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Abstract— In this paper, we consider a resilient consensus
problem for the multi-agent network where some of the agents
are subject to Byzantine attacks and may transmit erroneous
state values to their neighbors. In particular, we develop an
event-triggered update rule to tackle this problem as well as
reduce the communication for each agent. Our approach is
based on the mean subsequence reduced (MSR) algorithm with
agents being capable to communicate with multi-hop neighbors.
Since delays are critical in such an environment, we provide
necessary graph conditions for the proposed algorithm to per-
form well with delays in the communication. We highlight that
through multi-hop communication, the network connectivity
can be reduced especially in comparison with the common one-
hop communication case. Lastly, we show the effectiveness of
the proposed algorithm by a numerical example.

I. INTRODUCTION

As concerns for cyber security have rised in general, multi-
agent consensus problems in the presence of adversary agents
creating failures and attacks have attracted much attention;
see, e.g., [1]–[4]. One class of interdisciplinary problems that
have been studied in both control and computer science is
that of resilient consensus [1], [5], [6]. In these works, the
adversary agents are categorized into basically two types:
Malicious agents and Byzantine agents. These agents are
capable to manipulate their data arbitrarily. Malicious agents
are limited as they must broadcast the same messages to
their neighbors, while Byzantine agents are capable to send
individual messages to different neighbors (e.g., [1], [7]).

In this paper, we study the approximate Byzantine con-
sensus using a mean subsequence reduced (MSR) algorithm.
Such algorithms have been well studied in the fields of
fault-tolerant techniques for multi-agent systems (e.g., [1],
[5], [8]). A basic assumption in MSR algorithms is the
knowledge regarding an upper bound on the maximum
number of malicious agents among the neighbors; this bound
is denoted by f throughout this paper. Then, at each iteration,
each node removes the f largest values and f smallest
values from neighbors to avoid being influenced by such
potentially faulty values. Moreover, the graph property called
robustness is shown to be critical for the network structure,
guaranteeing the success of resilient consensus algorithms
[1], [6]. In [5], the authors proposed a tight necessary and
sufficient condition for Byzantine consensus, where such
a condition can also be interpreted using the notion of
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robustness. However, such robustness requires the network to
be relatively dense and complex. Therefore, how to enhance
resilience of a sparse network without changing the original
network topology has become an urgent problem.

There are several works that tackled this problem by
introducing the multi-hop communication techniques [2],
[9], [10]. Multi-hop communication techniques are com-
monly used in the areas of wireless communication [11],
computer science [7], and systems control [12]. It is clear
that with multi-hop communication, each node can have
more information for updates compared to the one-hop
case. Thus, the network may have more resilience against
adversary nodes. For instance, the works [13], [14] pursued
an approach based on detection of malicious agents in the
network. Compared to MSR algorithms, which do not have
such detection capabilities, the algorithms are applicable
to more sparse networks with the same tolerance against
malicious agents. Furthermore, in [2], by introducing multi-
hop communication in MSR algorithms, the authors solved
the Byzantine consensus problem with a weaker condition on
network structures compared to that derived under the one-
hop communication model [5]. In [9], the authors studied
the asynchronous Byzantine consensus based on a flooding
algorithm, where nodes relay their values over the entire
network. Moreover, in our previous work [15], we studied
the asynchronous Byzantine consensus using an algorithm
which is of less complexity than that in [9]. To conclude,
through multi-hop communication, the connectivity require-
ment becomes less stringent for guaranteeing the same level
of resilience as for the one-hop case. This is enabled by
increasing the amount of data exchanged among agents
through message relaying.

In this paper, we aim to reduce the transmissions for
the agents using the multi-hop weighted MSR algorithm
[10] through event-triggered protocols [16]. Event-based
protocols have been developed for conventional consensus
without adversary agents in, e.g., [17]–[19]. Moreover, the
work [20] proposed two event-based MSR algorithms using
one-hop communication to reduce the transmissions. Among
these works, event-triggered schemes have shown their effec-
tiveness in reducing the transmissions for the agents using
distributed algorithms even under adversarial environments.
Moreover, time delays can be a critical factor affecting
the performance of agents in the multi-hop communication.
Hence, we introduce event-triggered protocols to the multi-
hop weighted MSR algorithm, and we are interested to
analyze the performance of the proposed algorithm with
delays in the communication between agents. Agents using
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the event-triggered multi-hop MSR algorithm will update
locally, and they send their own state values along with
relayed values only when the difference between the current
value and the past communicated value exceeds a given
threshold. Through simulations, we can see that the agents’
transmissions can be significantly reduced compared to the
multi-hop algorithm without the event-triggered protocol
[15]. Furthermore, compared to the one-hop MSR algorithm
with or without event-triggered protocols [20], [1], the con-
nectivity requirement for our algorithm is less stringent.
Besides, we analyze the performance of our algorithm with
delays in communication, which is a case not studied in [20].

The rest of this paper is organized as follows. Section II
outlines preliminaries on graphs and the system model.
Section III presents the event-triggered multi-hop MSR algo-
rithm and the definition of strongly robust graphs with multi-
hop communication. In Section IV, we derive a condition
under which the proposed algorithm reaches resilient con-
sensus under asynchronous updates with delays. Section V
provides numerical examples to show the effectiveness of the
proposed algorithm. Lastly, Section VI concludes the paper.

II. PRELIMINARIES

A. Network Model

Consider the directed graph G = (V, E) consisting of the
node set V = {1, ..., n} and the edge set E ⊂ V×V . The edge
(j, i) ∈ E indicates that node i can get information from node
j. A path from node i1 to im is a sequence of distinct nodes
(i1, i2, . . . , im), where (ij , ij+1) ∈ E for j = 1, . . . ,m − 1.
Such a path is referred to as an (m− 1)-hop path (or a path
of length m−1) and also as (i1, im)-path when length is not
relevant but the source and destination nodes are. We also
say that node im is reachable from node i1.

For node i, let N l−
i be the set of nodes that can reach

node i via at most l-hop paths, where l is a positive integer.
Also, let N l+

i be the set of nodes that are reachable from
node i via at most l-hop paths. The l-th power of the graph
G, denoted by Gl, is a multigraph1 with the same vertices as
G and a directed edge from node j to node i is defined by
a path of length at most l from j to i in G. The adjacency
matrix A = [aij ] of Gl is given by α ≤ aij < 1 if j ∈ N l−

i

and otherwise aij = 0, where α > 0 is a fixed lower bound.
We assume that

∑n
j=1,j 6=i aij ≤ 1. Let L = [bij ] be the

Laplacian matrix of Gl, whose entries are defined as bii =∑n
j=1,j 6=i aij and bij = −aij for i 6= j; we can see that the

sum of the elements of each row of L is zero.
Node i1 can send messages of its own to its l-hop neighbor

il+1 via different paths. We represent a message as a tuple
m = (w,P ), where w = value(m) ∈ R is the message
content, and P = path(m) indicates the path via which
message m is transmitted. Moreover, nodes i1 and il+1 are
the message source and destination, respectively. When the
source i1 sends the message, P is a path vector of length
l+1 with the source being i1 and other entries being empty.
Then the one-hop neighbor i2 receives this message from i1,

1In a multigraph, two nodes can have multiple edges between them.

and it stores the value of node i1 for consensus and relays
the value of node i1 to all the one-hop neighbors of i2 with
the second entry of P being i2 and other entries unchanged.
This relay procedure will continue until every entry of P
of this message is occupied, i.e., this message reaches node
il+1. We denote by V(P ) the set of nodes in P .

B. Update Rule

In graph G = (V, E), the node set V is partitioned into
the set of normal nodes N and the set of adversary nodes
A, where |N | = N . The partition is unknown to the normal
nodes at all times.

The update rule for normal agent i is described by

xi[k + 1] = xi[k] + ui[k], (1)

where xi[k] ∈ R is the state and ui[k] is the control input
given by

ui[k] =
∑

j∈Ni[k]

aij [k](x̂j [k]− xi[k]). (2)

Here, x̂j [k] ∈ R is an auxiliary state, representing the last
communicated state of node j at time k. It is defined as

x̂j [k] = xj [t
j
h], k ∈ [tjh, t

j
h+1), (3)

where tj0, t
j
1, . . . denote the transmission times of node j

determined by the triggering function to be given below. The
initial values xi[0], xj [0] are given, and aij [k] is the weight
for the edge (j, i). Note that at initial time, x̂i[0] need not be
the same as xi[0]. Let aii[k] = 1−

∑
j∈N l−i [k] aij [k]. Assume

that γ ≤ aij [k] < 1 if aij [k] 6= 0 or i = j for i, j ∈ V ,
where 0 < γ < 1. In the resilient consensus algorithm to be
introduced, the neighbors whose values are used for updates
change over time and, hence, the weights aij [k] are time
varying.

We now introduce the triggering function. Denote the error
at time k between the updated state xi[k+1] and the auxiliary
state x̂i(k) by ei[k] = x̂i[k]− xi[k+1] for k ≥ 0. Then, let

fi[k] = |ei[k]| − (c0 + c1[k]), (4)

where c0 ≥ 0 is a constant and c1[k] takes nonnegative and
decreasing values with c1[k] → 0 in finite time. The roles
of c0 and c1[k] are to reduce the triggering frequency, and
especially c1[k] allows the threshold to be large in the initial
phase. Each node i will check this function and whenever
it finds fi[k] to be positive, it will transmit its new state
xi[k + 1] to its neighbors.

We employ the control input taking account of possible
delays in the transmission. Thus, we extend (2) as

ui[k] =
∑
j∈N l−i

aij [k](x̂
P
j [k − τPij [k]]− xi[k]), (5)

where x̂Pj [k] denotes the value of node j at time k sent along
path P and τPij [k] ∈ Z+ denotes the delay in this (j, i)-path
P at time k. The delays are time varying and may be different



in each path. We assume the common upper bound τ on any
normal path P , over which all internal nodes are normal, as

0 ≤ τPij [k] ≤ τ, j ∈ N l−
i , k ∈ Z+. (6)

In the following part, we also assume that every normal
node i updates its value at least once in every θ ≥ 1 steps.
When θ = 1, updates are synchronous. Although we impose
this bound on the delays for message transmissions, the
normal nodes need neither the value of this bound nor the
information whether a path P is a normal one or not. Also,
there is no constraint on the size of τ .

Under the delay bound τ imposed in (5), triggered values
of each node must reach all the multi-hop neighbors in
τ steps. We have two possible relay models that can be
employed in the proposed multi-hop algorithm:

(i) Periodic relay model: Each node relays all the recently
received messages to its one-hop neighbors every λ steps.
If λ = 1, each node must immediately relay the received
messages. This is referred to as the immediate relay model.

(ii) Package relay model: Each node relays all the recently
received messages along with its own values (e.g., in a
message package) to its one-hop neighbors when its own
event is triggered.

Among the two modes, clearly, the package relay model
requires less frequent message transmissions and may be a
more natural model in the event-based algorithm studied
here. We note however that with this model, it must be
assumed that at time k = 0, the neighboring agents exchage
their state values. This is to cope with the situation where
no event is triggered by any of the agents. This can occur
since the event triggering function only takes account of the
local states. We will illustrate the difference of the effects of
the two relay models through simulations later.

C. Threat Model

Next, we introduce the threat model studied here.
Definition 2.1: (f -total/f -local set) The set of adversary

nodes A is said to be f -total if it contains at most f nodes,
i.e., |A| ≤ f . Similarly, it is said to be f -local (in l-hop
neighbors) if any normal node i ∈ N has at most f adversary
nodes as its l-hop neighbors, i.e.,

∣∣N l−
i ∩ A

∣∣ ≤ f, ∀i ∈ N .
Definition 2.2: (Byzantine nodes) An adversary node i ∈

A is said to be a Byzantine node if it can arbitrarily modify
its own value and relayed values, and moreover, it can send
different values to its neighbors at each iteration.2

As commonly done in the literature, we assume that
each normal node knows the value of f and the topology
information of the graph up to l hops. In the multi-hop
setting, it is important to impose the following assumption.

Assumption 2.1: Each Byzantine node i cannot manipu-
late the path values in the messages containing its own state
xi[k] and those that it relays.

This is introduced for ease of analysis, but is not a
strong constraint. In fact, manipulating message paths can

2Here a Byzantine node can also decide not to send any value. This
behavior corresponds to the omissive/crash model.

be easily detected and hence does not create problems. See
the discussions in [10].

D. Resilient Asymptotic Consensus

We now introduce the type of consensus among the normal
agents to be sought in this paper.

Definition 2.3: Given c ≥ 0, if for any possible sets and
behaviors of the adversary agents and any state values of
the normal nodes, the following two conditions are satisfied,
then we say that the normal agents reach resilient consensus
at the error level c:

1) Safety: There exists a bounded safety interval S deter-
mined by the initial values of the normal agents such
that xi[k] ∈ S,∀i ∈ N , k ∈ Z+.

2) Agreement: For all i, j ∈ N , it holds that
lim supk→∞ |xi[k]− xj [k]| ≤ c.

III. EVENT-TRIGGERED ALGORITHM DESIGN

In this section, we outline the structure of the event-
triggered multi-hop weighted MSR (MW-MSR) algorithm.
Then we define the strongly robust graphs with l hops, which
is crucial for guaranteeing Byzantine consensus [15].

A. Asynchronous Event-triggered MW-MSR algorithm

At each time k, each normal node i updates as follows:
1. Receive step: Node i receives neighbors’ values through

different paths (described in (5)) and chooses to update its
state or not. If it chooses to update, then it proceeds to step 2.
Otherwise, it keeps its value as xi[k + 1] = xi[k].

2. Update step: Node i updates its value xi[k+1] accord-
ing to Algorithm 1 using the values most recently received
from neighbors and its own value xi[k].

3. Transmit step: Node i checks the value of fi[k] and sets
the value of x̂i[k + 1] as

x̂i[k + 1] =

{
xi[k + 1], if fi[k] > 0,

x̂i[k], otherwise.
(7)

Here, the auxiliary variable will be updated only when the
current value has varied enough to exceed a threshold, and
only at this time the node sends its value and the relayed
values over each l-hop path to node j ∈ N l+

i .
In the Transmit step and Receive step, the nodes exchange

messages with others that are up to l hops away. Then in the
Update step, node i updates its state using Algorithm 1. Note
that the adversary nodes may deviate from this specification
as we describe in the next subsection.

One important feature here to further reduce the amount
of data in each transmission when an event is triggered is to
require that the nodes can send only the relayed values that
have changed since last event.

B. The Notion of Strongly Robust Graphs

The notion of graph robustness was first introduced in
[1], and it was proved that graph robustness gives a tight
condition guaranteeing resilient consensus using MSR-based



Algorithm 1: MW-MSR Algorithm
1) At time k, normal node i obtains the most

recently received messages of the nodes in N l−
i and

itself, whose set is denoted by Mi[k], and sorts the
values in Mi[k] in an increasing order.

2) (a) Define two subsets of Mi[k] based on the
message values:

Mi[k] = {m ∈Mi[k] : value(m) > xi[k]},

Mi[k] = {m ∈Mi[k] : value(m) < xi[k]}.

(b) Then, let Ri[k] =Mi[k] if the cardinality of a
minimum cover of Mi[k] is less than f , i.e.,∣∣T ∗(Mi[k])

∣∣ < f . Otherwise, let Ri[k] be the
largest sized subset of Mi[k] such that (i) for all
m ∈Mi[k] \ Ri[k] and m′ ∈ Ri[k] we have
value(m) ≤ value(m′), and (ii) the cardinality of a
minimum cover of Ri[k] is exactly f , i.e.,∣∣T ∗(Ri[k])∣∣ = f .

(c) Similarly, we can get Ri[k] from Mi[k], which
contains the smallest values.

(d) Finally, let Ri[k] = Ri[k] ∪Ri[k].
3) Node i updates its value as follows:

xi[k + 1] =
∑

m∈Di[k]

ai[k]value(m), (8)

where ai[k] = 1/ |Di[k]| and Di[k] =Mi[k]\Ri[k].

algorithms. In [10], we generalized this notion to the multi-
hop case, where nodes can exchange values with their l-hop
neighbors through different paths. Its definition is as follows.

Definition 3.1: A directed graph G = (V, E) is said to be
(r, s)-robust with l hops with respect to a given set F ⊂ V ,
if for every pair of nonempty disjoint subsets V1,V2 ⊂ V , at
least one of the following conditions holds:

(1) ZrV1 = V1; (2) ZrV2 = V2; (3)
∣∣ZrV1 ∣∣+ ∣∣ZrV2∣∣ ≥ s,

where Zr
Va is the set of nodes in Va (a = 1, 2) that have

at least r independent paths of at most l hops originating
from nodes outside Va and all these paths do not have any
nodes in set F as intermediate nodes (i.e., the nodes in F
can be source or destination nodes in these paths). Moreover,
if the graph G satisfies this property with respect to any set
F satisfying the f -total model, then we say that G is (r, s)-
robust with l hops (under the f -total model).

Intuitively speaking, for any set F ⊂ V and for node
i ∈ V1 to have the above-mentioned property, they should
satisfy two conditions: (i) At least r source nodes outside
V1; (ii) at least one independent path of length at most l
hops from each of the r source nodes to node i, where such
a path does not contain any internal nodes from the set F .

To deal with the Byzantine model, we need to focus on the
subgraph consisting of only the normal nodes. For the one-
hop algorithms in [1] and [5], the graph condition that the
normal network is (f + 1)-robust is proved to be necessary
and sufficient for achieving resilient consensus under f -total

(a) (b)
Fig. 1. (a) The graph is not 2-strongly robust with one hop but is 2-
strongly robust with 2 hops. (b) The graph is 2-strongly robust with one
hop.

Byzantine model. In [15], we extended this notion to the
multi-hop setting and defined it as r-strongly robust graph
with l hops. Its definition is given as follows.

Definition 3.2: Let F be a subset of vertices in G and
denote the subgraph of G induced by vertex set V \ F as
GV\F . Then graph G is said to be r-strongly robust with l
hops with respect to F if the induced subgraph GV\F is r-
robust with l hops. If graph G satisfies this property with
respect to any set F satisfying the f -total/local model, then
we say that G is r-strongly robust with l hops under the f -
total/local model. When it is clear from the context, we just
say G is r-strongly robust with l hops.

Generally, robustness of a graph increases as the relay
range l increases. See the examples in Fig. 1. Note that
graph robustness with multi-hop communication needs to be
checked for every possible set F satisfying the f -total/local
model. We remark that the level of robustness is constrained
by the in-degrees of the nodes. For instance, to achieve
resilient consensus under the f -total malicious model, the
minimum in-degree of the nodes needs to be at least 2f .
On the other hand, under the f -local Byzantine model, the
minimum in-degree of the nodes is at least 2f + 1.

IV. CONSENSUS ANALYSIS

In this section, we first prove the convergence of the
asynchronous event-triggered MW-MSR algorithm. Then we
discuss the effects of different relay models on the perfor-
mance of the proposed algorithm.

To prove the convergence, we introduce two kinds of
minimum and maximum of the states of the normal agents.
Denote the state vector and the transmitted state vector of
normal agents at time k by xN [k] and x̂N [k], respectively.

First, we denote the minimum and maximum of the states
of the normal agents from time k − τ to time k as

xτ [k] = max
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
,

xτ [k] = min
(
xN [k], xN [k − 1], . . . , xN [k − τ ]

)
,

(9)

respectively. Next, we denote the joint minimum and max-
imum of the states and the transmitted states of the normal
agents from time k − τ to time k, respectively, as

x̂τ [k] = max
(
xN [k], . . . , xN [k − τ ], x̂N [k], . . . , x̂N [k − τ ]

)
,

x̂τ [k] = min
(
xN [k], . . . , xN [k − τ ], x̂N [k], . . . , x̂N [k − τ ]

)
.

(10)
We are ready to state the main theorem of the paper.



Theorem 4.1: Consider a directed graph G = (V, E) with
l-hop communication, where each normal node updates its
value according to the asynchronous event-triggered MW-
MSR algorithm. Under the f -local Byzantine model, the
normal nodes reach resilient consensus at an error level
c if and only if the underlying graph is (f + 1)-strongly
robust with l hops. Moreover, the safety interval is given by
S = [x̂τ [0], x̂τ [0]], and the consensus error level c is achieved
if the parameter c0 in the triggering function (4) satisfies

c0 ≤
γNθ

4Nθ
c. (11)

Proof: (Necessity) This part follows from our previous
work [15], which considers the special case without the
triggering function, that is, c0 = c1[k] = 0.

(Sufficiency) First, we show by induction that the safety
condition is satisfied. Note that the update rule (8) in
Algorithm 1 can be rewritten as

xi[k + 1] = ai[k]xi[k] +
∑

j∈Di[k]

ai[k]x̂
P
j [k − τPij [k]], (12)

where ai[k] = 1/ |Di[k]|. At time k = 0, it is clear by
definition that xi[0], x̂i[0] ∈ S. We first show that x̂τ [k] is
nonincreasing in time. From (12), we have xi[k+1] ≤ x̂τ [k]
for all i ∈ N since the values larger than x̂τ [k] are ignored in
step 2 of Algorithm 1. Moreover, by (7), it follows that x̂i[k+
1] ≤ x̂τ [k] for all i ∈ N . Together, we have x̂τ [k + 1] ≤
x̂τ [k]. We can similarly prove that x̂τ [k] is nondecreasing in
time.

We next show the consensus part. Note that for time k ∈
(tjh, t

j
h+1) between two triggering instants, we have fi[k] ≤

0. Moreover, for the neighbor node j ∈ N l−
i , if fj [k] > 0,

then we have x̂j [k + 1] = xj [k + 1]. If fj [k] ≤ 0, then
x̂j [k + 1] = x̂j [k] = xj [k + 1] + ej [k]. As a result, it holds
x̂j [k] = xj [k] + êj [k − 1] for k ≥ 1, where

êj [k] =

{
ej [k], if fi[k] ≤ 0,

0, otherwise.
(13)

Note that
|ej [k]| ≤ c0 + c1[k], ∀k ≥ 0. (14)

Then, we can write (12) as

xi[k + 1] = ai[k]xi[k]

+
∑

j∈Mi[k]\Ri[k]

ai[k](x
P
j [k − τPij [k]] + êj [k − τPij [k]− 1]).

(15)
This can be bounded as
xi[k + 1] ≤ ai[k]xτ [k]

+
∑

j∈Mi[k]\Ri[k]

ai[k](xτ [k] + êj [k − τPij [k]− 1])

≤ xτ [k] + max
j∈Mi[k]\Ri[k]

|êj [k − τPij [k]− 1]|.

(16)

Thus, by (14), letting c1[k] = c1[0] for k < 0, we have

xi[k + 1] ≤ xτ [k] + c0 + c1[k − τ − 1]. (17)

Similarly, we have

xi[k + 1] ≥ xτ [k]− c0 − c1[k − τ − 1]. (18)

Let V [k] = xτ [k]− xτ [k]. Then, define two sequences by

x0[k + 1] = x0[k] + c0 + c1[k − τ − 1],

x0[k + 1] = x0[k]− c0 − c1[k − τ − 1],
(19)

where x0[0] = xτ [0] − σ0, and x0[0] = xτ [0] + σ0 with
σ0 = σV [0]. Then the following inequalities hold:

xτ [k] ≤ x0[k] + σ0,

xτ [k] ≥ x0[k]− σ0.
(20)

We show xτ [k] ≤ x0[k] + σ0 by induction, and xτ [k] ≥
x0[k]−σ0 can be proved in a similar way. When k = 0, we
clearly have xτ [0] = x0[0] + σ0. Suppose that (20) holds.
Then, we have at time k + 1

xτ [k + 1] = max
(
xN [k + 1], xN [k], . . . , xN [k + 1− τ ]

)
≤ xτ [k] + c0 + c1[k − τ − 1]

≤ (x0[k] + σ0) + c0 + c1[k − τ − 1]

= x0[k + 1] + σ0.
(21)

The first inequality holds because from (17), we have
maxxN [k+1] ≤ xτ [k]+ c0+ c1[k− τ −1]. Moreover, from
(9), we have max

(
xN [k], . . . , xN [k + 1− τ ]

)
≤ xτ [k].

We next introduce another sequence ε0[k] defined by

ε0[k + 1] = γε0[k]− (1− γ)σ0, (22)

where ε0[0] = εV [0]. Take the positive ε and σ so that

ε+ σ =
1

2
, 0 < σ <

γNθ

1− γNθ
ε. (23)

Here, we claim that it holds

0 < ε0[k + 1] < ε0[k], k = 0, 1, . . . , Nθ − 1. (24)

This is proved as follows. Since 0 < γ < 1, from (22), we
can easily have ε0[k+1] < ε0[k]. It is thus sufficient to show
ε0[Nθ] > 0. From (22), we have

ε0[Nθ] = γNθε0[0]−
Nθ−1∑
j=0

γj(1− γ)σ0

=
(
γNθε− (1− γNθ)σ

)
V [0].

This is positive because we have chosen ε and σ as in (23).
For the sequence ε0[k], define two sets as

Z1(k, ε0[k]) = {i ∈ N : xi[k] > x0[k]− ε0[k]},
Z2(k, ε0[k]) = {i ∈ N : xi[k] < x0[k] + ε0[k]}.

These sets are both nonempty at time k = 0 and, in
particular, each contains at least one normal node; this is
because, by definition, xτ [0] > x0[0] − ε0[0] and xτ [0] <
x0[0] + ε0[0].

In the following, we show that Z1(k, ε0[k]) and
Z2(k, ε0[k]) are disjoint sets. To this end, we must show

x0[k]− ε0[k] ≥ x0[0] + ε0[0]. (25)



By (19) for x0[k] and x0[k], we have

(x0[k]− ε0[k])− (x0[k] + ε0[k])

=

x0[0] + c0k +

k−τ−2∑
j=−τ−1

c1[j]


−

x0[0]− c0k − k−τ−2∑
j=−τ−1

c1[j]

− 2ε0[k].

Since x0[0] = xτ [0]− σ0 and x0[0] = xτ [0] + σ0 with σ0 =
σV [0], we have

(x0[k]− ε0[k])− (x0[k] + ε0[k])

= (xτ [0]− xτ [0])− 2σ0 + 2c0k + 2

k−τ−2∑
j=−τ−1

c1[j]− 2ε0[k]

= V [0]− 2σV [0] + 2c0k + 2

k−τ−2∑
j=−τ−1

c1[j]− 2ε0[k]

> (1− 2σ − 2ε)V [0] + 2c0k + 2

k−τ−2∑
j=−τ−1

c1[j] ≥ 0.

The last inequality holds since ε + σ = 1/2 and ε0[k] <
ε0[0] = εV [0]. Thus, we have proved (25).

So far, we have shown that the two sets Z1(k, ε0[k]) and
Z2(k, ε0[k]) are disjoint. Notice that the network is (f +1)-
strongly robust with l hops w.r.t. any set F following the f -
local model and the set of Byzantine nodes A also satisfies
the f -local model. Hence, the network is (f + 1)-strongly
robust with l hops w.r.t. the set A and at least one of the
conditions in Definition 3.1 for robustness holds. Therefore,
if the two sets are both nonempty, then for these two
nonempty disjoint sets Z1(k, ε0[k]) and Z2(k, ε0[k]), one
of them has a normal agent with at least f + 1 independent
normal paths originating from some normal nodes outside.

Suppose that normal node i ∈ Z1(k, ε0[k]) has the above-
mentioned property. A similar argument holds when i ∈
Z2(k, ε0[k]). Now, we go back to the update rule (15) for
node i and rewrite it by partitioning the neighbor set into two
parts: those that belong to Z1(k, ε0[k]) and those that do not.
Node i has at least f+1 independent normal paths originating
from the normal nodes outside. According to Algorithm 1, it
will use at least one value originating from the normal nodes
outside Z1(k, ε0[k]); thus, we obtain

xi[k + 1] = ai[k]xi[k] +
∑

j∈Di[k]∩Z1

ai[k]x
P
j [k − τPij [k]]+

∑
j∈Di[k]\Z1

ai[k]x
P
j [k − τPij [k]] +

∑
j∈Di[k]

ai[k]êj [k − τPij [k]− 1]

≤ ai[k]xτ [k] +
∑

j∈Di[k]∩Z1

ai[k]xτ [k]+

∑
j∈Di[k]\Z1

ai[k](x0[k]− ε0[k]) +
∑

j∈Di[k]

ai[k]êj [k − τPij [k]− 1].

Combining (20) and the fact that ai[k] is lower bounded by
γ, we have

xi[k + 1] ≤ (1− γ)xτ [k] + γ(x0[k]− ε0[k]) + c0 + c1[k − τ − 1]

≤ (1− γ)(x0[k] + σ0) + γ(x0[k]− ε0[k]) + c0 + c1[k − τ − 1]

≤ x0[k] + c0 + c1[k − τ − 1] + (1− γ)σ0 − γε0[k]

= x0[k + 1]− ε0[k + 1]
(26)

for k = 0, 1, . . . , Nθ − 1, where the first inequality follows
from the assumption that Z1(k, ε0[k]) is nonempty, and the
equality follows from (19) and (22). The relation in (26)
shows that once an update happens at node i, then this node
will move out of Z1(k + 1, ε0[k + 1]). It is further noted
that inequality (26) also holds for the normal nodes that are
not in Z1(k, ε0[k]) at time k. This indicates that the nodes
outside Z1(k, ε0[k]) will not move in Z1(k + 1, ε0[k + 1]).
Similar results hold for the set Z2(k + 1, ε0[k + 1]).

Recall that the normal nodes update at least once for
every θ steps. As a result, if the two sets Z1(k, ε0[k]) and
Z2(k, ε0[k]) are both nonempty at time k, then after Nθ
time steps, all the normal nodes will be out of at least
one of them. Suppose that Z1(k, ε0[k]) is empty. When
such an event occurs at k = 0, it clearly follows that
xτ [Nθ] ≤ x0[Nθ] − ε0[Nθ]. From the definition of V [k],
we have

V [Nθ] = xτ [Nθ]− xτ [Nθ]

≤ (x0[Nθ]− ε0[Nθ])− (x0[Nθ]− σ0)

= x0[0]− x0[0] + 2c0Nθ + 2

Nθ−τ−2∑
j=−τ−1

c1[j]− ε0[Nθ] + σ0

= (xτ [0]− σ0)− (xτ [0] + σ0) + 2c0Nθ + 2

Nθ−τ−2∑
j=−τ−1

c1[j]

− ε0[Nθ] + σ0

= V [0]− σV [0] + 2c0Nθ + 2

Nθ−τ−2∑
j=−τ−1

c1[j]

−
(
γNθε− (1− γNθ)σ

)
V [0]

=
(
1− γNθ(ε+ σ)

)
V [0] + 2c0Nθ + 2

Nθ−τ−2∑
j=−τ−1

c1[j].

By (23), we have

V [Nθ] ≤
(
1− γNθ

2

)
V [0]+2c0Nθ+2

Nθ−τ−2∑
j=−τ−1

c1[j]. (27)

If there are more updates by node i after time k = Nθ, this
argument can be extended further as

V [hNθ] ≤
(
1− γNθ

2

)
V [(h− 1)Nθ]

+ 2c0Nθ + 2

hNθ−τ−2∑
j=(h−1)Nθ−τ−1

c1[j].

(28)



(a) One-hop case without delays.

(b) Two-hop case with delays.

Fig. 2. Time responses using different event-triggered MSR algorithms.

Hence, we have

V [hNθ] ≤
(
1− γNθ

2

)h
V [0] +

h−1∑
t=0

(
1− γNθ

2

)h−1−t

×

2c0Nθ + 2

(t+1)Nθ−τ−2∑
j=tNθ−τ−1

c1[j]


≤
(
1− γNθ

2

)h
V [0] + 2c0Nθ

1−
(
1− γNθ

2

)h
1−

(
1− γNθ

2

)
+

h−1∑
t=0

(
1− γNθ

2

)h−1−t2

(t+1)Nθ−τ−2∑
j=tNθ−τ−1

c1[j]

 .

(29)
Since c1[k] → 0 in finite time, there exists a finite time h0
such that c1[k] = 0, k ≥ h0Nθ. Then, for h ≥ h0, we can
obtain from (29)

lim sup
h→∞

V [hNθ] ≤ 2c0Nθ

1−
(
1− γNθ

2

) =
4c0Nθ

γNθ
≤ c. (30)

The analysis is similar for the dynamics of V [hNθ + t],
t = 0, 1, . . . , Nθ − 1, and we obtain as in (29):

lim sup
h→∞

V [hNθ + t] ≤ 4c0Nθ

γNθ
≤ c. �

As we can see from (27), the delays make the consensus
error bigger than the one under no delays for every Nθ steps,
i.e., the term containing c1[k] is bigger that the one under no
delays. However, when the iteration number is large enough
as in (29), the term containing c1[k] converges to 0, which
results in the same error bound c as the one under no delays
in the one-hop case [20]. This fact shows that although delays

(a) One-hop case without delays.

(b) Two-hop case with immediate relays.

(c) Two-hop case with package relays.

Fig. 3. Time responses using different event-triggered MSR algorithms.

can slow down the consensus process, they do not affect the
consensus error bound as also observed in [6], [10].

V. NUMERICAL EXAMPLES

In this section, we conduct simulations for networks
applying the event-triggered MW-MSR algorithm. For all
the simulations, we set the parameters c0 and c1[k] of the
triggering function as c0 = 1.215 × 10−2 and c1[k] =
0.5× e−0.06(k+20), respectively.

A. Topology Gap between One-hop and Multi-hop Algo-
rithms

In this part, we show that the proposed algorithm can
guarantee resilient consensus in a network where the con-
ventional one-hop algorithm cannot. Consider the network
in Fig. 1(a). This graph is not 2-strongly robust with one
hop, but is with 2 hops. Suppose that node 5 is Byzantine
and sends four different values to its four neighbors. Let
the initial normal states be xN [0] = [2 4 6 8]T . According
to [1], [20], this graph does not meet the condition for 1-
total Byzantine model even for synchronous updates. Thus,
resilient consensus is impossible as shown in Fig. 2(a) where



TABLE I
AVERAGE TRIGGERING TIMES PER NORMAL NODE

Algorithms Average events Average transmissions

One-hop 7.26 7.26

Two-hop with immediate relays 3.05 12.20

Two-hop with package relays 6.99 6.99

the four red dashed lines indicate the adversarial values and
the dots represent the time instants when events are triggered
by the normal nodes.

Then, we perform simulations for the asynchronous two-
hop event-triggered MW-MSR algorithm under the same
attacks. Let the normal nodes update synchronously with
delays in communication (θ = 1). Moreover, we choose the
package relay model, i.e., nodes only relay the messages
when events are triggered at the nodes. Observe that resilient
consensus is achieved as shown in Fig. 2(b). This verifies the
effectiveness of the proposed algorithm.

B. The Amount of Transmissions of Different Algorithms

In this part, we show that the amount of transmissions of
the proposed algorithm can be further reduced compared to
the one-hop algorithm. This time, we consider the network
in Fig. 1(b). This graph is 2-strongly robust with one hop,
and hence, with 2 hops (see [10]). Node 6 is Byzantine
and is capable to send two different values to its neighbors
(including different relayed values). Let the initial normal
states be xN [0] = [2 4 6 8 10]T . By [1] and Theorem 4.1,
this graph satisfies the condition for 1-total Byzantine model.
Thus, resilient consensus can be achieved with both one-hop
and two-hop algorithms, and the results are given in Fig. 3.

From Fig. 3, we can also see that the numbers of events
of the two-hop algorithm with immediate relays and package
relays are both smaller than that of the one-hop algorithm.
This is because by introducing the multi-hop communication,
each node can have more information of the network, which
may result in faster speed of the consensus process and
less events. Moreover, observe that the two-hop algorithm
with immediate relays has less events than the algorithm
with package relays. Obviously, the immediate relay model
is an ideal model and it requires additional communication
resources for the relaying process. Note that for this model,
each event is accompanied with additional transmissions for
relays as each node has three neighbors. In contrast, the
package relay model is more realistic and energy-saving
since it requires only communication for the events, but
reaching consensus takes longer.

To verify these properties of the algorithms, we further
conducted Monte Carlo simulations in the same network
for 50 runs by randomly taking initial normal states within
[0, 10]. The Byzantine node 6 misbehaves as in the previous
simulation. Table I displays the average times of events and
transmissions per normal node of the three algorithms. In all
runs, consensus was achieved and the results are consistent
with our analysis so far. In particular, the package relay
model requires the least number of transmissions overall.

VI. CONCLUSION

In this paper, we have investigated the resilient con-
sensus problem using the event-triggered MSR algorithm
with multi-hop communication. We have characterized the
network requirement for the proposed algorithm to guarantee
resilient consensus with a certain error level. We found that
the delays in communication may slow down the consensus
process, but they do not affect the consensus error. By in-
troducing multi-hop communication, even sparse graphs can
meet the condition for robustness. Furthermore, the event-
triggered scheme provides an effective way to reduce the
number of transmissions for the multi-hop communication.
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