mzuriCh ETH Library

Data-Driven Robust Congestion
Pricing

Master Thesis

Author(s):
Wang, Yize

Publication date:
2021-06-27

Permanent link:
https://doi.org/10.3929/ethz-b-000523902

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000523902
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

ETH

Eidgendssische Technische Hochschule Ziirich

iI‘A
w
Swiss Federal Institute of Technology Zurich I Aut()matic COHtrOl Laboratory

Master’s Thesis
Data-Driven Robust Congestion Pricing

Yize Wang
June 27, 2021

Advisors
Prof. Dr. Dario Paccagnan
Prof. Dr. John Lygeros

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

| hereby confirm that | am the sole author of the written work here enclosed and that | have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Data-Driven Robust Congestion Pricing

Authored by (in block letters):

For papers written by groups the names of all authors are required.

Name(s): First name(s):
Wang Yize

With my signature | confirm that

- | have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

— | have documented all methods, data and processes truthfully.
— | have not manipulated any data.
- | have mentioned all persons who were significant facilitators of the work.

| am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

Harbin, June 2, 2021 Yize ukma,

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

Abstract

Self-interested routing is often inefficient in traffic networks. Economists and computer scientists
have proven that imposing proper tolls on congested roads, i.e., congestion pricing, can effectively
improve network efficiency by reducing the total travel time experienced by all users. However,
most researches focus on deterministic demands, while uncertainties are rarely studied. As a
result, the tolls designed for the deterministic demands may behave undesirably when the actual
demands deviate from the expectation. Existing solutions for uncertain demands mostly require
a particular structure of either the network or the uncertainty, which motivates us to investigate
a robust congestion pricing scheme for general networks that guarantees the toll performance
under unknown uncertainties.

This thesis combines congestion pricing and scenario approach, a general framework for data-
driven robust optimization, and formulates the robust toll design task as a bi-level optimization.
Taking observed scenarios into account, we are able to design robust tolls that perform well when
actual demands respect the same distribution with no knowledge of the distribution required.
Besides exact algorithms, we also propose approximate ones to solve the NP-hard bi-level opti-
mization within a reasonable time. We illustrate that the robustness can be quantified, and the
toll-setter can compromise between robustness and performance. Finally, we demonstrate with
numerical examples that the designed tolls can deal with uncertainties in unseen scenarios.

Keywords Congestion pricing, data-driven decision making, scenario approach, game theory,
robust optimization

i

Acknowledgment

First, I would like to thank Prof. Dr. Dario Paccagnan for supervising me during the unforget-
table six-month research. His insightful advice, broad knowledge, patient instruction have always
encouraged me to explore more and further. The research topic was a completely new field for me,
but with Dario’s invaluable help, I managed to learn relevant knowledge quickly and make some
contributions to the scientific society. He not only supported me through numerous meetings and
discussions but also exerted an imperceptible influence on my personality, with his persistence,
humility, optimism and decisiveness. It is my greatest honor to have Dario as my supervisor,
and my greatest regret to not be able to meet Dario in person due to the pandemic of COVID-19.

I also would like to thank Prof. Dr. John Lygeros. Among all lectures I had in my life, no
one intrigues me more than Linear System Theory. John’s lecture serves as a perfect bridge
between mathematics and engineering, connecting my past knowledge. He also brought me the
opportunity to know Dario and to get involved in the enjoyable research.

Furthermore, I would like to thank Dr. Kiril Solovey for providing me with a fast implementa-
tion of the traffic-assigning algorithm. The implementation sped up my algorithm more than ten
times and made it possible to conduct experiments on huge networks. I would like to thank Prof.
Dr. Marco Claudio Campi for proposing the wonderful scenario approach framework. Without
his prior work on the scenario approach, my thesis would be impossible. I would also like to
thank Yilun Zhang for selflessly sharing his knowledge on optimization theory and numerical
solver. Frequent discussions with him greatly encouraged me during the unexpected lockdown.

Moreover, I have my warmest gratitude to my family, Wenying Zhu, Aoming Liu, Chao Jing,
Chenyu Zhou, Gaoxiang Shen, Guohui Gao, Hao Yu, Huimin Zhang, Jingyang Shen, Lanyi Yang,
Linfeng Xu, Mafu Zhang, Modi Liu, Qi Zeng, Tianwei Lan, Wencan Huang, Xiang Li, Xingyun
Zhou, Xinyu Sun, Yan Wu, Yimeng Lu, Yu Dai, Yukai Lin, Yunzhe Pan and Zepeng Shao.
Without their company, I cannot overcome all the difficulties and accomplish my thesis.

Finally, I would like to thank Mr. Lixin Tang, ETH Zurich, and China Scholarship Council for
financially supporting my study.

No matter what difficulties and challenges we face, as a community with a shared future, hu-
mankind should abandon prejudice and unite and move forward in the long course of history.

il

v

Abbreviations

OD
NP
BPR
opPT
SA
UE
SO
NLP
LLP
BLP
PoA
MC
MCT
Iter
TH
VEW
CFW
BFW
N/A
LP
QP
MILP
MIQP
SLSQP

Origin-Destination
Nondeterministic Polynomial Time
U.S. Bureau of Public Roads
Optimization

Scenario Approach

User Equilibrium

Social Optimum

Non-Linear Programming
Lower-Level Programming

Bi-Level Programming

Price of Anarchy

Marginal Cost

Marginal-Cost Tolls

Iteration

Threshold

Vanilla Frank-Wolfe Algorithm
Conjugate Frank-Wolfe Algorithm
Bi-Conjugate Frank-Wolfe Algorithm
Not Available

Linear Programming

Quadratic Programming
Mixed-Integer Linear Programming
Mixed-Integer Quadratic Programming

Sequential Least SQuares Programming

vi

Contents

Abstract

Acknowledgment

Abbreviations

1 Introduction
1.1 Related Work

2 Formulation

2.1 Traffic Assignment Model oL
2.1.1 Network Model
2.1.2 Cost Model
2.1.3 Latency Model

2.2 Equilibrium and Efficiency oo
2.2.1 Wardrop Equilibrium
2.2.2 Priceof Anarchy

2.3 Toll Design e
2.3.1 Deterministic Toll Design by Bi-Level Optimization
2.3.2 Marginal-Cost Toll
2.3.3 Scenario Approach
2.3.4 Robust Toll Design by Scenario Optimization

3 Algorithms for Globally Optimal Solution

3.1 Model Reformulations

3.2 Magnitude Scaling

3.3 Approximation for Polynomial Latency Function

3.4 Initialize with Feasible Point oo

3.5 Support Subsample Evaluation,

3.6 Experiments
3.6.1 Scenario Generation
3.6.2 Result Analysis
3.6.3 Discussion

4 Algorithms for Suboptimal Solution

4.1 Greedy Numerical Gradient Descent Algorithm
4.1.1 Model Reformulation
4.1.2 Frank-Wolfe Algorithm
4.1.3 Greedy Numerical Gradient Descent Algorithm
4.1.4 DeltaTau e

iii

L =

© 00 00~ O Ut ot Gt

el
gl W= OO

17
17
21
22
23
24
25
25
26
26

4.1.5 Toll Post-Process 33

4.1.6 Cache for POA 34
4.1.7 Step Size Determinationo 34
4.1.8 Multi-Start Strategyo 37
4.1.9 Result Analysis 38
4.1.10 Toll Performance Comparison 41
4.1.11 Performance on Partially-Taxable Networks 43

4.2 Structure-Fixing Algorithm 44
4.2.1 Model Formulation oo 44
4.2.2 Preliminary Result Analysis L. 45
4.2.3 Discussion 46

4.3 DISCussion 47
5 Conclusion and Outlook 49

Bibliography 51

Chapter 1

Introduction

As aresult of crowded megacities, the rapid growth of automotive vehicles, and inadequate trans-
portation facilities, traffic congestion has been globally considered as a severe social problem,
which causes uncountable waste of time and money [35, 39]. One of the main reasons for such
traffic inefficiency is the selfish behavior of traffic participants [16, 15, 38]. That is, the social
transportation cost is worse than the optimal one due to participants’ tendency to minimize
their individual travel costs. The traffic flow resulting from selfishness is commonly modeled as a
Wardrop equilibrium and has been extensively studied, for example in |2, 37, 46]. The Wardrop
model describes the traffic assignment as a non-atomic non-cooperative game, with each road
equipped with a convex latency function. There is a set of origin-destination pairs, called com-
modities, and each commodity has an amount of traffic flow to deliver, called demand. Given the
network structure and commodities, the Wardrop equilibrium can be obtained through convex
programming [2].

In order to mitigate the inefficiency caused by selfish behavior, researchers proposed congestion
pricing schemes to incentivize rational individuals to behave in a socially-desirable manner. For
instance, by imposing tolls on roads, some drivers are discouraged from using the overcrowded
links and deviate to previously-unfavored ones, leading to a better social traffic flow [33, 2.

The seminal work [2] proves that charging marginal-cost tolls on all roads will ensure the resulting
Wardrop equilibrium coincides with the socially optimal allocation. However, three main issues
are prohibiting its application in real-world traffic systems. First, all links are required to be tax-
able for marginal-cost tolls to take effect. Although highways can be easily taxed, it is currently
impossible to impose tolls on every single community street. Second, the value of margin-cost
tolls may be arbitrarily large. Third, commodities and their corresponding demands are assumed
to be known exactly, while they actually vary constantly and cannot be pre-measured. As a con-
sequence, the flow-independent margin-cost taxation can even exaggerate congestion due to the
mismatch between the actual and predicted demands, i.e., not robust to uncertainties [5, 45].

To tackle the first two problems, we can utilize a bi-level optimization, where the upper level
optimizes the social cost by choosing bounded tolls, and the lower level describes the Wardrop
equilibrium determined by the upper-level decision variables. The bi-level optimization has been
proven to be NP-hard and thus is computationally demanding. There are many techniques pro-
posed to solve the bi-level optimization, for example [14, 40, 30, 1|. However, in the worst case,
the complexity of mathematical programming grows exponentially with the network scale and
can quickly incur an infeasible computational cost.

To handle the uncertainty problem, we resort to the robust optimization framework - scenario
approach. The scenario approach is regarded as a powerful methodology for data-driven decision
making |7, 8]. The algorithm first collects some recorded scenarios and looks for the solution that
optimizes the objective function in the worst case of these scenarios. Interestingly, the scenario
theory probabilistically guarantees the solution’s performance when the decisions are applied
to unseen scenarios. [11| even generalizes the scenario approach theory to consider non-convex
optimizations.

In this thesis, we propose several algorithms to compute probabilistically robust optimal restricted
tolls by combining the bi-level optimization and the scenario approach. We utilize the math-
ematical programming solver Gurobi to locate the robust globally optimal solution for small
networks. For large networks where obtaining the global one is difficult, we present a numer-
ical gradient-descent algorithm to compute suboptimal tolls efficiently. We remark that even
the solutions are computed approximately, the scenario approach allows us to probabilistically
guarantee the performance under uncertainties.

1.1 Related Work

Researchers have investigated many tolling mechanisms to deal with the inefficiency of the equi-
librium in the Wardrop model. [25, 3, 26, 24| compute the optimal tolls for parallel-arc single-
commodity networks with affine latency functions where only subnetworks are taxable. [3] shows
that toll upper bounds can be respected, and [24| generalizes the type of latency functions. [4]
derives the optimal bounded tolls and the best-possible performance guarantee as a function of
toll upper bounds. However, [25] shows that if taxable edges form a strict subset of all edges,
it would be NP-hard to compute optimal taxes for general networks even with affine latency
functions and two commodities.

In the case of general networks and multi-commodities, [24] proposes three heuristic algorithms
to arrive at approximately optimal tolls. [43] adopts a numerical method to compute optimal
tolls for general subnetworks. With strong assumptions, [12] simplifies the problem into a single-
level convex optimization by assuming that the same arcs will be used before and after they are
taxed. [18] deals with multi-commodity series-parallel networks numerically via longest-path-first
flow decomposition. |29, 30, 49, 50, 47, 48, 17] tackle the tolling problem as a bi-level optimiza-
tion. However, [27] proves that the simple version of the bi-level problem with linear objective
functions and linear constraints is already NP-hard. Even worse, checking whether a solution is
locally optimal has also been proved to be NP-hard [44].

When the uncertainty of the demands is taken into account, 13| studies conditions under which
the optimal tolls are demand-independent given all links are taxable. [21] proposes a numerical
demand-robust tolling mechanism for general networks. [22| presents two approximation meth-
ods to compute robustly optimal tolls.

The scenario approach is proposed in [6, 7, 8], which illustrate how the probabilistic robustness
can be achieved for convex programs, and [10] steps further to consider relaxing the constraints in
order to comprise between the performance and the robustness. The author’s later works [11, 9]
generalize the theory to non-convex cases and argue that the robustness cannot be evaluated
until the non-convex programs are solved.

In this thesis, we consider general traffic networks with multiple commodities. Integrating the sce-
nario approach, we propose both exact and approximate algorithms to compute probabilistically-
robust tolls based on seen scenarios. All algorithms can be applied to partially-taxable networks
and respect prescribed toll upper bounds. The approximate algorithm can find an approximate
local optimum of the NP-hard toll-designing optimization in a reasonable time. Finally, we
demonstrate with numerical examples that the designed tolls perform well in unseen scenarios,
and the policymaker can compromise between performance and robustness.

Chapter 2

Formulation

2.1 Traffic Assignment Model

2.1.1 Network Model

Consider a directed traffic network G = (V,E). V and E are the sets of vertices and edges with
cardinality of Ny and Ng, respectively. A directed edge is represented as e = (v1,v2) starting
from vertex v; and terminating at vertex vo. We then associate network G with a commodity
set, C, which has N origin-destination pairs, C = ((01, dh,..., (oK, dNK)). For i*" commodity
(0%, d"), we have to deliver a certain value of traffic flow, called demand and denoted by d*. We
further represent the traffic flow on edge e caused by " commodity as f!. Let f. collect all

traffic flows on edge e of all commodities,

Nk
f e — Z f é :
i=1
A flow is feasible for the network and the commodity set if for each commodity:
1. the net flow of this commodity out of the origin is equal to the demand;
2. the net flow of this commodity into the destination is equal to the demand;

3. the net flow of this commodity out of other vertices is 0.

These conditions are mathematically formulated as

d if v=10'
Zfei_zfé: —d'" ifv=d ,Vie{l,...,Ng},

co=v ed=v 0 otherwise
where o' and d’ are the origin and destination of the i*® commodity (o, d?).

We additionally require flows to be non-negative on all directed edges, i.e.,
fi>0,YeeR,ic{l,...,Ng}.

Next we impose a common assumption before elaborating our traffic model.

(2.1)

(2.2)

(2.3)

Assumption 1 (Existence of Feasible Flow). There exists at least one feasible flow for network

G and commodity set C.

For the ease of notation, we define flow vector f* € RYE , whose j* entry describes the traffic flow

on the j¥ edge of the k' commodity. Finally, we declare collective edge flow vector fp € RfE

and overall flow vector f € RfEJrNENK
fl ff .;Ilg Ng
fe=| |, = =" fe=)_f" (2.4)
fNE f}VE fK k=1

Now, by properly defining matrix A € ZWNVetNkNV)x(Ne+NkNe) and vector b € RVNETNENV e
can compactly express (2.1, 2.2, 2.3) in linear form

Af =b,
f =0,

where A and b are usually sparse.

Note that the network model defined here is called the link-based formulation while the other
type is the path-based formulation. Since in the later one, the number of flow variables grows
exponentially with respect to the number of links while in the link-based one linearly, we will
adopt the link-based formulation throughout.

2.1.2 Cost Model

We consider edges as congestible resources, and the players have to pay some latency costs
when utilizing them. The cost is determined by the load-dependent latency function [, a non-
negative, differentiable, and non-decreasing convex function. [, is a function of cumulative flows
of all commodities on the edge e, that is, f.. The social cost incurred on edge e is defined as
fele(fe), i.e., flow times latency. Summing the costs from all edges yields the total social cost

SOC Zfe e f€ (2.5)

On the other hand, the individual cost fil.(f.) incurred on edge e depends on the collective flow
fe and the i*"-commodity flow fi. The total individual cost for the ith commodity is

znd Zfe fe

If drivers are charged traffic tolls for using some links, the individual cost should also include the
monetary discouragement and be generalized as

znd_Zfe fe +57—e)7 (26)

where 7, is the toll charged for using link e, and the player sensitivity s’ indicates how much the
i'" commodity values the cost of one unit of time (latency) compared to one unit of money (toll).
For simplicity, we assume players from all commodities share the same sensitivity and drop s’ in
(2.6) by including the sensitivity into the toll.

Assumption 2 (Homogeneous Players). All players from all commodities share the same sen-

sitivity, that is, s = --- = s&

2.1.3 Latency Model

We require latency functions to be non-decreasing, non-negative, differentiable and convex.
Among many possible function types, the affine latency function is one of the most popular
choices in the literature because of its mathematical simplicity, which assumes that the traffic
latency grows linearly to the traffic flow on a road.

Definition 3 (Affine Latency Function). The affine latency function | : Ry — R4 admits the
form I(f) = af + b with non-negative coefficients a and b.

Networks equipped with affine latency functions have been widely investigated in [37, 25, 3,
26, 24|. However, such functions cannot properly reflect how real traffic systems work, because
the latency experienced by drivers does not simply grow linearly to the traffic load. Instead,
the U.S. Bureau of Public Roads proposed a strongly-convex polynomial function to respect the
congestion properties of real roads [31].

Definition 4 (BPR Latency Function). The Bureau of Public Roads latency function | : Ry —
P
R admits the form I(f) = to (1 + B <%) > with non-negative coefficients ty, B, C' and P.

In the BPR latency function, tg is the free-flow travel time, f is the flow on the link, and C' is the
capacity, which is the maximum number of vehicles that can pass through a cross section of this
road. This function well approximates the real travel time - when the road is at low occupation
(f < C), the users’ travel time is close to the free-flow travel time as users do not affect each
other much. But if the road is highly congested (f ~ C or f > C), the users will suffer from a
quick growth of the travel time as the total on-link traffic flow increases, because the polynomial
term stands out. Figure 2.1 illustrates the function values and the growth rates of these two
latency function types.

—— Affine Latency Function —— Affine Latency Function
BRP Latency Function BRP Latency Function
Capacity Capacity

Travel Time (minutes)
N
S
Derivative of Travel Time
)
o
o

o
o
=)

|

T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Flow (vehicles/minute) Flow (vehicles/minute)

o
o
o

o
=3
5]

(a) Latency Function Values (b) Latency Function Derivatives

Figure 2.1: Latency Function Comparison. Blue curve: affine latency function with ¢ = 0.1 and
b = 1.0; Orange curve: BRP latency function with to = 1.0,C =25, P =4 and B = 0.15.

Due to the strong convexity and the satisfactory approximation of the real traffic behaviors, we
will only consider the BRP latency function throughout this thesis.

2.2 Equilibrium and Efficiency

2.2.1 Wardrop Equilibrium

As the fundamental concept of the game theory, Nash equilibrium characterizes a set of strate-
gies where no single player can reduce his individual cost by unilaterally altering his strategy.
However, in real traffic systems, there are always too many players to be efficiently analyzed.
Therefore we utilize the non-atomic model where there are infinitely many players for each com-
modity. Every single player controls only a negligible portion and thus can be considered to have
no impact on other players. This motivates the Wardrop equilibrium concept and Wardrop gives
two main principles in [46], which can be summarized into the following two definitions.

Definition 5 (User Equilibrium). The feasible traffic flows satisfying the following property are
at Wardrop equilibrium: For each commodity, all non-zero-flow paths share the same cost, which
1s less than those that would be experienced by a player on any unused path.

Wardrop equilibrium flows are also referred to as user equilibrium flows because no single agent
can unilaterally reduce his cost by choosing another path. The user equilibrium is the result of
players’ selfishness and thus can be often inefficient for the whole traffic system.

Interestingly, Beckman shows in [2]| that the user equilibrium coincides with the solution to the
following convex optimization:

Je
i le(t) dt OPT-UE
mn 3 [0 (OPT-UE)

subject to:
Af=0b
f=0

The intuitive explanation is that the sufficient and necessary optimality conditions of (OPT-UE)
coincide with Definition 5. The underlying reason is that the non-atomic non-cooperative game
above is a potential game, and the objective function in (OPT-UE) is the potential function.
When the potential function is minimized, users are at equilibrium.

Finally, we define socially optimal traffic flows.

Definition 6 (Socially Optimal Flow). The feasible traffic flow f* that minimizes the overall
travel costs for players from all commodities are socially optimal, i.e., f* minimizes (2.5).

Mathematically, the socially optimal traffic flow solves the following convex optimization:
n?1§:f44ﬁ) (OPT-SO)
e

subject to:
Af=b
f=0
As a result of Assumption 1, the solutions to (OPT-UE) and (OPT-SO) always exist. Moreover,

because of the strongly-convex objective function and convex constraint set, (OPT-UE) and
(OPT-SO) are convex optimizations which admit a unique solution.

Theorem 7 (Existence and Uniqueness). Under Assumption 1, there exists a unique solution
to both (OPT-UE) and (OPT-SO).

8

To highlight the differences between the UE and SO flows, we introduce the simple Pigou’s
network. As shown in Figure 2.2, in UE all players choose the upper link because the latency is
always less than or equal to 1.0, while in SO half of the players choose the upper one. The social
costs of these two cases are 1.0 and 0.75 respectively.

f,=1.0.1,) =1, f;=05 I,(f) =1,

do ®d €0 od

f,=00,1,(f) =1 1,205, 1,(1,) =1

(a) User Equilibrium Flows (b) Socially Optimal Flows

Figure 2.2: User Equilibrium and Socially Optimal Flows in Pigou’s Network. There are two
nodes in this network: "origin" denoted by o, and "destination" denoted by d. Two edges connect
o0 to d, with latency functions l1(f1) = 1 and l2(f2) = f2. The commodity has a demand of 1.0.

2.2.2 Price of Anarchy

Non-cooperative equilibrium is known to be inefficient due to agents’ selfish routing tendency,
who only want to minimize their individual costs without caring about the social cost [34, 15].
To quantitatively evaluate the inefficiency, [28, 32| introduce the concept of price of anarchy.

Definition 8 (Price of Anarchy). The price of anarchy is the ratio between the worst social cost
at a user equilibrium and the optimal social cost, mathematically defined as

Max feF.q Csoc(.f)

PoA = -
min fcr Csoc(f)

)

where I is the set of all feasible flows, and ey is the set of all user equilibrium flows.

According to Theorem 7, the price of anarchy can be simplified to the ratio between the social
cost of the (unique) user equilibrium flow and the (unique) social optimal flow, that is

CSOC (fue)

PoA = .
CSOC (fso)

2.3 Toll Design

2.3.1 Deterministic Toll Design by Bi-Level Optimization

The task of designing optimal tolls for a given network and commodities can be intrinsically
formulated as a bi-level optimization, where the lower level defines that the flow is at the user
equilibrium and the upper level optimizes the social cost over the feasible space of tolls T. We
assume that all users value time equally so we can convert monetary cost to time cost. Let T
denote the time cost converted from the monetary cost. Then, the bi-level optimization reads

min Z@: fele(fe) (BLP)
subject to:
fe
f =argmin » / Io(t) + 7 dt (LLP)
f - Jo
Af =
f>0

For simplicity, we will omit T in the left part of the thesis. Note that given 7, the lower level is
convex in both the objective function and the constraint set, and thus is a convex optimization.
To solve (BLP), we substitute (LLP) with KKT conditions,

ll (fl) + 71
ZNE(fN%)+TNE —ut+ATA=0 (2.7)
0
A b (2.8)
o (2.9)
oo (2.10)
TE oo (2.11)

Here, (2.7), (2.8, 2.9), (2.10), (2.11) are called stationarity, primal feasibility, dual feasibility
and complementary slackness, respectively. p is the dual variable of f, and we adopt the same

superscripts and subscripts for @ as f. For the ease of notation, we represent the gradient of the
objective function in (2.7) as VC(f) and compress (2.9), (2.10), (2.11) into 0 < f L u > 0.

With the transformation above, the bi-level optimization (BLP) becomes a single-level non-linear
non-convex optimization in the compact form:

min, ze:fele(fe) (NLP)
subject to:
VC(f)—p+ATA=0
Af=0b
0<flp>0 (2.12)

10

Note that due to the existence of the bi-linear constraint (2.12), the non-convex problem (NLP)
is still NP-hard and thus cannot be solved in reasonable time, making the computational expense
formidable for large networks. However, if all links are unlimitedly taxable, marginal-cost tolls
are known to be a solution to the above optimization [33, 2.

2.3.2 Marginal-Cost Toll

As defined in [42], the marginal cost is the change in the total cost that arises when the quantity
produced changes by one unit. In the context of traffic system, the total cost (social cost incurred
by one link) is felc(fe) and the marginal cost is defined as the derivative of the social cost with
respect to the on-link traffic flow f., i.e.,

d (fele(fe))

dfe

The marginal-cost toll is then defined as f.l,(f.) - the additional term in (MC) compared to the
latency function l¢(fe).

= le(fe) + felo(fo). (MC)

Definition 9 (Marginal-Cost Toll). The marginal-cost toll for link e with flow f. and latency
function 1o is fol (fe).

According to Definition 9, the marginal-cost toll for the affine latency function is

felle<fe) = afe:

and for the BPR latency function is

! _ fe P
fele(fe)_tOBP <C> ’

where f. should be the socially-optimal volume of flow.
Next, we show why marginal-cost tolls incentivize the socially optimal flow. First we consider

the user equilibrium subject to marginal-cost tolls. Pluging in the marginal-cost tolls into the
objective function of (OPT-UE) gives:

fe _ fe ,
Z/O le(t)dt = Z/O (le(fe) + fele(fe)) dt
=S el

= Z fele(fe)' (2.13)

Since (2.13) coincides with the objective function of (OPT-SO) and the constraint sets are
the same, we can conclude that the solutions to (OPT-UE) and (OPT-SO) are identical when
marginal-cost tolls are imposed, that is, the marginal-cost tolls force the user equilibrium flows
to be the socially optimal flows.

Theorem 10. Marginal-cost tolls incentivize the socially optimal flow when all users value time
equally.

To compute the flow-independent marginal-cost tolls, we can first calculate the socially optimal
flow f*, and multiply the flow by the derivative of the latency function, i.e., f:l;(f:)

11

A natural question is "How well marginal-cost tolls can do in the case of uncertain demands"
because in reality, we can only estimate the demands instead of knowing them exactly. Unfor-
tunately, the performance of such tolls is not guaranteed under uncertainties |5, 45|. We take an
example of the famous Braess’s network in Figure 2.3.

>
\/’\Q{ ’ < :;/\\/‘
\ g A, Loy,
LN
=
®o K od
+
Z a
o \“\6
e X
A e

b

Figure 2.3: Braess’s Network. The latency functions are I1(f1) = 10f1, la(f2) = f2 + 50,
I3(f3) = f3+ 50, l4(f1) = fa + 10, I5(f5) = 10f5. The demand to be delivered from o to d is 6.0.

Next, we scale the demand and see how social cost curves and price of anarchy curves vary with
respect to the scale factor. From Figure 2.4, we observe that the marginal-cost tolls cannot
guarantee the improvement of PoA, and can even make the system less efficient under some
conditions. This motivates us to design tolls that are robust in the face of uncertain demands.

700 1.25

—— PoA with Tolls
PoA without Tolls

1.20

Social Cost
Price of Anarchy

-

.

&

=
i
o

1.05 9

0 T T T T T 1.00 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Scale Factor Scale Factor

(a) Performance on Social Cost (b) Performance on Price of Anarchy

Figure 2.4: Performance of Marginal-Cost Tolls. 71 =30, m, =3, 73 =3, 74 = 0, 75 = 30.

12

2.3.3 Scenario Approach

In order to be robust to uncertain demands, we can collect demand data from multiple days and
periods, for example, all afternoons in a whole year. The demands may be regarded as random
variables which belong to an unknown distribution. The toll design task can now be interpreted
as a data-driven decision making task.

The scenario approach as a general methodology for the data-driven optimization is well-suited
for the task. In this section, we will summarize key assumptions and conclusions in [11]|. For
detailed derivations, please refer to Campi’s studies on the scenario approach [8, 7, 9, 20, 10, 11].

Scenario Approach Setup: Let A be a probability space with a probability measure P. An
element 6 € A is called a scenario. We call ((5(1),...,(5(m)) a sample which consists of m
independently-drawn scenarios from A. Each 6 is regarded as an observation (scenario). ©
is a decision space without any pre-defined properties. The decision maker is given the sample
(5(1), e ,(5(’“)) and makes a decision based on a function A,, : A™ — O. We call the decision
0r, = Ap, ((5 @, .. 5(m)) the scenario decision. A natural feasibility assumption is forced for the
scenario approach:

Assumption 11 (Feasibility Assumption). To every scenario 6 € A, there is an associated con-
straint set ©5 € O, which identifies the decisions that are admissible for the situation represented
by 0. Forallm =1,2,... and for any sample (5(1), e ,5(’”)), it holds that Ay, (6(1), e 5(m)) €
Asiy foralli=1,...,m.

The robustness of the scenario decision 6, means how well it generalizes to unseen situations
0 € A. We say that 0, generalizes to ¢ if 0}, € Os, otherwise, violates §. Formally, we give the
definition of the probabilistic robustness.

Definition 12 (Violation Probability). The wviolation probability of a given decision 6 € © is
defined as

V(0) =P{5 € A:0 ¢ Oy},

For a given reliability parameter € € (0, 1), we say that 6§ € © is e-feasible if V(0) < e.

A prominent feature of the scenario approach in the non-convex setting is that we cannot assert
the robustness until we solve 67 . In other words, the robustness can only be a posterior com-
puted, which is also called the walk-and-judge scheme. The robustness depends on the cardinality
of the support subsample, defined as follows.

Definition 13 (Support Subsample). Given a sample (5(1),...,5(N)) e AN, a support sub-
sample S for (5(1), .. .,5(N)) 15 a k-tuple of elements extracted from (5(1), . ,5(N)), e, S =
(5(“), ces ,5(i’€)) with i1 < 19 < --- < ig, which gives the same solution as the original sample,
that 1is,

Ay (5(i1), .. .,5(ik)) = An <5(1), .. .,5(N)> .

A support subsample is called irreducible if no element can be further removed from S leaving
the solution unchanged.

We define a function By to determine the support subsample. Let By map a sample to the
set of support subsample indices, i.e., By : (5(1),...,5(N)) = {1, ik, 0 < - < i and
(5(i1), e ,(5(ik)) is a support subsample. Note that neither By nor the support subsample is
unique. Finally, we cite the key theorem of the scenario approach, proven in Section IIT of [11].

13

Theorem 14. Suppose the Assumption 11 holds true, and set a value 5 € (0,1) (confidence
parameter). Let e : {0,..., N} — [0,1] be a function such that

e(N) =1 (2.14)
N

§:<>1—6)W*:5. (2.15)

Then, for any Ay, By, and probability P, it holds that
PY{V(8}) > e(sy)} < 5. (2.16)

sk in (2.16) means the cardinality of a support subsample. The conclusion (2.16) should be
interpreted as "the violation probability of the scenario decision 0% is no larger than e(s};) with
the confidence of 1—". The confidence parameter (3 is given by the decision maker. €(k) defined
by (2.14) and (2.15) prescribes a family of functions, and is thus not unique. Here, we offer a
simple choice of €(k)

1 if k = N,

e(k) = 1— N—k/N(BN) otherwise. (2.17)
k

In Figure 2.5, we illustrate the impact of the cardinality of the sample N and the confidence
parameter § on the function e(k).

0.8+ 0.8 e

0.6 0.6 1

£(k)
£(k)

0.4+ 0.4 1

— B=10"%

p=10-%
—— B=10"10
—— B=10"12

0.2+ 0.2 4

0.0 T T T T T T T 0.0 T T T T
0 250 500 750 1000 1250 1500 1750 2000 0 200 400 600 800 1000
k k

(a) Sample Cardinality’s Impact (b) Confidence Parameter’s Impact

Figure 2.5: Reliability Parameter

One can easily observe that all four curves in Figure 2.5b are close to each other. This is not a
coincidence and is the result of (2.17).

B
e(k) =1—exp <log (NE >>
N(%)
N
—1—exp <_Nl_klog;— Nl—kIOgN<k>>

1 1 N
log — log N < I) (2.18)

<
SNk 5T

(2.18) shows that e(k) is logarithmically dependent on §, which indicates that we can ask for a
very small 8 without significantly influencing e(k).

14

2.3.4 Robust Toll Design by Scenario Optimization

To design robust tolls based on previous observations, we now resort to the scenario approach.
To utilize the scenario approach, we solve the tolls that optimize the empirical worst-case social
cost over all seen scenarios.

Recall the non-linear formulation (NLP), the demands only affect the vector term b. For a given
demand vector of scenario ¢, we highlight the dependence on the scenario by substituting b with
b(i),i € {1,...,Ng}, where Ng is the number of scenarios. For scenario i, the optimization to
minimize the social cost is as follows.

Zf L(f9)

r fm u(” AD
subject to:
VO(fD,) — @ + ATAD =0
Af@ = p
0< f(i) L H(i) >0

To minimize the worst-case social cost, we adopt the epigraphical formulation. Let H be the
worst-case social cost. We then look for the set of tolls that optimize H.

mm H (SA-H)
Hor £ () AD
subject to:
H > Z £),Vie{1,...,Ng}
VC(f()y —pu® 4+ ATAD =0
AfF® = p0®

0<f® 1 u® >o0.

We are interested in solving (SA-H) because the scenario approach provides a quantification of
robustness. Since the constraints on 7 are the same for both seen and unseen scenarios, the
optimal solution 7* to (SA-H) is always admissible for unseen scenarios, which makes Assump-
tion 11 true. Then, the conclusion drawn from (2.16) reads "the probability that the social cost
of an unseen scenario is higher than H* is no bigger than e(s};) with the confidence of 1 — f,
where H* solves (SA-H)."

15

When the decision maker is interested in the efficiency instead of the social cost, (SA-H) may be

adapted to consider PoA.

min P
subject to:
i)

P> Csoc(fuze)

Csoc(.fso)
(4)
9 = arg minZ/ ’ le(t) + 7 dt, Vi
—Jo
Af) =1
fil=o0
so _argmlnzfs(ge soe Vi

AfD — pli)
=0

The decision variables in this bi-level optimization are P, T, f&@, and fg?

16

(SA-P)

Chapter 3

Algorithms for Globally Optimal
Solution

The Gurobi Optimizer is a commercial optimization solver for mathematical programming, which
can guarantee the global optimality of the solution for common programming types, for example,
mixed-integer linear programming and mixed-integer quadratic programming [23]|. Therefore,
we will utilize the Gurobi Optimizer to locate the globally optimal solutions for the previously-
mentioned optimizations.

3.1 Model Reformulations

We consider the worst-case social-cost optimization (SA-H) and demonstrate the possible refor-
mulations. From (2.4), one can notice that with the non-negativity of the flow vector f*, the
collective flow vector fp is assured to be non-negative. The fact motivates us to remove the
bound constraints on fr and the corresponding complementary slackness constraints.

min H (SA-H-R1)
Her fO u® O

subject to:

H > f91.(£0),vi € {1,..., Ng}

VO(fD,) — D + ATAD =0
Af© = p
k() k(9)
o< f* Ly >0,Vke{l,...,Ng}.
By reformulation (SA-H-R1), we remove 3Ng constraints in total - Ng constraints for each of
the primal feasibility, dual feasibility and complementary slackness. The number of decision vari-
ablesis 1 + Ng +2NgNg + 2N NgNg + Ng Ny Ng. More specifically, H introduces 1 decision

variable, T introduces Ng, f(i) introduces (Ng+ NgNgk)Ng, ,u,(i) introduces NpNg Ng, and 2@
introduces (Ng + N Ny)Ng.

17

Although the Gurobi Optimizer is able to deal with the bi-linear constraint (2.12), it is still wise
to explicitly linearize this constraint by exploiting the zero-product structure. We achieve the
linearization with the big-M notation.

First, we demonstrate with a minimal example ab = 0,a > 0,b > 0, which means either non-
negative a or non-negative b is 0 (inclusive or). We introduce an auxiliary binary variable
0 € {0,1} and a large positive number M. Then, consider the following conditions.

0<a<Ms (Big-M)
0<b< M(1-9)
5 €{0,1}

(Big-M) reads a = 0,0 < b < M if 6 = 0, otherwise 0 < a < M,b = 0. Since M is a large
number, we can relax the upper bound without improperly reducing the search space, that is,
a=0,b>0if § =0, otherwise a > 0,b = 0. Theoretically, we would like M to be 400 because
the relaxation will be strictly equivalent to the original constraints. However, in practice, too
large M will cause fatal numerical errors and make the model unstable. Moreover, the default
precision of the Gurobi Optimizer is 1078 and with too large M, the solver may terminate
undesirably. An empirical choice of M is one or two orders larger than a and b. We now employ
the big-M notation to linearize the previous formulation (SA-H).

min H (SA-H-R2)
Her O uh X0 80

subject to:

H>Y" f91(£0),vi € {1,..., Ns}

VoD, r) — D + ATAD =0
A = pl)

0< £ < Mm@

0<pu® <M (1 _ 5<z‘>)

8@ ¢ {0, 1} Vet NeNk

where 8§ is one-to-one related to f @) and 19 and adopts the same superscripts and subscripts.
The number of decision variables is' 1+ Ng+ 4NENS 4+ 3NgNgNg + NKNVNS‘, with 1 for H,
Ng for 7, (Ng + NgNg)Ng for £, p@ and 6%, and (Ng + NgNy)Ng for A,

Although (SA-H-R2) significantly increases the number of decision variables and constraints, it
simplifies the constraint structure by replacing the bi-linear constraints with the linear ones.
If affine latency functions are used, (SA-H-R2) turns out to be a mixed-integer quadratically
constrained programming, in which the Gurobi Optimizer is specialized.

18

Finally, we combine the ideas of (SA-H-R1) and (SA-H-R2) to propose a third reformulation.

min H (SA-H-R3)
Hr, £ pu@ A0 560

subject to:
H =Y fOL(f0).¥i€ {1,...,Ns}
VO(FfD,7)—pD +ATAD =0
AfF® = p0)
0< Y < Mot vk e (1,..., Nk}
0< D <m (1 - 5’““)) ke {l,... Nk}
5% ¢ [0, 1}VEHNENK Wk € (1., Nk}

The number of decision variables is 1 + Ng +2NgNg + 3Nk NpNg + NgNy Ng, with 1 for H,
Ng for 7, (Ng + NgNg)Ng for £, NgNgNg for pD and 8@, and (Ng + NgNy)Ng for A,
Compared with (SA-H-R1), (SA-H-R3) introduces Nx NgNg binary decision variables.

Next, we take the famous Sioux Falls network for example to compare the computational effi-
ciency of these formulations. As shown in Figure 3.1, the network structure and demand data
are provided by Ben Stabler [41]. Briefly speaking, there are 24 nodes, 76 edges, and 528 com-
modities in the Sioux Falls network, and each link is equipped with a BPR latency function.

e i
- e?2
Y f A
| .6
3 - - [i
y B o4 o5 ag . 7
4 { ' g | /
) f e I
k) - -
2 < 9% < ve16,. < #18
12 = AT — Yo - o7
A ! ,} #
| Sr. i S O
4 f A } r A
{ 23 . ve7 =020
() T
24
13 4

Figure 3.1: Sioux Falls Network

19

The computational times for only one sample are listed in Table 3.1 and the information of the
test environment in Table 3.2. The number of origin-destination pairs (commodities) means how
many ODs we take into account. Take 30 ODs for example, we considered only the first 30 OD
pairs. With 528 ODs, all commodities are considered.

Table 3.1: Computational Time vs Formulations and OD Pair Numbers (Unit: Second)

Formulation 30 ODs 40 ODs 50 ODs 100 ODs 528 ODs

SA-H 11.12 48.11 37.58 220.61 1765.52
SA-H-R1 16.64 33.70 36.95 191.80 1743.88
SA-H-R2 297 9.35 11.50 35.82 918.08
SA-H-R3 1.40 4.04 6.92 14.41 423.85

Table 3.2: Test Environment Information

Item Parameter
Model Dell XPS 15 9570
Processor Intel® Core™ i5-8300H CPU @ 2.30GHz
RAM 16.00 GB
System 64-bit Windows 10 Pro
Solver Gurobi 9.1.2

Table 3.1 shows that all three reformulations can improve the computational efficiency and the
reformulation SA-H-R3 performs best.

20

3.2 Magnitude Scaling

In this section, we address a numerical issue that will appear when the BRP latency functions are

P
adopted. Recall the function form I(f) =ty + t¢B <%) . The capacity coefficient C' presenting
in the denominator is usually a huge number. With the common setting B = 0.15, P = 4, the
coefficient toB (%)P can be super tiny and even less than the machine epsilon. We have to scale

the flow f to overcome the numerical problem. Let Cj be the scaling factor, the BRP latency
function is turned into

where f is the scaled flow. Note that Cj is a constant applied on the BRP latency functions
on all edges, i.e., Cy does not change with edges. When Cj is properly chosen, the numerical
issue will be greatly mitigated. For example, in the Sioux Falls network, the coeflicient range
of the optimization (OPT-UE) is [2 x 107?,1 x 10'], while [5 x 107},5 x 10%] after a proper
scaling. Therefore, we replace the flows in the original formulation with the scaled ones to avoid
the numerical problem. After the solutions are obtained, we then retrieve the actual flows by

multiplying Cy back, f = Cof.

We offer four intuitive choices of Cp, the minimum, average, median, and maximum of all capac-
ities. Nash flows of the Sioux Falls network are computed with these scaling factors and reported
in Table 3.3. We highlight that in spite of the uniqueness of the solution to (OPT-UE), the
Gurobi Optimizer returns different results due to the numerical precision.

Table 3.3: Scaling Factor Comparison

Variable Co=minC Co=avg(C Cp=mid Cyj=maxC GT!
f1 4532.91 4550.17 4529.57 4851.10 4494.66
fo 8132.91 8150.17 8134.92 8451.10 8119.08
frs 10261.12 10231.78 10262.40 10186.65 10259.52
f76 7847.43 7875.60 7843.25 8013.35 7861.83
Optimal Objective 4.23137e¢+6 4.23141e+6 4.23137e+6 4.23743e+6 4.23134e+6
Relative Error 0.007%o0 0.017%o0 0.007%0 1.439%0 0.000%0

'Edge flows from [41] are taken as the ground truth.

21

3.3 Approximation for Polynomial Latency Function

The Gurobi Optimizer is specialized in dealing with the linear and quadratic function in the
objective function and constraints. Other types of functions, such as polynomial and exponential
functions, are approximated by piece-wise linear functions. Take the BRP latency function with
the scaled flow for example, Figure 3.2 shows the BRP function and its linear approximation,
with the maximal relative difference highlighted. Note that these pieces are linearly-spaced, that
is, they share the same length of the projection on the x axis. More sophisticated approximation
is possible, for example, the Ramer—Douglas—Peucker algorithm - add pieces where the relative
error is greater than a threshold.

14

= =
o)

©

Value of Latency Function
Value of Latency Function

o

T T T T T T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 150 175 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Scaled Flow Scaled Flow

(a) 3 Pieces (b) 5 Pieces

Value of Latency Function
Value of Latency Function

0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00 0.00 0.25 0.50 0.75 1.00 125 1.50 1.75 2.00
Scaled Flow Scaled Flow
(c) 10 Pieces (d) 20 Pieces

Figure 3.2: Piece-wise Linear Approximation with Different Pieces

22

Figure 3.3 shows that the maximal relative error of the approximation drops quickly as the
number of pieces increases, at the cost of the computational efficiency.

10

Maximal Relative Error (%)

T T T 7
0 10 20 30 40 50
Number of Pieces

Figure 3.3: Number of Pieces and Maximal Relative Error

3.4 Initialize with Feasible Point

When solving the scenario optimization on a middle-sized network, the Gurobi Optimizer may
spend a huge amount of time in finding a feasible point. In most cases, providing a feasible initial
point to the solver can significantly reduce the computational time because the Gurobi Optimizer
will then be aware of an upper bound of the objective function. Therefore, we demonstrate a
method to find a initial feasible point quickly.

First, set all tolls to be zero, i.e., 7 = 0, and compute the equilibrium flows ¢, f(i) for all sce-
narios. Fixing 7 and ¢4 f(i) in the reformulated optimization will make the bi-linear constraints
linear. Thus we can efficiently solve the scenario optimization and obtain p(®, A and H. As
a result, (H,7 =0, f(i) = 6qf(i), TN)\(i)) is a feasible point of the scenario optimization.

23

3.5 Support Subsample Evaluation

After obtaining the optimal solution for the scenario optimization, we are interested in the
support subsample as declared in Definition 13, especially an irreducible one. Campi proposes
a greedy algorithm to search for one support subsamp