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Abstract— This paper presents a novel trajectory tracker
for autonomous quadrotor navigation in dynamic and complex
environments. The proposed framework integrates a distribu-
tional Reinforcement Learning (RL) estimator for unknown
aerodynamic effects into a Stochastic Model Predictive Con-
troller (SMPC) for trajectory tracking. Aerodynamic effects
derived from drag forces and moment variations are difficult to
model directly and accurately. Most current quadrotor tracking
systems therefore treat them as simple ‘disturbances’ in conven-
tional control approaches. We propose Quantile-approximation-
based Distributional Reinforced-disturbance-estimator, an aero-
dynamic disturbance estimator, to accurately identify distur-
bances, i.e., uncertainties between the true and estimated
values of aerodynamic effects. Simplified Affine Disturbance
Feedback is employed for control parameterization to guarantee
convexity, which we then integrate with a SMPC to achieve
sufficient and non-conservative control signals. We demonstrate
our system to improve the cumulative tracking errors by
at least 66% with unknown and diverse aerodynamic forces
compared with recent state-of-the-art. Concerning traditional
Reinforcement Learning’s non-interpretability, we provide con-
vergence and stability guarantees of Distributional RL and
SMPC, respectively, with non-zero mean disturbances.

I. INTRODUCTION
Accurate trajectory tracking for autonomous Unmanned

Aerial Vehicles (UAVs), such as quadrotors, is necessary for
maintaining autonomy. Although industrial applications of
autonomous UAVs, such as commercial deliveries, search-
and-rescue [1] and wireless power transfer [2], have attracted
much attention in recent years, precisely tracking high-
speed and high-acceleration UAV trajectories is an extremely
challenging control problem, particularly in unknown and dy-
namic environments with unpredictable aerodynamic forces.

To achieve safe, precise and reliable quadrotor trajectory
tracking, there are two main problems that need to be
solved: How can we achieve robust and feasible estimation
(or modelling) of the aerodynamic effects on quadrotors in
complex dynamic environments? And; How can the whole
control framework be integrated with aerodynamic effect
estimation to solve the uncertainties and disturbances while
tracking trajectory references precisely and reliably?

Previous work has shown that the primary source of
uncertainties are aerodynamic effects deriving from drag
forces and moment variations caused by the rotors and
the fuselage [3]. Prominent aerodynamic effects appear at
flight speeds of 5 ms−1 in wind tunnel experiments by [4].
These effects acting on quadrotors are chaotic and hard to
model directly, as they are generated from a combination of
the individual propellers and airframe [5], turbulent effects
caused by rotor–rotor and airframe–rotor interactions [6], and
the propagation of other turbulence [7].

Most current approaches to quadrotor trajectory tracking
treat aerodynamic effects as simple external disturbances,
and do not account for higher-order effects or attempt to
deviate from a determined plan [8], [9], [10]. While these
solutions are efficient and feasible for lightweight on-board
computers, aggressive maneuvers at high speed, e.g., greater
than 5 ms−1, introduce large positional and attitude tracking
errors. Recent data-driven approaches, such as Gaussian
Processes (GP) [3], [11] and neural networks [12] com-
bined with Model Predictive Control (MPC), show accurate
modelling of aerodynamic effects. However, due to the
nonparametric nature of GP, the GP-based approaches per-
form poorly in complex environments - where large datasets
contain drastic changes in wind speed and heading. In these
instances, learning-based (neural networks) approaches per-
form better than those GP-based approaches [13]. Achieving
adaptability and robustness in complex environments is still
challenging, however, primarily because training datasets are
collected from simulated platforms and real-world historical
records that do not fully describe the complex environments.

In comparison to existing data-driven approaches, Rein-
forcement Learning (RL), an interactive learning process, is
able to learn complex and changeable disturbances - i.e.,
the errors between the true and estimated values - using
much less model information [14]. The key challenge of most
existing RL approaches [15] is that policy optimization bi-
ases toward actions with high variance value estimates, since
some of these values will be overestimated by random chance
[16]. In risk-sensitive or safety-critical applications such as
autonomous quadrotor navigation these actions should be
avoided. Recent work on distributional RL [17] was proposed
to approximate and parameterize the entire distribution of
future rewards, instead of the expected value. Distributional
RL algorithms have been operated to achieve advanced
results on continuous control domains [18]. In princple,
they provide more complete and richer value-distribution
information to enable a more stable learning process [17].
Previous distributional RL algorithms parameterize the pol-
icy value distribution in different ways, including canonical
return atoms [17], the expectiles [19], the moments [20], and
the quantiles [21], [22]. The quantile approach is especially
suitable for autonomous UAV trajectory tracking due to its
risk-sensitive policy optimization.

Robust MPC for tracking control of uncertain systems
like quadrotors is rapidly developing thanks to advances in
hardware and algorithmic efficiency [23]. The robust control
approach enables a ‘worst case’ formulation to analyze the
stability and performance of a system under bounded uncer-
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tainties and disturbances [24]. However, with consideration
of the uncertainties in real-world scenarios, such worst-
case design renders the optimal control actions inherently
inadequate and overly conservative in practise [25], [26]. To
avoid the conservatism of the worst case design, Stochastic
MPC (SMPC) [27] uses the probabilistic descriptions, such
as stochastic constraints (also called chance constraints),
to predict probability distributions of system states within
acceptable levels of risk in the receding-horizon optimization
[28].

The core challenges for SMPC include: 1) optimizing
the feedback control laws over arbitrary nonlinear func-
tions [29]; 2) the chance constraints are non-convex and
intractable [26], [30]; and 3) the computational complexity
will grow dramatically as more uncertainties are added. To
address the first challenge, one solution is to use affine
parameterization of the control policy over finite horizons.
However, this approach cannot guarantee convexity, i.e., the
second challenge, where the policy set may still be convex
[31]. Another solution is an Affine Disturbance Feedback
(ADF) control parameterization, proposed in [32]. This ADF
control parameterization can address the first two challenges,
which are optimizing the dynamic function and guaranteeing
the decision variables to be convex, respectively. However,
the main weakness is that the computational complexity
grows quadratically with the prediction horizon, i.e., the
third challenge. To overcome this difficulty, a Simplified
Affine Disturbance Feedback (SADF) proposed in [30],
where the SADF is equivalent to ADF but a finite-horizon
optimization can be computed more efficiently using CasADi
[33], a nonlinear MPC solver. [30] achieve good results by
implementing SADF with zero-mean disturbance, however
it is unclear how the SADF would perform on systems with
non-zero-mean disturbances, such as a quadrotor.

To address the two stated issues, we propose Quantile-
approximation-based Distributional Reinforced-Disturbance-
estimation for Stochastic MPC (QuaDRED-SMPC), a sys-
tematic, safe and feasible quadrotor trajectory tracking
framework for use with high variance aerodynamic effects.
The details are as follows:

1) Aerodynamic Disturbance Estimator: a Quantile-
approximation-based Distributional Reinforced-
disturbance-estimator (QuaDRED), described by
Algorithm 2, is proposed for aerodynamic disturbance
estimation. QuaDRED builds upon prior QR-DQN
[21] and QUOTA [22] insofar as QuaDRED is a
quantile-approximated distributional RL which uses
a set of quantiles to approximate the full value
distribution. In Section IV-A, theoretical guarantees
on convergence of the QuaDRED are provided based
on policy evaluation (Proposition 3) and policy
improvement (Proposition 4), respectively.

2) Trajectory Tracker: Similar to [30], a Simplified Affine
Disturbance Feedback (SADF) is used for control
parameterization in SMPC (Algorithm 1), where the
convexity can be guaranteed in this process [31] and
computational complexity can be reduced. Different

from prior work assuming zero mean disturbance, we
consider the control performance and stability under
non-zero-mean disturbance. We use an Input-to-State
Stability (ISS) [34] property to find conditions that
imply stability and convergence of the tracker.

3) The QuaDRED-SMPC framework is proposed to track
quadrotor trajectory accurately under high variance
aerodynamic effects. The overall control framework
is shown in Fig. 1. In Section IV-B, the closed-
loop stability of the QuaDRED-SMPC framework is
demonstrated under Lipschitz Lyapunov function [35].

Our contributions can be summarized as follows:
1) QuaDRED, a distributional RL with quantile approx-

imation that can sufficiently estimate variable aerody-
namic disturbances. In the cases tested, we show that
QuaDRED outperforms traditional RL, such as Deep
Deterministic Policy Gradient (DDPG) [15], and prior
Distributional RL approaches, such as C51 [17].

2) The integration of a trajectory tracker with an aero-
dynamic disturbance estimator, a quadrotor trajectory
tracking framework that integrates QuaDRED into a
stochastic optimal control problem.

3) Convergence and stability guarantees: mathemati-
cal proofs are provided for the convergence of
distributional-RL-based estimator, and the closed-loop
stability of stochastic-MPC-based tracker with consid-
eration of non-zero-mean and bounded disturbances.

II. PROBLEM FORMULATION

A quadrotor dynamic model has six Degrees of Freedom
(DoF), i.e., three linear motions and three angular motions
[3]. We consider a nonlinear discrete system of quadrotor
dynamics with state x ∈ X ⊆ Rn, an additive disturbance
w ∈ W ⊆ Rnw , and control input u ∈ Rnu , defined for all
time steps k ∈ N by:

xk+1 = f(xk,uk, ef k) +wk (1)

where xk and uk are the discrete-time state and input vectors
of the quadrotor dynamic model. wk is a disturbance caused
by aerodynamic effects. f(x,u, ef ) in Equation 2 is the
continuous-time nominal model of the quadrotor integrating
the aerodynamic effect ef . The state and input vectors of
the nominal model are x = [PWB ,VWB , qWB ,ωB ]T and
u = Ti,∀i ∈ (0, 3). PWB , VWB and qWB are the position,
linear velocity and orientation of the quadrotor, and ωB is
the angular velocity [11].

ṖWB = VWB

V̇WB = gW +
1

m
(qWB � c+ ef )

q̇WB =
1

2
Λ(ωB)qWB

ω̇B = J−1(τB − ω × JωB)

(2)

where c is the collective thrust c = [0, 0,
∑
Ti]

T and τB is
the body torque; gW = [0, 0,−g]T. The operator � denotes a



rotation of the vector by the quaternion. The skewsymmetric
matrix Λ(ω) is defined in [11].

We linearize and reformulate [32] Equation 1 for MPC
over a finite horizon N :

xt = Ax0|t +But +Gwt (3)

where xt = [xT0|t, x
T
1|t, ..., x

T
N |t]

T and ut =

[uT0|t, u
T
1|t, ..., u

T
N |t]

T are the sequential states and inputs, and
wt = [wT

0|t, w
T
1|t, ..., w

T
N |t]

T denotes a sequential stochastic
disturbance over a horizon of N . A, B and G are matrices
defined in [30].

The following assumptions are made:
Assumption 1: Matrix G is column full rank.
Assumption 2: The aerodynamic effect efk is available

with no delay at each sampling timestamp.
Proposition 1: There exists a control law ub that ensures

the nominal model f(xk,uk, efk) is ISS if the stochastic
disturbance wt is independent and identically distributed
(i.i.d.) a zero-mean distribution, i.e., E(wk) = 0.

Proof : Based on Assumption 2, the nominal model
f(xk,uk, efk) is seen as f(xk,u

′

k), in which the aero-
dynamic force efk is a constant term. Then we prove
f(xk,u

′

k) is ISS [34]. According to [29] and [32], there
exists a continuous function Vb: X → R+ that is
an ISS-Lyapunov function. Therefore, the nominal model
f(xk,uk, efk) with E(wk) = 0 is ISS. �

III. QUADRED-SMPC

In this section, we present the proposed QuaDRED-SMPC
control framework. Traditional non-interacted methods, e.g.,
Gaussian Process [3] and RDRv [4], are insufficient for
quadrotor dynamic disturbance estimation. This work ad-
dresses the limitation, and proposes a novel and feasible
disturbance estimation with continuous environmental inter-
actions for variable winds.

A. Quantile-approximation-based Distributional Reinforced-
disturbance-estimation

We consider a distributional Bellman equation [17], the
aim of which is different from traditional RL, i.e., maxi-
mizing the expectation of value-action function Q. In the
policy evaluation setting, given a deterministic policy π, the
state-action distribution Zπ and the Bellman operator T π
are defined as [17], [21]:

T πZ(s,a)
D
:= R(s,a) + γZ(s′,a′) (4)

where s ∈ S, a ∈ A, p ∈ P : S×A×S, R and γ ∈ [0, 1] are
the state vector, action vector, transition probability, immedi-
ate reward function and discount rate, respectively, in a tuple
Markov Decision Process [36]: MDP := 〈S,A, P,R, γ〉.
π is a stationary policy mapping one state s ∈ S to one
action a ∈ A. In the control setting, a distributional Bellman
optimality operator T with quantile approximation is also

proposed in [21]:

T Z(s,a)
D
:= R(s,a) + γZ(s′, argmax

a′
E
p,R

[Z(s′,a′)])

Zθ(s,a) :=
1

N

N∑
i=1

δqi(s,a)

(5)

where Zθ ∈ ZQ is a quantile distribution mapping one
state-action pair (s, a) to a uniform probability distribution
supported on qi. ZQ is the space of quantile distribution
within N supporting quantiles. δz denotes a Dirac with z ∈
R. The state-action value Q is then approximated by Qj|K

D
:=

1
K

(j−1)K+K∑
k=(j−1)K+1

qk(s, a). These quantile approximations -i.e.,

{qi} - are operated based on Quantile Huber Loss.
The Wasserstein Metric, also known as the Mallows

metric, is a true probability metric with no disjoint support
issues, and therefore suitable to calculate the metric distance
between the target T πZ and the prediction Z. A contraction
is proved in [21] over the Wasserstein Metric:

−
d∞(ΠW1

T πZ1,ΠW1
T πZ2) ≤

−
d∞(Z1, Z2) (6)

where Wp, p ∈ [1,∞] denotes the p-Wasserstein distance.
−
dp := supWp(Z1, Z2) denotes the maximal form of the p-
Wasserstein metrics. ΠW1

is a quantile approximation under
the minimal 1-Wasserstein distance W1.

The aim of our proposed QuaDRED is to track the trajec-
tory reference xm,t generated from Kino-JSS [11] accurately,
therefore the immediate reward rt+1 is defined as:

rt+1 = −(xt − xm,t)TH1(xt − xm,t)− uT
t H2ut (7)

where H1 and H2 are positive definite matrices. Then we
use DDPG architecture [15] for the continuous and high-
dimensional disturbance estimation.

B. Control Parameterization

A SADF [30], as shown in Equation 8, is an equivalent
and tractable formulation of the original affine feedback
prediction control policy proposed in [34]. More impor-
tantly, the SADF has fewer decision variables which can
decrease computational complexity and improve calculation
efficiency.

ui|t =

i−1∑
k=0

Mi−k|twk|t + vi|t (8)

where the Mt is a lower block diagonal Toeplitz structure.
i ∈ N[1,N−1], j ∈ Ni−1 and the open-loop control sequence
vi|t ∈ R, i ∈ NN−1 are decision variables at each time step
t.

According to [32], the predicted cost can be transformed
as:

L(xt,ut) = LN (xt,Mt,vt)

= ‖Hxx+Huv‖22 + E[‖(HuMG +Hw)w‖22]
(9)

where Hx and Hu are coefficient matrices which are con-
structed from Equation 9. G := IN

⊗
G denotes Kronecker



Fig. 1: QuaDRED-SMPC

product of matrices IN and G. For the convexity guarantee,
the matrix (HuMG + Hw) is positive semidefinite. Thus,
the optimal control problem, reformulated by SADF (Equa-
tion 8) is as follows:

min
Mt,vt

LN (xt,Mt,vt), s.t.∀wi|t ∈W,∀i ∈ NN−1

subject to xt = Ax0|t +But +Gwt

ui|t =

i−1∑
k=0

Mi−k|twk|t + vi|t

HuMG +Hw ≥ 0

(xt,ut) ∈ Z
xN |t ∈ Xf
x0|t = xt

(10)

The optimal control problem is a strictly convex quadratic
program or second-order cone program (SOCP) if W is a
polytope or ellipsoid when Z and Xf are polytopic [32]. In
this case, this problem can be seen as deterministic MPC with
nonlinear constraints, which can be solved by some nonlinear
MPC solvers, e.g., CasADi [33] and ACADOS [37].

C. Quantile-approximation-based Distributional Reinforced-
disturbance-estimation for SMPC

The objective of this work is to design a quadrotor
controller achieving accurate aerodynamic effect estimation,
which we define as combined wind estimation and aerody-
namic disturbance estimation, for tracking the reference state
xref of the nominal model (Equation 2). The overall control
framework for the quadrotor is shown in Fig. 1. The SADF
in stochastic MPC and QuaDRED are shown in Algorithm 1
and Algorithm 2, respectively.

IV. PROPERTIES OF QUADRED-SMPC

In this section, the properties of the proposed control
framework QuaDRED-SMPC are analyzed, including con-
vergence of QuaDRED and stability guarantees of the Con-
troller SADF-SMPC.

A. Convergence Analysis of QuaDRED

We present the following Proposition 3 and Proposition
4 on the convergence analysis for the Distributional RL
(QuaDRED) in Section IV-A.

Algorithm 1 SADF-SMPC
1: Get:

- the reference data xref from the quadrotor trajectory
planning and generation module, i.e., Kino-JSS [11]
- the measurement state xk from on-board sensors
- the wind estimation efk from VID-Fusion [38]

2: Initialize:
- the parameters θµ and θQ for the actor µ and the critic
Q, respectively
- the decision variables M0 and v0 in Equation 8
- the initial state s0

3: for each sampling timestamps k do
4: Repeat
5: sk ← [xk, efk]
6: Select an action vector wk ← [wT

0|k, w
T
1|k, ..., w

T
N |k]T

from wk = ak ← µ(ak|sk) in QuaDRED (Algo-
rithm 2)

7: ui|k ←
i−1∑
l=0

Mi−l|kwl|k + vi|k

8: uk ← u0|k, wk ← w0|k
9: xk ← Ax0|k +Buk +Gwk

10: Solve optimization problem Equation 10 with nonlin-
ear MPC solver

11: Until convergence
12: uk ← v0|k
13: xk+1, efk+1 ← RealQuadrotor(uk)
14: sk+1 ← [xk+1, efk+1]
15: xref ← Kino-JSS
16: k ← k + 1
17: end for

Lemma 2 ([17]): The Bellman operator T π is a p-

contraction under the p-Wasserstein metric
−
dp.

Lemma 2 suggests that an effective way in practice to min-
imize the Wasserstein distance between a distribution Z and
its Bellman update T πZ can be found in Equation 4, which
attempts iteratively to minimize the L2 distance between Z
and T πZ in Temporal Difference learning.

Proposition 3 (Policy Evaluation): Let ΠW1
be a quantile

approximation under the minimal 1-Wasserstein distance W1,
T π be the Bellman operator under a deterministic policy π
and Zk+1(s,a) = ΠW1T πZk(s,a). The sequence Zk(s,a)

converges to a unique fixed point
∼
Zπ under the maximal form

of ∞-Wasserstein metric
−
d∞.

Proof : Equation 6 implies that the combined operator
ΠW1
T π is an ∞-contraction [21]. We conclude using Ba-

nach’s fixed point theorem that T π has a unique fixed point,
i.e.,

∼
Zπ . Furthermore, Equation 5 implies that all moments

of Z are bounded. Therefore, we conclude that the sequence

Zk(s,a) converges to
∼
Zπ in

−
d∞ for p ∈ [1,∞]. �

Proposition 4 (Policy Improvement): Let πold be an old
policy, πnew be a new policy and Q(s, a) = E[Z(s, a)] in
Equation 5. There exists Qπnew(s, a) ≥ Qπold(s, a), ∀s ∈ S
and ∀a ∈ A.



Algorithm 2 QuaDRED
Input: sk, sk+1, uk, θµ, θQ

Output: ak
1: Initialize:

- θµ
t ← θµ, θQ

t ← θQ update the target parameters
from the predicted parameters
- the replay memory D ← Dk−1
- the batch B, and its size
- a small threshold ξ ∈ R+

- the random option selection probability ε - the option
termination probability β
- quantile estimation functions {qi}i=1,...,N

2: Repeat
3: for each sampling step from D do
4: Select a candidate option zk from

{
z0, z1, ..., zM

}
5: zk ←


zk−1 w.p. 1− β
random option w.p. βε

argmaxzQ(sk, z) w.p. β(1− ε)
6: Execute wk, get reward rk and the next state sk+1

7: D.Insert([sk,uk, rk, sk+1])
8: B ← D.sampling
9: yk,i ← ρKτi(rk + γq′i(sk+1, w

∗
k)

10: Jθµ ← 1
N

N∑
i=1

N∑
i′=1

[yk,i′ − qi(sk, wk)]

11: y ← βargmaxz′Q(sk+1, z
′) + (1− β)Q(sk+1.zk)

12: JθQ ← (rt + γy −Q(st, zt))
2

13: θµ ← θµ − lµ∇θµJθµ
14: θQ ← θQ − lθ∇θQJθQ
15: end for
16: Until convergence, i.e., JθQ < ξ

Proof : Based on Equation 5, there exists:

V π(st) = EπQπ(st, π(st))

≤ max
a∈A

EπQπ(st, a)

= Eπ′Qπ(st, π
′(st))

(11)

where Eπ[·] =
∑
a∈A π(a|s)[·], and V π(s) = EπE[Zk(s, a)]

is the value function. According to Equation 11 and Equa-
tion 5, it yields:

Qπold = Qπold(st,πnew(st))

= rt+1 + γEst+1Eπold
Qπold(st+1,πold(st+1))

≤ rt+1 + γEst+1EπnewQ
πold(st+1,πnew(st+1))

≤ rt+1 + Est+1Eπnew [γrt+2

+ γ2Est+2Q
πold(st+2,πnew(st+2))|]

≤ rt+1 + Est+1
Eπnew [γrt+2 + γ2rt+3 + ...]

= rt+1 + Est+1
V πnew(st+1)

= Qπnew

(12)
�

Given Proposition 3 and Proposition 4, we can now
analyze the convergence of the QuaDRED.

Theorem 5 (Convergence): Let πi be the policy in the i-
th policy improvement, i = 1, 2, ...,∞, and πi → π∗ when
i → ∞. There exists Qπ

∗
(s, a) ≥ Qπ

i

(s, a), ∀s ∈ S and
∀a ∈ A.

Proof : Since Proposition 4 suggests Qπi+1(s, a) ≥
Qπi(s, a), the sequence Qπi(s, a) is monotonically increas-
ing where i ∈ N is a the policy iteration step. Furthermore,
Lemma 2 implies that the the state-action distribution Z over
R has bounded p-th moment, so the first moment of Z,
i.e., Qπi(s, a), is upper bounded. Therefore, the sequence
Qπi(s, a) converges to an upper limit Qπ∗(s, a) with ∀s ∈ S
and ∀a ∈ A. �

B. Stability Guarantee of the Controller

In this subsection, the closed-loop stability of QuaDRED-
SMPC control framework will be demonstrated. The closed-
loop stability is analyzed under the Lipschitz Lyapunov func-
tion [35] to guarantee ISS. Before the closed-loop stability
analysis, the convexity and Lipschitz continuity of the cost
function LN (xt,Mt,vt) are introduced in Proposition 6 and
Proposition 7, respectively. Since the output of QuaDRED is
non-zero-mean and bounded values, which are different from
the assumption of zero-mean disturbances in most previous
work ([30] and [32]), the following proofs are all based on
the non-zero-mean and bounded disturbances.

We first define an optimal control policy based on the
affine disturbance feedback control law:

(M∗(x),v∗(x)) := min
(M ,v)∈VN

LN (x,M ,v) (13)

where VN is the set of feasible policies, and
(M∗(x),v∗(x)) is a optimal control policy group. The
optimal value function L∗N (x) under the affine disturbance
feedback control law is defined as:

L∗N (x) := min
(M ,v)∈VN

LN (x,M ,v) (14)

Then we demonstrate that the optimal value function
LN (x) is convex (see Proposition 6), so that Equation 14
can be operated as a convex optimization problem.

Proposition 6: The function LN (x,M ,v) is convex.
Proof : In Equation 9, the second term

E[‖(HuMG +Hw)w‖22], i.e., the expected value of a
quadratic form with respect to the vector-valued random
variable w, is equal to:

E[‖(HuMG +Hw)w‖22] = E[tr((HuMG +Hw)wwT )]

= tr((HuMG +Hw)E[wwT ])

= tr((HuMG +Hw)(Cov(w) + µµT ))

= tr(C
1
2
w(HuMG +Hw)T (HuMG +Hw)C

1
2
w)

+ µT (HuMG +Hw)µ
(15)

where tr(·) denotes the trace of a square matrix. µ = E(w) is
the expected value of w, and Cw = Var(w) is the variance-
covariance matrix of w. Therefore, LN (x) can be written



as:

LN (x) = ‖Hxx+Huv‖22 + ‖µ‖2(HuMG+Hw)

+ tr(C
1
2
w(HuMG +Hw)T (HuMG +Hw)C

1
2
w)

(16)

where ‖x‖P denotes weighted 2–norm of the vector x.
Equation 16 is convex since it consists of convex functions
of vector and matrix norms. �

Proposition 7: The function L∗N (x,M ,v) is Lipschitz
continuous.

Proof : The cost function LN (x,M ,v) is proved to be
convex in Proposition 6 so that L∗N (x,M ,v) is convex if
VN has a non-empty interior (Proposition 1 of [32]). Z is
a compact (closed and bounded) set so that L∗N (x,M ,v),
defined under the compact space Z, is piecewise quadratic
(Corollary 4.6 of [39]). Therefore L∗N (x,M ,v) is a Lips-
chitz continuity function. �

The above results lead directly to our final result:
Theorem 9: Let W , Z and Xf be polytopes. The closed-

loop system (Equation 3) under the SADF control law ui|t
(in Equation 8) is ISS. The ISS is also guaranteed in such
cases: the stochastic disturbance wt is i.i.d. a bounded and
non-zero-mean distribution, i.e., E(wk) 6= 0.

Proof : According to Proposition 6 and Proposition 7, we
first state that the optimal value function L∗N (x) is a Lipschitz
continuity function. The key is then to prove that there exists
a Lipschitz continuous function, i.e., L∗N (x), to satisfy the
Lipschitz-ISS criterion (Proposition 4.15 in [32]).

According to Proposition 1, there exists a baseline control
law ub ensuring ISS under zero-mean distribution distur-
bance. Let Vb(x) = V ∗Nb(x) − V ∗Nb(0) be the Lipschitz
continuous Lyapunov function [32], where V ∗Nb(x) is the
optimal value function under the baseline control law ub.
There exists:

α1(‖x‖) ≤Vb(x) ≤ α2(‖x‖) (17a)
Vb(f(x, 0))−Vb(x) ≤ −α3(‖x‖) (17b)

Let V (x) = L∗N (x) − L∗N (0), where L∗N (x) is optimal
value function under the affine disturbance feedback control
law with bounded and non-zero-mean distribution distur-
bance (in Equation 14). According to Equation 16, L∗N (x)
is shown as:

L∗N (x) = min {LN (x)}
= min {‖Hxx+Huv‖22 + ‖µ‖2(HuMG+Hw)

+tr(C
1
2
w(HuMG +Hw)T (HuMG +Hw)C

1
2
w)}

= V ∗Nb(x) + min {‖µ‖2(HuMG+Hw) }

(18)

where µ is the expected value of disturbances, which is
independent with v and M . V (x) = L∗N (x) − L∗N (0) =
V ∗Nb(x)−V ∗Nb(0) = Vb(x). Hence, there existsH∞-functions
α1(·), α2(·) such that Equation 17a holds with Vb(·) =
V (·) = L∗N (·)− L∗N (0).

To prove V (·) satisfying Equation 17b, note that
Vb(f(x, 0))−Vb(x) = [V ∗Nb(f(x, 0))−V ∗Nb(0)]− [V ∗Nb(x)−

TABLE I: Parameters of QuaDRED-SMPC
Parameters Definition Values

lµ Learning rate of actor 0.001
lθ Learning rate of critic 0.001

µ
Actor neural network: fully connected with two

hidden layers (128 neurons per hidden layer) -

θ
Critic neural network: fully connected with two

hidden layers (128 neurons per hidden layer) -

D Replay memory capacity 106

B Batch size 256
γ Discount rate 0.998
- Training episodes 1000
Ts MPC Sampling period 50ms
N Time steps 20

V ∗Nb(0)] = V ∗Nb(f(x, 0)) − V ∗Nb(x), so that V ∗Nb(f(x, 0)) −
V ∗Nb(x) ≤ −α3(‖x‖). It follows that:

V (f(x, 0))− V (x)

= [L∗N (f(x, 0))− L∗N (0)]− [L∗N (x)− L∗N (0)]

= L∗N (f(x, 0))− L∗N (x)

(19)

where both L∗N (f(x, 0)) and V ∗Nb(f(x, 0)) have w = 0.
The only difference between two control laws is zero-
mean or non-zero-mean disturbance distributions so that
L∗N (f(x, 0)) = V ∗Nb(f(x, 0)). Hence, combining with Equa-
tion 18, Equation 19 can be rewritten as:

V (f(x, 0))− V (x)

= V ∗Nb(f(x, 0))− V ∗Nb(x)−min {‖µ‖2(HuMG+Hw) }
(20)

According to Proposition 6, we have
min {‖µ‖2(HuMG+Hw) } ≥ 0. Then we have:

V (f(x, 0))− V (x)

≤ V ∗Nb(f(x, 0))− V ∗Nb(x) ≤ −α3(‖x‖)
(21)

Equation 21 above shows that there exists H∞-functions
α3(·) such that Equation 17b holds with V (·) = L∗N (·) −
L∗N (0). Therefore, V (x) = L∗N (x) − L∗N (0) is a Lipschitz
continuous Lyapunov function, and the ISS of the closed-
loop system (Equation 3) is guaranteed with bounded and
non-zero-mean distribution disturbances, i.e., E(wk) 6= 0. �

V. NUMERICAL EXAMPLE

The performance of our proposed QuaDRED-SMPC
framework is evaluated in RotorS [40], a UAV software
simulator. Based on the benchmark [11], [22], the parameters
of our proposed framework are summarized in Table I.

A. Comparative performance of QuaDRED Training

In the training process, the quadrotor system operates
with aerodynamic effects in the horizontal plane in the
range [-3,3] (m/s2). The quadrotor state x is recorded at
16 Hz. The training process is occurs over 1000 iterations.
The matrices H1 and H2 in Equation 7 are chosen as H1 =
diag{2.5e−2, 2.5e−2, 2.5e−2, 1e−3, 1e−3, 1e−3, 2.5e−3,
2.5e−3, 2.5e−3, 2.5e−3, 1e−5, 1e−5, 1e−5} and H2 =
diag{1.25e−4, 1.25e−4, 1.25e−4, 1.25e−4}, respectively.
The learning curves are displayed in Fig. 2, where we show



Fig. 2: Learning curves of three RL algorithm: DDPG, C51-
DDPG and QuaDRED. The simulated speed in Gazebo is
set as 0.6.

Fig. 3: Specific scenarios results: Wind estimation efk,
position error (m) and Y control input Ty (expressed in body
frame).

the training performance of DDPG [15], C51-DDPG [17]
and our proposed QuaDRED. The performance shows that,
although all the three algorithms converge to a long-term
return eventually, the two distributional RL approaches,
C51-DDPG and QuaDRED, outperform the traditional
DDPG RL approach. More importantly, in the training
process, our proposed QuaDRED achieves the largest return
whilst maintaining the highest convergence speed.

B. Comparative performance of QuaDRED-SMPC under
variable aerodynamic effects

We compare our QuaDRED-SMPC against a state-of-the-
art trajectory tracking algorithm, Torrente [3], and interactive
approaches, DDPG and C51, with variable aerodynamic
forces added to our simulated environment. The experiments
are based on the trained QuaDRED model described in
Section IV-A. We first set the aerodynamic forces as [0.0,
2.0, 0.0] (m/s2). Fig. 3 shows the tracking position errors
and control input with two opposite heading aerodynamic
forces (with the same force [0.0, 2.0, 0.0] (m/s2)), where
our proposed QuaDRED-SMPC has the smallest tracking
position error, and reacts to the sudden aerodynamic effects
sufficiently.

Two larger and more complex forces, i.e., [-2.0, 2.0, 0.0]
and [-3.0, 3.0, 0.0] (m/s2), are then used in the scenario

Fig. 4: The simulation scenario in RotorS: both reference
trajectories with/without external forces are generated by
Kino-JSS [11].

TABLE II: Comparison of Trajectory Tracking under Pro-
grammatic External forces

Ex. forces Method Succ. Rate Time (s) Err. (m)

[0.0, 2.0, 0.0]

GP-MPC 86% 15.41 8.22
DDPG + MPC 81% 13.57 6.89
C51 + SMPC 90% 9.35 1.48
QuaDRED-SMPC 91% 9.04 1.19

[-2.0, 2.0, 0.0]

GP-MPC 74% 26.11 21.80
DDPG + MPC 78% 18.26 15.33
C51 + SMPC 89% 12.25 6.68
QuaDRED-SMPC 91% 10.97 5.60

[-3.0, 3.0, 0.0]

GP-MPC 17% 41.98 35.27
DDPG + MPC 46% 30.43 27.24
C51 + SMPC 75% 15.31 14.53
QuaDRED-SMPC 82% 12.22 11.64

shown in Fig. 4. In Table II, the second approach, ‘DDPG
+ MPC’, is a combination of DDPG [15] and MPC; and
the third approach, ‘C51 + SMPC’, is a combination of C51
[17], DDPG and SMPC. Our results show that interactive
approaches are not always better than non-interactive ap-
proaches. For example, ‘DDPG + MPC’ has a lower success
rate than GP-MPC, whilst there is little difference in the oper-
ation time and cumulative tracking error with relatively small
aerodynamic forces. However, compared with GP-MPC, our
proposed QuaDRED-SMPC achieves improvements of 42%,
58% and 71% in operation time, and 86%, 75% and 66% in
cumulative tracking errors, respectively.

VI. CONCLUSIONS

In this paper, we propose an accurate trajectory track-
ing framework, QuaDRED-SMPC, for quadrotors oper-
ating in environments with variable aerodynamic forces.
The QuaDRED-SMPC combines aerodynamic disturbance
estimation and stochastic optimal control to address the
aerodynamic effects on quadrotor tracking. A quantile-
approximated distributional RL, QuaDRED, is developed
to improve the accuracy of aerodynamic effect estimation,
and its convergence is analyzed. Using SADF for control
parameterization to guarantee convexity, an SMPC is used to
avoid conservative control returns and significantly improves



the accuracy of quadrotor tracking. The aerodynamic distur-
bances are considered to have non-zero mean in the entire
QuaDRED-SMPC framework. We demonstrate that our pro-
posed approach can track aggressive trajectories accurately
under complex aerodynamic effects whilst guaranteeing both
the convergence of QuaDRED and the stability of the whole
control framework. In future works, we will implement
QuaDRED-SMPC in real-world flight tests. We will also
analyze and evaluate its performance with a greater variety
of aerodynamic forces.
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