:

• One main reason for the computational hardness is that the social cost cannot be expressed
as an analytical function of the tolls. Deep learning techniques, as one of the most popular
tools these days, may be utilized to approximate the hidden function with neural networks.
If the approximation is accurate enough, the numerical gradient descent algorithm can be
run much faster and more accurately. Similarly, multi-variate regression is also an option.

• The toll design task falls into the category of data-driven decision making problems. In
practice, the feasible region of tolls is usually discrete. With the decision space well-defined,
unsupervised reinforcement learning is potentially another technique to deal with the toll
design task.

• In this thesis, we study the performance and robustness of constant-value tolls, i.e, the
charged tolls are just constant and independent of the on-link flows. The future work is to
investigate how to obtain probabilistically robust linear tolls and polynomial tolls.

• In the case that we do not want to tax all roads, which ones should be taxed? In practice,
the policy makers tend to tax the main roads and highways. However, theoretically it is
impossible to efficiently detect the edges most responsible for the inefficiency [36]. We thus
expect future research to investigate how to decide links to be taxed.

• The computational hardness of computing robust tolls comes from the natural of bi-level
optimization. (SA-H) transfers the lower level optimization with KKT conditions, but
does not save us from the NP-hardness. However, in the case of a parallel-arc network with
affine latency functions, we have the potential to exploit the network structure to improve
the algorithm efficiency - [25, 3] propose algorithms to formulate the toll design task as a
couple of convex optimizations, which can be easily solved. It is possible to combine their
algorithms and the scenario approach to divide the NP-hard problem into several simple
ones and conquer them one by one.

49

50

Bibliography

[1] G. B. Allende and G. Still. Solving bilevel programs with the kkt-approach. Mathematical
programming, 138(1):309–332, 2013.

[2] M. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the Economics of Transporta-
tion. Rand Corporation, 1956.

[3] V. Bonifaci, M. Salek, and G. Schäfer. Efficiency of restricted tolls in non-atomic network
routing games. In International Symposium on Algorithmic Game Theory, pages 302–313.
Springer, 2011.

[4] P. N. Brown and J. R. Marden. Optimal mechanisms for robust coordination in congestion
games. IEEE Transactions on Automatic Control, 63(8):2437–2448, 2017.

[5] P. N. Brown and J. R. Marden. Studies on robust social influence mechanisms: Incentives for
efficient network routing in uncertain settings. IEEE Control Systems Magazine, 37(1):98–
115, 2017.

[6] G. Calafiore and M. C. Campi. Uncertain convex programs: randomized solutions and
confidence levels. Mathematical Programming, 102(1):25–46, 2005.

[7] G. C. Calafiore and M. C. Campi. The scenario approach to robust control design. IEEE
Transactions on automatic control, 51(5):742–753, 2006.

[8] M. C. Campi and S. Garatti. The exact feasibility of randomized solutions of uncertain
convex programs. SIAM Journal on Optimization, 19(3):1211–1230, 2008.

[9] M. C. Campi and S. Garatti. Wait-and-judge scenario optimization. Mathematical Pro-
gramming, 167(1):155–189, 2018.

[10] M. C. Campi and S. Garatti. Scenario optimization with relaxation: a new tool for design
and application to machine learning problems. arXiv preprint arXiv:2004.05839, 2020.

[11] M. C. Campi, S. Garatti, and F. A. Ramponi. A general scenario theory for nonconvex
optimization and decision making. IEEE Transactions on Automatic Control, 63(12):4067–
4078, 2018.

[12] M. Chen, D. H. Bernstein, S. I. Chien, and K. C. Mouskos. Simplified formulation of the
toll design problem. Transportation Research Record, 1667(1):88–95, 1999.

[13] R. Colini-Baldeschi, M. Klimm, and M. Scarsini. Demand-independent optimal tolls. arXiv
preprint arXiv:1708.02737, 2017.

[14] B. Colson, P. Marcotte, and G. Savard. An overview of bilevel optimization. Annals of
operations research, 153(1):235–256, 2007.

51

[15] J. R. Correa, A. S. Schulz, and N. E. Stier-Moses. On the inefficiency of equilibria in
congestion games. In International Conference on Integer Programming and Combinatorial
Optimization, pages 167–181. Springer, 2005.

[16] P. Dubey and J. D. Rogawski. Inefficiency of nash equilibria in strategic market games.
BEBR faculty working paper; no. 1104, 1985.

[17] P. Ferrari. Road network toll pricing and social welfare. Transportation Research Part B:
Methodological, 36(5):471–483, 2002.

[18] L. Fleischer. Linear tolls suffice: New bounds and algorithms for tolls in single source
networks. Theoretical Computer Science, 348(2-3):217–225, 2005.

[19] M. Frank, P. Wolfe, et al. An algorithm for quadratic programming. Naval research logistics
quarterly, 3(1-2):95–110, 1956.

[20] S. Garatti and M. Campi. Risk and complexity in scenario optimization. Mathematical
Programming, pages 1–37, 2019.

[21] L. M. Gardner, A. Unnikrishnan, and S. T. Waller. Robust pricing of transportation net-
works under uncertain demand. Transportation Research Record, 2085(1):21–30, 2008.

[22] L. M. Gardner, A. Unnikrishnan, and S. T. Waller. Solution methods for robust pricing of
transportation networks under uncertain demand. Transportation Research Part C: Emerg-
ing Technologies, 18(5):656–667, 2010.

[23] Gurobi Optimization, LLC. Gurobi optimizer reference manual, 2021.

[24] T. Harks, I. Kleinert, M. Klimm, and R. H. Möhring. Computing network tolls with support
constraints. Networks, 65(3):262–285, 2015.

[25] M. Hoefer, L. Olbrich, and A. Skopalik. Taxing subnetworks. In International Workshop on
Internet and Network Economics, pages 286–294. Springer, 2008.

[26] T. Jelinek, M. Klaas, and G. Schäfer. Computing optimal tolls with arc restrictions and
heterogeneous players. In 31st International Symposium on Theoretical Aspects of Computer
Science (STACS 2014). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[27] R. G. Jeroslow. The polynomial hierarchy and a simple model for competitive analysis.
Mathematical programming, 32(2):146–164, 1985.

[28] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Annual Symposium on
Theoretical Aspects of Computer Science, pages 404–413. Springer, 1999.

[29] M. Labbé, P. Marcotte, and G. Savard. A bilevel model of taxation and its application to
optimal highway pricing. Management science, 44(12-part-1):1608–1622, 1998.

[30] M. Labbé and A. Violin. Bilevel programming and price setting problems. 4OR, 11(1):1–30,
2013.

[31] U. B. of Public Roads. Office of Planning. Urban Planning Division. Traffic Assignment
Manual for Application with a Large, High Speed Computer. US Department of Commerce,
1964.

[32] C. Papadimitriou. Algorithms, games, and the internet. In Proceedings of the thirty-third
annual ACM symposium on Theory of computing, pages 749–753, 2001.

52

[33] A. C. Pigou. The Economics of Welfare. London: Macmillan, 1920.

[34] A. Rapoport. Prisoner’s dilemma. In Game Theory, pages 199–204. Springer, 1989.

[35] T. Reed. Inrix global traffic scorecard. INRIX research, 2019.

[36] T. Roughgarden. Designing networks for selfish users is hard. In Proceedings 42nd IEEE
Symposium on Foundations of Computer Science, pages 472–481. IEEE, 2001.

[37] T. Roughgarden and É. Tardos. How bad is selfish routing? Journal of the ACM (JACM),
49(2):236–259, 2002.

[38] T. Roughgarden and E. Tardos. Introduction to the inefficiency of equilibria. Algorithmic
game theory, 17:443–459, 2007.

[39] D. Schrank, B. Eisele, and T. Lomax. Tti’s 2012 urban mobility report. Texas A&M
Transportation Institute. The Texas A&M University System, 4, 2012.

[40] A. Sinha, P. Malo, and K. Deb. A review on bilevel optimization: from classical to evo-
lutionary approaches and applications. IEEE Transactions on Evolutionary Computation,
22(2):276–295, 2017.

[41] Transportation Networks for Research Core Team. Transportation networks for research.
https://github.com/bstabler/TransportationNetworks, 2021.

[42] R. Turvey. Marginal cost. The Economic Journal, 79(314):282–299, 1969.

[43] E. T. Verhoef. Second-best congestion pricing in general networks. heuristic algorithms for
finding second-best optimal toll levels and toll points. Transportation Research Part B:
Methodological, 36(8):707–729, 2002.

[44] L. N. Vicente and P. H. Calamai. Bilevel and multilevel programming: A bibliography
review. Journal of Global optimization, 5(3):291–306, 1994.

[45] C. Wang, Q. Tian, and H.-J. Huang. Inefficiency of marginal-cost tolls in transportation
networks with stochastic demands. In 2017 International Conference on Service Systems
and Service Management, pages 1–4. IEEE, 2017.

[46] J. G. Wardrop. Road paper. some theoretical aspects of road traffic research. Proceedings
of the institution of civil engineers, 1(3):325–362, 1952.

[47] H. Yan and W. H. Lam. Optimal road tolls under conditions of queueing and congestion.
Transportation Research Part A: Policy and Practice, 30(5):319–332, 1996.

[48] H. Yang and S. Yagar. Traffic assignment and traffic control in general freeway-arterial
corridor systems. Transportation Research Part B: Methodological, 28(6):463–486, 1994.

[49] H. Yang, S. Yagar, Y. Iida, and Y. Asakura. An algorithm for the inflow control prob-
lem on urban freeway networks with user-optimal flows. Transportation Research Part B:
Methodological, 28(2):123–139, 1994.

[50] H. Yang and X. Zhang. Optimal toll design in second-best link-based congestion pricing.
Transportation Research Record, 1857(1):85–92, 2003.

53

https://github.com/bstabler/TransportationNetworks

