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Optimal convergence rates of totally asynchronous optimization

Xuyang Wu, Sindri Magnússon, Hamid Reza Feyzmahdavian, and Mikael Johansson

Abstract— Asynchronous optimization algorithms are at the
core of modern machine learning and resource allocation
systems. However, most convergence results consider bounded
information delays and several important algorithms lack
guarantees when they operate under total asynchrony. In this
paper, we derive explicit convergence rates for the proximal
incremental aggregated gradient (PIAG) and the asynchronous
block-coordinate descent (Async-BCD) methods under a specific
model of total asynchrony, and show that the derived rates are
order-optimal. The convergence bounds provide an insightful
understanding of how the growth rate of the delays deterio-
rates the convergence times of the algorithms. Our theoretical
findings are demonstrated by a numerical example.

I. INTRODUCTION

Distributed and parallel algorithms are powerful tools for

solving large-scale problems. These algorithms coordinate

multiple computing nodes to solve the overall problem. The

coordination can be synchronous, meaning that each node

needs to wait for all other nodes to successfully conclude

their computations and communications before proceeding to

the next iteration. This is clearly inefficient: the slowest node

dictates the convergence speed, systems become sensitive

to single node failures, and the implementation overhead

for synchronization can be large. Therefore, asynchronous

algorithms that need no synchronization are often preferred

[1]–[3]. However, compared to synchronous algorithms,

asynchronous algorithms are more difficult to analyze, and

their convergence properties are not as well understood.

Early efforts on establishing convergence properties of

asynchronous algorithms were made in the 1980s by Bert-

sekas and Tsitsiklis, e.g., [4]–[6]. They considered two mod-

els for asynchrony, partial asynchrony (“bounded delays”)

and total asynchrony (“unbounded delays”), and analyzed

convergence for certain classes of algorithms under these two

models. However, these algorithm classes do not cover many

modern optimization algorithms, such AsySPA [2], PIAG [7],

Async-BCD [8], Arock [9], and Asynchronous SGD [10].

In the last decade, the convergence of many modern algo-

rithms is established under partial asynchrony, e.g., AsySPA

[2], PIAG [7], [11], [12], Async-BCD [8], [13], [14], ARock
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[9], [15], and Asynchronous SGD [10]. However, only a few

algorithms are shown to work under total asynchrony [16]–

[18]. In particular, [16], [17] study Asynchronous SGD and

[18] focuses on a delay-tolerant averaged proximal gradient

algorithm. None of these papers cover total asynchrony for

PIAG and Async-BCD, which are the focus of our work.

Moreover, different from us, the works [16]–[18] do not

characterize how the unbounded delay affects convergence

rates or explores the existence of an optimal rate.

This paper studies two asynchronous optimization algo-

rithms, PIAG and Async-BCD, under total asynchrony. None

of these algorithms has been proven to converge under total

asynchrony before. We make the following contributions:

• We derive explicit convergence rates for PIAG and

Async-BCD under a model of total asynchrony.

• We prove that the derived convergence rates for the two

methods are optimal in terms of order.

• We use the convergence bounds to provide insight and

understanding of how the growth rate of delays slows

down the convergence of PIAG and Async-BCD.

Notation and Preliminaries

We use N and N0 to denote the set of natural numbers

and the set of natural numbers including zero, respectively.

We let [m] = {1, . . . ,m} for any m ∈ N and represent

x ∈ R
d as x = (x(1), . . . , x(m)), where each x(i) ∈ R

d(i)

and
∑n

i=1 d
(i) = d. We define the proximal operator of a

function r : Rd → R ∪ {+∞} as

proxr(x) = argmin
y∈Rd

r(y) +
1

2
‖y − x‖2.

We say a differentiable function f : Rd → R is L-smooth if

‖∇f(x)−∇f(x+ h)‖ ≤ L‖h‖, ∀x, h ∈ R
d.

We call f is L̂-block-wise smooth with respect to a partition

x = (x(1), . . . , x(m)) if for all i, j ∈ [m], and h(j) ∈ R
d(j)

,

‖∇if(x+ U (j)h(j))−∇if(x)‖ ≤ L̂‖h(j)‖. (1)

Here, ∇jf(·) is the partial gradient of f with respect to the

jth block and U (j) : Rd(j) → R
d maps h(j) ∈ R

d(j)

into a

d-dimensional vector where the jth block is h(j) and other

blocks are zero. For an L-smooth function f and a convex

function r : Rd → R ∪ {+∞}, we say P (x) = f(x) + r(x)
satisfies the proximal PL condition [19] for σ > 0 if

σ(P (x) − P ⋆) ≤ −LP̂ (x), ∀x ∈ dom(P ), (2)

where P ⋆ = minx∈Rd P (x) and

P̂ (x) = min
y∈Rd

{〈∇f(x), y−x〉+ L

2
‖y−x‖2+ r(y)− r(x)}.

http://arxiv.org/abs/2203.04611v1


II. PROBLEM STATEMENT

We focus on optimization problems on the form

min
x∈Rd

P (x) = f(x) + r(x), (3)

where f : R
d → R is smooth and possibly non-convex,

and r : R
d → R ∪ {+∞} is convex but possibly non-

differentiable. Such a composite structure is common in,

for example, machine learning where f is a loss and r is

a regularizer. The function r can also represent the indicator

function of a convex set.

We consider the proximal incremental aggregated gradient

(PIAG) algorithm [7] and the asynchronous block-coordinate

descent (Async-BCD) method [8] to solve (3).

A. PIAG

The algorithm solves problem (3) for f on the form

f(x) =
1

n

n∑

i=1

f (i)(x)

using the following update

gk =
1

n

n∑

i=1

∇f (i)(x
k−τ

(i)
k

), (4)

xk+1 = proxγkr(xk − γkgk), (5)

where k is the iteration index, τ
(i)
k ∈ [0, k] is the delay of

the gradient ∇f (i) at iteration k, and γk ≥ 0 is the step-size.

The update (4)–(5) is often implemented in the parameter

server architecture [20], where each worker i computes

∇f (i)(x
k−τ

(i)
k

) and the master aggregates all the most recent

local gradients to form (4) and updates the iterate using (5).

The implementation of PIAG is detailed in Algorithm 1.

B. Async-BCD

Suppose that the non-smooth function r in problem (3)

is separable, i.e., for a partition x = (x(1), . . . , x(m)) with

x(i) ∈ R
d(i)

and
∑m

i=1 d
(i) = d, it holds that r(x) =

∑m
i=1 r

(i)(x(i)) ∀x ∈ R
d. When the dimension d of x is

large, one attractive method for solving (3) is the block-

coordinate descent (BCD) method: at each k ∈ N0, randomly

choose j ∈ [m] and execute the update

x
(j)
k+1 = proxγkr(j)

(x
(j)
k − γk∇jf(xk)),

where ∇jf(·) is the partial gradient of f with respect to

the jth block x(j) and γk ≥ 0 is the step-size. Async-

BCD implements BCD using multiple processors in a shared

memory setting [9]. The decision vector is stored in shared

memory and at each iteration k, one worker ik ∈ [n] updates

x
(j)
k+1 = proxγkr(j)(x

(j)
k − γk∇jf(xk−τk)). (6)

Here, xk−τk is the decision vector that worker ik has read

from shared memory and based its partial gradient computa-

tion on. The delay τk measures the number of updates that

other processors have performed between the read and write

operations of worker ik. The block index j is drawn by ik
uniformly at random at time k− τk. Algorithm 2 details the

implementation of Async-BCD.

Algorithm 1 PIAG [7], [11]

1: Input: initial iterate x0, number of iteration kmax ∈ N.

2: Initialization:

3: The master sets k ← 0, g(i) ← ∇f (i)(x0) ∀i ∈ [n], and

g0 ← 1
n

∑n
i=1∇f (i)(x0).

4: while k ≤ kmax: each worker i ∈ [n] asynchronously

and continuously do

5: receive xk from the master.

6: compute ∇f (i)(xk).
7: send ∇f (i)(xk) to the master.

8: end while

9: while k ≤ kmax: the master do

10: Wait until a set R of workers return.

11: for all w ∈ R do

12: update g(w) ← ∇f (w)(xl).
13: end for

14: set gk ← 1
n

∑n
i=1 g

(i).

15: determine the step-size γk.

16: update xk+1 ← proxγkr(xk − γkgk).
17: set k ← k + 1.

18: for all w ∈ R do

19: send xk to worker w.

20: end for

21: end while

Algorithm 2 Async-BCD

1: Setup: initial iterate x0, number of iteration kmax ∈ N.

2: while k ≤ kmax: each worker i ∈ [n] asynchronously

and continuously do

3: sample j ∈ [m] uniformly at random.

4: compute ∇jf(x̂k) based on x̂k read at time k − τk.

5: determine the step-size γk.

6: compute x
(j)
k+1 by (6).

7: write on the shared memory.

8: set k ← k + 1.

9: read xk from the shared memory.

10: end while

III. MAIN RESULT

In this section, we will derive convergence results for

PIAG and Async-BCD under a totally asynchronous delay

model. In our setting, the totally asynchronous model of

Bertsekas and Tsitsiklis [21] would allow the delays to grow

unbounded, as long as no processor ceases to update and

lim
k→+∞

k − τk = +∞, (7)

where τk = maxi∈[n] τ
(i)
k for PIAG. Convergence rate results

under this model are unlikely since it does not impose any

strict bound on how quickly the delays can grow. We thus

focus on a particular model of asynchrony that satisfies (7).

Assumption 1: For some a ∈ (0, 1), b ∈ [0, 1], and c ≥ 0,

τk ≤ min(k, akb + c), ∀k ∈ N0.



Clearly, Assumption 1 guarantees (7). Moreover, by varying

b ∈ [0, 1] we can move seamlessly between several interest-

ing and important models of asynchrony. In particular,

• b = 0 yields bounded delays: τk ≤ min(k, a+ c).
• b = 1/2 is sublinear growth: τk ≤ min(k, a

√
k + c).

• b = 1 is a linear delay bound: τk ≤ min(k, ak + c).

The linearly growing delay bound is the largest polynomial

growth we can have because when b > 1, the total asyn-

chrony condition (7) no longer holds. Our analysis may be

extended to other delay models, e.g., those in [15] and [22].

A. PIAG

Let us first present the convergence rate guarantees for

PIAG under the delays characterized by Assumption 1. For

convenient notation, we introduce

φ(k) =

{

k1−b, b ∈ [0, 1),

ln k, b = 1,
∀k ∈ N0,

where b is the delay bound parameter in Assumption 1.

Theorem 1: Suppose that each f (i) is Li-smooth, r is con-

vex and closed, P ⋆ := minx P (x) > −∞, and Assumption 1

holds. Define L =
√

(1/n)
∑n

i=1 L
2
i . Let {xk} be generated

by the PIAG algorithm with

γk =
h

L(a( k+c
1−a )

b + c+ 1)
, ∀k ∈ N0, (8)

where h ∈ (0, 1). Then,

(i) There exist ξk ∈ ∂r(xk) ∀k ∈ N0 such that

min
t≤k
‖∇f(xt) + ξt‖2 = O(1/φ(k)).

(ii) If each f (i) is convex, then

P (xk)− P ⋆ = O(1/φ(k)).

(iii) If P satisfies the proximal PL-condition (2), then

P (xk)− P ⋆ = O(λφ(k))

for some λ ∈ (0, 1).
Proof: See Appendix A.

Table I extracts the relationship between the delay bound,

admissible step-size, and convergence rates in Theorem 1.

delay bound step-size rate rate
(non-convex, convex) (proximal PL)

O(kb), b < 1 O(k−b) O(1/k1−b) O(λk
1−b

)

O(kb), b = 1 O(1/k) O(1/ lnk) O(1/k)

TABLE I: asynchrony, step-size, and convergence rate.

Note that when b = 0, which corresponds to bounded

delays, the convergence rates in Table I match those of

PIAG under partial asynchrony [7], [11], [12], [23] and those

of gradient descent [19], [24], i.e., O(1/k) for non-convex

and convex objective functions and linear convergence if

the proximal PL-condition holds. The table quantifies how

large delays limit the admissible step-sizes and deteriorate

the convergence rates, which agrees with intuition.

B. Async-BCD

Based on the block-wise smoothness assumption (1), the

following theorem establishes convergence rates for Async-

BCD in solving problem (3).

Theorem 2: Suppose that f is L̂-block-wise smooth with

respect to the partition x = (x(1), . . . , x(m)), each r(i) is

convex and closed, P ⋆ := minx P (x) > −∞, and that

Assumption 1 holds. Let {xk} be generated by the Async-

BCD algorithm with

γk =
h

L̂(a( k+c
1−a )

b + c+ 1)
, ∀k ∈ N0, (9)

where h ∈ (0, 1). Then,

min
t≤k

E[‖∇̃P (xt)‖2] = O(1/φ(k)),

where ∇̃P (xt) = L̂(prox 1
L̂
r(xt − 1

L̂
∇f(xt))− xt).

Proof: See Appendix B.

In Theorem 2, ∇̃P (x) = 0 if and only if 0 ∈ ∂P (x), i.e., x
is a stationary point of problem (3). When b = 0, our con-

vergence rate is of the same order compared to Async-BCD

under partial asynchrony [13], [14]. The relationship between

delay bound, step-size, and convergence rate of Async-BCD

is summarized in Table I for non-convex objective functions.

Again, a larger delay requires smaller step-sizes and leads to

a slower convergence.

C. Optimal convergence rate

The next result establishes that the convergence rates in

the preceding theorems are optimal under Assumption 1, and

not a consequence of the particular step-size policies.

Theorem 3: The convergence rates for PIAG and Async-

BCD derived in Theorems 1–2 are order-optimal.

1) Proof of Theorem 3: We prove our claim by construct-

ing an objective function and a delay sequence that satisfy

the assumptions of the preceding theorems, and are such that

the proposed rates are optimal.

Let r ≡ 0 and let f be L-smooth for some L > 0. Then,

both PIAG and Async-BCD reduce to

xk+1 = xk − γk∇f(xk−τk). (10)

Now, consider the delay sequence

τk = k − Tt, if k ∈ [Tt, Tt+1), (11)

where {Tt} is defined by T0 = 0 and

Tt+1 = max{κ ∈ N0 : κ− (aκb + c) ≤ Tt}+ 1 (12)

for some a ∈ (0, 1), b ∈ [0, 1], and c ≥ 0. In this way, for

any k ∈ [Tt, Tt+1), it holds that k−(akb+c) ≤ Tt. By (11),

τk ≤ akb + c and τk ≤ k, so {τk} satisfies Assumption 1.

By substituting (11) into (10), we obtain

xk+1 = xTt
− (

k∑

ℓ=Tt

γℓ)∇f(xTt
), ∀k ∈ [Tt, Tt+1).



This implies that xk, k ∈ N is obtained by performing

max{t ∈ N0 : Tt ≤ k − 1} + 1 steps of gradient descent

starting from x0. Moreover, we prove in Appendix C that

max{t ∈ N0 : Tt ≤ k − 1}+ 1 = O(φ(k)). (13)

The result now follows by observing that after O(φ(k)) steps

of gradient descent on a general L-smooth function or a

general L−smooth and proximal PL function, we cannot

obtain better order of convergence [19], [25] than those in

Theorems 1–2.

IV. NUMERICAL EXPERIMENTS

We demonstrate the theoretical results in Theorems 1–2

and evaluate the practical performance of the two methods

under total asynchrony in simulations. We consider a binary

classification problem on the training data set of RCV1 [26]

using the regularized logistic regression model:

f(x) =
1

N

N∑

i=1

(

log(1 + e−pi(q
T
i x)) +

λ2

2
‖x‖2

)

,

r(x) = λ1‖x‖1,

where pi is the feature of the ith sample, qi is the corre-

sponding label, and N is the number of samples. We use

(λ1, λ2) = (10−5, 10−4) in all simulations.

A. PIAG

We split the N samples into n = 10 batches and assign

each batch to a single worker. We consider the following

delay model: τ
(i)
0 = 0 for all i ∈ [n]. For all k ∈ N and

i ∈ [n], if τ
(i)
k−1 ≤ min(k, akb+ c)−1, then τ

(i)
k = τ

(i)
k−1+1;

Otherwise, τ
(i)
k is randomly drawn from [min(k, ⌊akb+c⌋)].

We use a = 0.1 and c = 0, and consider b = 0.2, 0.6 and

1 to evaluate the effect of delays. Note that the constructed

delay sequence satisfies Assumption 1.

We plot the objective error P (xk) − P ⋆ generated by

PIAG in Fig 1(a), and the theoretical bound O(1/φ(k))
in Theorem 1 for the convex objective functions in Fig

1(b), where the exact value of the bound is obtained by

substituting (16) into (15). Although the rate O(λφ(k)) in

Theorem 1 also holds since the objective function satisfies

the proximal PL-condition, it is quite slow because the

parameter λ2 is small. Observe from Fig 1(a) that PIAG

tends to converge for all three b’s, and the convergence speed

deteriorates as b increases. These demonstrate Theorem 1.

Through comparison between Fig 1(a)–1(b) that are with

different y-scale, although the theoretical bound is much

larger than the practical objective error for all three values

of b, their decreasing speed are similar.

B. Async-BCD

We use n = 8 processors and split the decision vector x
evenly into m = 14 blocks. We set τ0 = 0. For all k ∈ N,

τk = τk−1 + 1 if τk−1 + 1 ≤ min(k, ⌊akb + c⌋) and is

randomly drawn from [min(k, ⌊akb + c⌋)] otherwise. Like

above, we set a = 0.1 and c = 0, and consider b = 0.2, 0.6,

and 1. The resulting delay sequence satisfies Assumption 1.
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Fig. 1: Convergence of PIAG

Fig 2 plots the convergence of objective error P (xk)−P ⋆

generated by Async-BCD. We observe that for small value

0.2 of b, the convergence to optimum is clear and fast and for

larger values 0.6 and 1, the convergence to optimum is hard

to observe which is normal because the delays corresponding

to b = 0.6 and b = 1 increase too fast and coordinate-type

methods often converge slowly in terms of iteration number.

V. CONCLUSION

We have derived explicit convergence rates of PIAG and

Async-BCD under a model of computation that allows for a

broad range of totally asynchronous behaviours. The conver-

gence rates are optimal in terms of the order of iteration index

k and reflect how asynchrony affects the convergence times

of the algorithms. The theoretical results were validated in

simulations. We believe that the proposed techniques apply

also to other asynchronous optimization algorithms, but leave

such studies for future work.
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Fig. 2: Convergence of Async-BCD

APPENDIX

A. Proof of Theorem 1

The proof uses [23, Theorem 2].

Theorem 4 ( [23]): Under the conditions in Theorem 1,

if for some h ∈ (0, 1),

k∑

t=k−τk

γt ≤
h

L
, (14)

then

(1) There exist ξk ∈ ∂r(xk) ∀k ∈ N0 such that

∞∑

k=1

γk−1‖∇f(xk)+ξk‖2≤
2(h2−h+1)(P (x0)−P ⋆)

1− h
.

(2) If each f (i) is convex, then

P (xk)− P ⋆ ≤
P (x0)− P ⋆ + 1

2a0
‖x0 − x⋆‖2

1 + 1
a0

∑k−1
t=0 γt

, (15)

where a0 = h(h+1)
L(1−h) .

(3) If P satisfies the proximal PL-condition (2), then

P (xk)−P (x⋆)≤e
−

3βσ(1−h̃)

4(h̃2
−h̃+1)

∑k−1
t=0 γt(P (x0)−P ⋆),

where h̃ = 1+h
2 and β = min

(
1, 1−h

2h
L
σ

)
.

To prove Theorem 1 using Theorem 4, we first show that

{γk} in (8) satisfies (14). Because τk ≤ akb + c ≤ ak + c,
for any t ∈ [k − τk, k], we have t ≥ k − τk ≥ (1− a)k − c,
so that

γt =
h

L(a( t+c
1−a )

b + c+ 1)
≤ h

L(akb + c+ 1)
.

Using the above equation and τk ≤ akb + c, we have

k∑

t=k−τk

γt ≤
(τk + 1)h

L(akb + c+ 1)
≤ h

L
,

i.e., (14) holds.

Next, we show that 1/
∑k

t=0 γt = O(1/φ(k)). For any

t ∈ N,

γt =
h

L(a( t+c
1−a )

b + c+ 1)

=
h(t+ c)−b

L(a(1− a)−b + (c+ 1)(t+ c)−b)

≥ h(t+ c)−b

L(a(1− a)−b + (c+ 1)1−b)
.

In addition, γ0 = h
L(a( c

1−a
)b+c+1)

. Then, for any k ∈ N,

k−1∑

t=0

γt ≥ γ0 +

k−1∑

t=1

γt

≥ γ0 +

∫ k

1

h(s+ c)−b

L(a(1− a)−b + (c+ 1)1−b)
ds

=
h

L(a( c
1−a )

b + c+ 1)

+







h((k+c)1−b−(1+c)1−b)
L(a(1−a)−b+(c+1)1−b)(1−b)

, b∈ [0, 1),
h ln( k+c

1+c
)

L(a/(1−a)+1) , b = 1,

(16)

which indicates 1/
∑k−1

t=0 γt = O(1/φ(k)). Hence, the re-

sults in Theorem 1 for convex and proximal PL functions

hold.
Also note that the result in Theorem 4 for non-convex

objective functions implies

(

k−1∑

t=0

γt)min
t≤k
‖∇f(xt)+ξt‖2

≤
k∑

t=1

γt−1‖∇f(xt) + ξt‖2

≤
∞∑

t=1

γt−1‖∇f(xt) + ξt‖2

≤2(h2−h+1)(P (x0)−P ⋆)

1− h
.

(17)

By substituting (16) into (17), we obtain the result in

Theorem 1 for non-convex objective functions.

B. Proof of Theorem 2

The proof uses [23, Theorem 3].
Theorem 5 ( [23]): Under the conditions in Theorem 2,

if for some h ∈ (0, 1),

k∑

t=k−τk

γt ≤
h

L̂
, ∀k ∈ N0,

then
∞∑

k=0

γkE[‖∇̃P (xk)‖2] ≤
4m(P (x0)− P ⋆)

1− h
.

Using similar derivation of (17) in Appendix A, we have

min
t≤k

E[‖∇̃P (xt)‖2] ≤
4m(P (x0)− P ⋆)

(1 − h)
∑k−1

t=0 γt
.

Moreover, similar to the derivation of (16), 1/
∑k

t=0 γt =
O(1/φ(k)). Then, we obtain the result.



C. Proof of (13)

By (12), for any κ > Tt+1−1, we have κ−(aκb+c) > Tt.

Therefore,

Tt+1 ≥ Tt + aT b
t+1 + c

≥ Tt + aT b
t + c,

(18)

where the second step uses Tt+1 ≥ Tt derived from the first

step.

Case 1: b ∈ [0, 1). The proof uses induction. Let η =

a(1− b)2−
b

1−b . Suppose that Tt ≥ (ηt)
1

1−b for some t ∈ N0,

which holds naturally at t = 0, 1. Then, by (18),

Tt+1 − (η(t+ 1))
1

1−b

≥(ηt) 1
1−b + a(ηt)

b
1−b + c− (η(t+ 1))

1
1−b

=(ηt)
1

1−b

(

1 +
a

ηt
− (1 +

1

t
)

1
1−b

)

︸ ︷︷ ︸

v(t)

+c.
(19)

Note that v′(t) = − 1
t2 (

a
η − 1

1−b (1 +
1
t )

b
1−b ), which satisfies

v′(t) ≤ − 1
t2 (

a
η − 1

1−b2
b

1−b ) = 0 when t ≥ 1. Hence,

v(t) is monotonically decreasing on [1,+∞) and v(t) ≥
limℓ→+∞ v(ℓ) = 0 for all t ≥ 1, which, together with (19),

gives Tt+1 ≥ (η(t + 1))
1

1−b . Hence, t ≤ (Tt)
1−b

η for all

t ∈ N0 and max{t ∈ N0 : Tt ≤ k − 1} ≤ (k−1)1−b

η , i.e.,

max{t ∈ N0 : Tt ≤ k − 1}+ 1 = O(k1−b).
Case 2: b = 1. By (18),

Tt+1 ≥ (1 + a)Tt ≥ (1 + a)tT1 ≥ (1 + a)t,

so that t ≤ ln Tt

1+a +1. Hence, max{t ∈ N0 : Tt ≤ k− 1} ≤
ln k−1

1+a + 1, i.e., max{t ∈ N0 : Tt ≤ k − 1}+ 1 = O(ln k).
Concluding the two cases, we complete the proof.
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[8] J. Liu, S. Wright, C. Ré, V. Bittorf, and S. Sridhar, “An asynchronous
parallel stochastic coordinate descent algorithm,” in International

Conference on Machine Learning. PMLR, 2014, pp. 469–477.
[9] Z. Peng, Y. Xu, M. Yan, and W. Yin, “ARock: an algorithmic frame-

work for asynchronous parallel coordinate updates,” SIAM Journal on

Scientific Computing, vol. 38, no. 5, pp. A2851–A2879, 2016.

[10] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent,” Advances in

Neural Information Processing Systems, vol. 24, pp. 693–701, 2011.
[11] N. D. Vanli, M. Gurbuzbalaban, and A. Ozdaglar, “Global convergence

rate of proximal incremental aggregated gradient methods,” SIAM

Journal on Optimization, vol. 28, no. 2, pp. 1282–1300, 2018.
[12] T. Sun, Y. Sun, D. Li, and Q. Liao, “General proximal incremental

aggregated gradient algorithms: Better and novel results under general
scheme,” Advances in Neural Information Processing Systems, vol. 32,
pp. 996–1006, 2019.

[13] D. Davis, “The asynchronous palm algorithm for nonsmooth noncon-
vex problems,” arXiv preprint arXiv:1604.00526, 2016.

[14] T. Sun, R. Hannah, and W. Yin, “Asynchronous coordinate descent
under more realistic assumption,” in Proceedings of the 31st Interna-

tional Conference on Neural Information Processing Systems, 2017,
pp. 6183–6191.

[15] H. R. Feyzmahdavian and M. Johansson, “Asynchronous iterations in
optimization: New sequence results and sharper algorithmic guaran-
tees,” arXiv preprint arXiv:2109.04522, 2021.

[16] Z. Ren, Z. Zhou, L. Qiu, A. Deshpande, and J. Kalagnanam, “Delay-
adaptive distributed stochastic optimization,” in Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp.
5503–5510.

[17] Z. Zhou, P. Mertikopoulos, N. Bambos, P. Glynn, and Y. Ye, “Dis-
tributed stochastic optimization with large delays,” Mathematics of

Operations Research, 2021.
[18] K. Mishchenko, F. Iutzeler, J. Malick, and M.-R. Amini, “A delay-

tolerant proximal-gradient algorithm for distributed learning,” in In-

ternational Conference on Machine Learning. PMLR, 2018, pp.
3587–3595.

[19] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gra-
dient and proximal-gradient methods under the polyak-łojasiewicz
condition,” in Joint European Conference on Machine Learning and

Knowledge Discovery in Databases. Springer, 2016, pp. 795–811.
[20] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A. Smola,

“Parameter server for distributed machine learning,” in Big Learning

NIPS Workshop, vol. 6, 2013.
[21] D. Bertsekas and J. Tsitsiklis, Parallel and distributed computation:

numerical methods. Athena Scientific, 2015.
[22] T. Chen and L. Wang, “Global µ-stability of delayed neural networks

with unbounded time-varying delays,” IEEE Transactions on Neural

Networks, vol. 18, no. 6, pp. 1836–1840, 2007.
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