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Abstract— This paper considers privacy-concerned dis-
tributed constraint-coupled resource allocation problems over
an undirected network, where each agent holds a private cost
function and obtains the solution via only local communication.
With privacy concerns, we mask the exchanged information
with independent Laplace noise against a potential attacker
with potential access to all network communications. We
propose a differentially private distributed mismatch tracking
algorithm (diff-DMAC) to achieve cost-optimal distribution of
resources while preserving privacy. Adopting constant stepsizes,
the linear convergence property of diff-DMAC in mean square
is established under the standard assumptions of Lipschitz
gradients and strong convexity. Moreover, it is theoretically
proven that the proposed algorithm is ε-differentially private.
And we also show the trade-off between convergence accuracy
and privacy level. Finally, a numerical example is provided for
verification.

I. INTRODUCTION

Distributed resource allocation problem (DRAP) has re-
ceived much attention due to its wide applications in various
domains, including smart grids [1], wireless networks [2]
and robot networks [3]. The goal of DRAP is to achieve the
cost-optimal distribution of limited resources among users to
meet their demands, local constraints, and possibly certain
coupled global constraints, see [4] for example. Conventional
centralized approaches are subject to performance limitations
of the central entity, such as a single point of failure, limited
scalability. Moreover, it may raise privacy concerns when the
central agent is not reliable enough. Alternatively, distributed
approaches which operate with only local information have
better robustness and scalability, especially for large-scale
systems [5]–[7].

To implement algorithms in a distributed manner, the
information exchange between agents in the network is
unavoidable which can raise concerns about privacy dis-
closure. For example, in the supply–demand optimization
of the power grid, attackers can infer users’ life patterns
from certain published information that is computed based
on the demand from users [8]. While the aforementioned
works consider an ambitious suite of topics under various
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constraints imposed by real-world applications, privacy is an
aspect generally absent in their treatments.

Recently, privacy preservation becomes an increasingly
critical issue for distributed systems. Encryption-based al-
gorithms are proposed for distributed optimization problems
[9], [10] and proved to be effective. However, the encryption
technique leads to a high computational complexity which
seems undesirable in large-scale networks. To preserve the
privacy of the agents’ costs, an asynchronous heterogeneous-
stepsize algorithm is proposed in [11], but the method
assumes that the infomation of communication topology is
unavailable to attackers.

Another thread to address distributed optimization prob-
lems is to adopt differential privacy technique which is
robust to arbitrary auxiliary information exposed to attackers,
including communication topology information, thus well
suited for multi-agents scenarios. Motivated by the privacy
concerns in EV charging networks, the work in [8] presents
a differentially private distributed algorithm to solve dis-
tributed optimization problem, but an extra central agent is
needed. In [12], the authors design a completely distributed
algorithm that guarantees differential privacy by perturbing
the states with Laplace noise. It requires the stepsize to be
decaying to guarantee the convergence, resulting in a low
convergence rate. Adopting the gradient-tracking scheme, a
differentially private distributed algorithm is proposed in [13]
which has a linear convergence rate with constant stepsizes.
However, the proposed algorithm in [13] is only applica-
ble to unconstrained problems. For solving the economic
dispatch problem where both global and local constraints
are considered, a privacy-preserving distributed optimization
algorithm is proposed in [14] for quadratic cost functions and
its effctiveness in preserving privacy is guaranteed through
qualitative analysis. The extension to general DRAPs is
performed in [15] for strongly convex and Lipschitz smooth
cost functions. Additionally, quantitative analysis of privacy
is provided. However, the work only considers scalar cost
functions and the coupling within constraints is ignored.

In this paper, a differentially private distributed mis-
match tracking algorithm (diff-DMAC) is proposed to solve
constraint-coupled DRAPs with individual constraints and a
global linear coupling constraint while preserving the privacy
of the local cost functions. To meet the global coupled-
constraint, a mismatch tracking step is introduced to obtain
the supply-demand mismatch in the network. And the tracked
global mismatch is then implemented for error compensation.
With a constant stepsize, diff-DMAC has a provable linear
convergence rate for strongly convex and Lipschitz smooth
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cost functions. We further present a rigorous analysis of the
algorithm’s differential privacy and thus provide a stronger
privacy guarantee. Finally, its convergence properties and
effectiveness in privacy-preserving are numerically validated.

The rest of the paper is organized as follows. Section II
formulates the constraint-coupled DRAP. The proposed algo-
rithm is developed in Section III. And the theoretical analyses
about its convergence and privacy are given in Section IV
and V, respectively. Then the algorithm is numerically tested
in Section VI. Finally, Section VII concludes the paper.

Notation: Vectors default to columns if not otherwise spec-
ified. Bold letter x ∈ Rn×p is defined as x = [xᵀ1 , · · · , xᵀn]ᵀ.
The Kronecker product is denoted by ⊗. Let 1n be the n-
dimension vector with all one entries. For vectors, we use
‖ · ‖ to denote the 2-norm. And for matrices, ‖ · ‖ denotes
the spectral norm. λ(X) denotes the minimum eigenvalue
of matrix X . We use blkdiag(X1, · · · , Xn) to refer to
the block-diagonal matrix with X1, · · · , Xn as blocks. For
a random variable x ∈ R, Lap(θ) denotes the Laplace
distribution with pdf f = (x|θ) = 1

2θ e
− |x|θ , where θ > 0.

If x ∼ Lap(θ), we have E[|x|] = θ, E[x2] = 2θ2. P(·) is
used to denote the probability. B(S) denotes the set of Borel
subsets of topological space S.

II. PROBLEM FORMULATION

We consider the following general constraint-coupled dis-
tributed resource allocation problem

min
x∈Rnp

f(x) =

n∑
i=1

fi(xi)

s.t.

n∑
i=1

Aixi =

n∑
i=1

di, xi ∈ Xi,∀i, (1)

where fi : Rp → R is the agent i’s private cost function,
xi ∈ Rp is the decision vector of agent i and di denotes the
local resource demand. Xi is a local convex and closed set
which encodes local constraints of agent i. Ai ∈ Rm×p (p ≥
m) is the coupling matrix with full row rank and Aᵀ

iAi is
invertible, i.e., λ(Aᵀ

iAi) > 0.
Many practical problems take the form of problem (1),

e.g., [1], [16]. One typical example is the economic dispatch
of multi-microgrid (multi-MG) systems as shown in Fig. 1,
where both microturbines and non-dispatchable distributed
generators are involved to provide energy to meet the loads,
and the outputs of non-dispatchable distributed generators
can fluctuate significantly [16]. When the supply-demand
balance in the MG cannot be maintained, the coordination
among MGs is needed and both within-MG, between-MG
optimization problems should be considered to improve
systems’ reliability [17].

Assumption 1: Each cost function fi : Rp → R is strongly
convex and Lipschitz smooth, i.e.,

‖∇fi(x)−∇fi(x′)‖ ≤ Li‖x− x′‖ (2)

and

(x− x′)ᵀ (∇fi(x)−∇fi(x′)) ≥ ϕi‖x− x′‖2 (3)

Fig. 1. Multi-microgrid systems with distributed generators.

∀x, x′ ∈ Rp, where ϕi > 0 and Li < ∞ are the strong
convexity and Lipschitz constants, respectively. Define ϕ =

mini{ϕi} and L = maxi{Li}.
The communication network over which agents exchange

information can be represented by an undirected graph G =
(N , E) where N = {1, · · · , n} is the set of agents and
E ⊆ N × N denotes the set of edges, accompanied with
a nonnegative weighted matrix W . For any i, j ∈ N in the
network, wij > 0 denotes agent j can exchange information
with agent i. The collection of all individual agents that agent
i can communicate with is defined as its neighbors set Ni.

Assumption 2: The graph G is undirected and connected
and the weight matrix W ∈ Rn×n is doubly stochastic, i.e.,
W1n = 1n and 1ᵀ

nW = 1ᵀ
n.

Assumptions 1-2 are standard when solving related prob-
lems.

In this problem, agents want to achieve the optimum while
preserving the privacy of local cost functions which can be
commercially sensitive in practice. To preserve privacy of
functions, we add noise ζ to mask the exchanged information
x(k) at each time instant as z(k) = x(k) + ζ(k). Let F be
the function set {fi}ni=1, the update of x can be expressed
in impact form

x(k + 1) = g(x(k), ζ(k),W,F),

where g(·) denotes the update rule. Therefore, exchanged
information z = {z(k)}∞k=0 can be determined if the
initialization x(0), the added noises ζ = {ζ(k)}∞k=0, the
communication topology W and the function set F are
known. To provide theoretical guarantees on the privacy for
their cost functions, the concept of differential privacy is
introduced, see [15].

Definition 1: Given δ > 0 and two function sets F (1) =

{f (1)i }ni=1 and F (2) = {f (2)i }ni=1, the two subsets are δ-
adjacent if there exists δ′ ∈ (−δ, δ) and some i0 such that

f
(1)
i = f

(2)
i ,∀i 6= i0;∇f (1)i0

(x) = ∇f (2)i0
(x+ δ′),∀x ∈ X (1)

i0
,

where X (l)
i0

is the domain of f (l)i0 , l = 1, 2 and they satisfy
that X (2)

i0
= {x+ δ′|x ∈ X (1)

i0
}.

Definition 2: Given δ, ε > 0, for any two δ-adjacent func-
tion sets F (1),F (2) and any observation O ⊂ B((Rnm)N),
the process keeps ε-differentially private if

P{ζ ∈ Ω|ZT (1)(ζ) ∈ O} ≤ eεP{ζ ∈ Ω|ZT (2)(ζ) ∈ O},



where we define T (l) = {x(0),W,F (l)}, ZT (1)(ζ) = z and
the observation O encodes all the information collected by
the potential attacker.

The attacker is assumed to know all auxiliary informa-
tion, including the exchanged information between agents,
communication topology, etc., except the parameter δ′. Intu-
itively, differential privacy guarantees that the two function
sets can not be distinguished through the released informa-
tion and thus avoids the leakage of the optimal operating
point.

III. ALGORITHM DEVELOPMENT

In this section, a distributed algorithm is designed to
solve constraint-coupled DRAPs with privacy concerns. The
following Proposition is presented to give the optimal con-
ditions for constraint-coupled DRAP.

Proposition 1: x? = [x?1
ᵀ, · · · , x?n

ᵀ] ∈ Rn×p is the
optimal solution of (1) if it satisfies
i)
∑n
i=1Aix

?
i =

∑n
i=1 di,

ii) there exists µ? ∈ Rm such that

x = arg min
z∈X
{f(z)− (1n ⊗ µ?)ᵀAz}, (4)

where X is defined as the Cartesian product X = X1×· · ·×
Xn and the matrix A = blkdiag(A1, · · · , An).

Proof: i) is one of the feasible conditions of (1) which
must be satisfied. Problem (4) can be decomposed into n
subproblems x?i = arg minz∈Xi{fi(z) − µ?ᵀAiz},∀i =
1, · · · , n. It follows that

fi(x
?
i )− µ?

ᵀAix
?
i ≤ fi(xi)− µ?

ᵀAixi, ∀xi ∈ Xi.

Summing the above inequality from i = 1 to n yields
n∑
i=1

fi(x
?
i ) ≤

n∑
i=1

fi(xi)− µ?ᵀ(

n∑
i=1

Aixi −
n∑
i=1

Aix
?
i ).

If x? satisfies condition i),
∑n
i=1Aixi −

∑n
i=1Aix

?
i = 0

holds for any feasible solution x of (1). Thus, we have
f(x?) ≤ f(x) which completes the proof. �

In the following, we will use Proposition 1 to develop a
distributed algorithm for solving the DRAP (1). Based on the
condition ii) of Proposition 1, the x-update is designed and
the consensus protocol [18] is adopted to drive µi in each
agent to same value

µ(k + 1) = Wµ(k), (5)
x(k + 1) = arg min

z∈X
{f(z)− µᵀ(k + 1)Az}, (6)

where we define W =W ⊗ Im.
Inspired by the gradient-tracking scheme [19] , a tracking

step is introduced here to track the global supply-demand
mismatch as follows

y(k + 1) = Wy(k) + Ax(k + 1)−Ax(k). (7)

Under Assumption 2, if the initialization condition (1n ⊗
Im)ᵀ(Ax(0)−d) = (1n⊗Im)ᵀy(0) holds, iteration (7) can
infer that

n∑
i=1

yi(k) =

n∑
i=1

Aixi(k)−
n∑
i=1

di, ∀k > 0. (8)

To guarantee the condition i) of Proposition 1 holds, the
tracked mismatch is used as a compensation term for µ-
update (5). Thus, the proposed algorithm is obtained

µ(k + 1) = Wµ(k)− αy(k), (9)
x(k + 1) = arg min

z∈X
{f(z)− µᵀ(k + 1)Az}, (10)

y(k + 1) = Wy(k) + Ax(k + 1)−Ax(k). (11)

The following Lemma shows the fixed point of the pro-
posed algorithm is consistent with the optimal solution of
the problem when Assumption 2 holds.

Lemma 1: Under Assumption 2, any fixed point of the pro-
posed algorithm satisfies the optimal conditions of constraint-
coupled DRAP.

Proof: It is not difficult to check that any fixed point
(µF ,xF ,yF ) of the proposed algorithm satisfies

(Inm −W)µF = −αyF , (12)
xF = arg min

z∈X
{f(z)− µᵀ

FAz}, (13)

(Inm −W)yF = 0. (14)

Under Assumption 2, from (12) and (14), we have

(1n ⊗ Im)ᵀyF = 0, yF = 1n ⊗ yF . (15)

Thus, yF = 0 holds and combining it with (12) yields

µF = 1n ⊗ µF . (16)

Moreover, with proper initialization, from (8) we have

(1n ⊗ Im)ᵀ(AxF − d) = (1n ⊗ Im)ᵀyF = 0. (17)

where (13), (16) and (17) correspond to the optimal condi-
tions in Proposition 1 which completes the proof. �

With privacy concerns, agents exchange noise-masked
information against potential attackers to prevent informa-
tion disclosure. In [20], Laplace noise is shown to satisfy
the necessary and sufficient condition of differential pri-
vacy. Furthermore, due to the noise accumulation in the
tracking process as

∑n
i=1 yi =

∑n
i=1Aixi −

∑n
i=1 di +∑n

i=1

∑n−1
t=0 ζi(t), the added noise ζi needs to decay to

ensure the convergence of yi. Likewise, ηi also needs to
decay for the convergence of µi and yi. Thus, the added
noises are set to ηi(k) ∼ Lap(θηik), ζi(k) ∼ Lap(θζik)

where θηik = dηiqi
k, θζik = dζiqi

k, qi ∈ (0, 1). That is, two
diminishing Laplace noises are added to the communication
process of µi, yi, respectively. Both of them are shown to
be necessary in Section V.

Based on the mismatch tracking scheme and the
information-masked protocol, a differentially private dis-
tributed mismatch tracking algorithm (diff-DMAC) is pro-
posed which is shown in Algorithm 1 in details.

IV. CONVERGENCE ANALYSIS FOR DIFF-DMAC

In this section, we will establish the linear convergence
rate of the proposed algorithm in mean square. And the
upper and lower bounds of the convergence accuracy is also
provided. We set di = 0, ∀i in the following analysis for
simplicity while nonzero scenarios can be analyzed similarly.



Algorithm 1 : diff-DMAC Algorithm
1: Initialization: xi(0) and µi(0) are arbitrarily assigned

and yi(0) = Aixi(0)− di.
2: for k = 0, 1, ... do
3: Adds noise ηi(k), ζi(k) to get zµi(k) and zyi(k) as

zµj (k) = µj(k) + ηj(k), zyj (k) = yj(k) + ζj(k).
4: Broadcasts zµi(k) and zyi(k) to j ∈ Ni.
5: Receives zµj (k) and zyj (k) from j ∈ Ni
6: Updates µi(k + 1) through

µi(k + 1) =
∑n
j=1 wijzµj (k)− αyi(k)

7: Updates xi(k + 1) through
xi(k + 1) = arg minz∈Xi{fi(z)− µ

ᵀ
i (k + 1)Aiz}

8: Updates yi(k + 1) through
yi(k+1) =

∑n
j=1 wijzyj (k)+Aixi(k+1)−Aixi(k).

9: end for

Let ∇f(x) = [∇f1(x1)
ᵀ
, · · · ,∇fn(xn)

ᵀ
]ᵀ and W̄ =

1ᵀ
n1n
n ⊗ Im, W̌ = Inm−W̄, W̃ = WW̌. From (7), (9), we

have that

µ̄(k + 1) = µ̄(k) + η̄(k)− αȳ(k), (18)
ȳ(k + 1) = ȳ(k) + ζ̄(k) + W̄A(x(k + 1)− x(k)), (19)

µ̌(k + 1) = W̃(µ̌(k) + η̌(k))− αy̌(k), (20)

y̌(k + 1) = W̃(y̌(k) + ζ̌(k)) + W̌A(x(k + 1)− x(k)),
(21)

where µ̄ = W̄µ, µ̌ = W̌µ and the doubly stochasticity of
the weight matrix is used here. Under Assumption 2, as a
consequence of the Perron–Frobenius theorem, we have that
‖W − 1ᵀ1

n ‖ < 1, and thus

λ̄ = ‖W̃‖ = ‖(W − 1ᵀ1

n
)⊗ Im‖ < 1. (22)

Lemma 2: For positive a1, a2, a3 > 0, if a1a2a3 > 1
holds, there exist γ1, γ2, γ3 > 0 such that

γ1 < a1γ2, γ2 < a2γ3, γ3 < a3γ1. (23)

The proof is omitted. Note that for any β > 0, γ′i = βγi,
i = 1, 2, 3, also satisfy the condition (23). Define C = {1 +

(‖A‖
2α2

ϕ2 − 2α
L

) · λ(AᵀA)} 1
2 . Based on the above results, the

following Theorem is proved by induction argument.
Theorem 1: Given a constant r ∈ (rLB ,∞), where rLB is

defined as rLB = max{qζi , qηi , C, λ̄}. Suppose Assumptions
1,2 hold, α satisfies

α <
ϕ2

2‖A‖2L
and

(r − C)ϕ

α‖A‖
(
(r − λ̄)2ϕ

2α‖A‖
− 1) > 1. (24)

then the sequences generated by diff-DMAC satisfy

E[‖µ̌(k)‖] ≤ γ1rk, (25)

E[‖y̌(k)‖] ≤ γ2rk, (26)

E[‖x(k)− x∞‖] ≤ γ3rk, (27)

E[‖µ̄(k)− µ∞‖] ≤ γ4rk, (28)

for some constant γ1, γ2, γ3, γ4 > 0, where x∞ and µ∞

satisfy

W̄Ax∞ = −
∞∑
k=1

ζ̄(k), W̄µ∞ = µ∞, (29)

x∞i = arg min
z∈Xi
{∇fi(z)− µ∞i

ᵀAiz},∀i. (30)

Proof: Combining (18) and (29), we have that

µ̄(k + 1)− µ̄∞ =µ̄(k)− µ̄∞ − αW̄A(x(k)− x∞)

+ α

∞∑
t=k

ζ̄(t) + η̄(k). (31)

Under Assumption 1, the function

f∗i (Aᵀ
i µi) = arg max

z∈Xi
{µᵀ

iAiz − fi(z)}

is differentiable and f∗i satisfies 1
Li
−strongly convex and

1
ϕi
−Lipschitz smooth [21]. Furthermore, it follows (10) and

the Proposition B.25 in [22] that

xi(k) = ∇f∗i (Aᵀ
i µi(k)),∀i. (32)

From (30) and (32), we can obtain that

‖µ̄(k)− µ∞ − αW̄A(x(k)− x∞)‖
= ‖µ̄(k)− µ∞ − αW̄A(∇f∗(Aᵀµ(k))−∇f∗(Aᵀµ∞))‖
≤
{
‖µ̄(k)− µ∞‖2 + α2‖∇f∗(Aᵀµ̄(k))−∇f∗(Aᵀµ∞)‖

−2α(µ̄(k)− µ∞)ᵀA(∇f∗(Aᵀµ̄(k))−∇f∗(Aᵀµ∞))}
1
2

+ α‖∇f∗(Aᵀµ(k))−∇f∗(Aᵀµ̄(k))‖

≤ C‖µ̄(k)− µ∞‖+
‖A‖2α
ϕ
‖µ̌(k)‖, (33)

where C < 1 under (24) and the last inequality follows from
the strongly convexity and Lipschitz smoothness of f∗.

We will prove (25)-(28) by induction. When κ = 0, it
is not difficult to find γ1, γ2, γ3, γ4 > 0 such that (25)-
(28) hold. We assume that for all κ ≤ k, (25)-(28) hold.
Considering κ = k + 1, we obtain from (31) and (33) that

E[‖µ̄(k + 1)− µ∞‖]

≤ CE[‖µ̄(k)− µ∞‖] +
‖A‖α
ϕ

E[‖µ̌(k)‖]

+ E[‖α
∞∑
t=k

ζ̄(t)‖]− E[‖η̄(k)‖]

≤ Cγ4rk +
‖A‖α
ϕ̄

γ1r
k + nmq̄kd̄η +

αnmq̄kd̄ζ
1− q̄

. (34)

Combining (20)-(22) gives

E[‖µ̌(k + 1)‖] ≤ λ̄E[‖µ̌(k)‖] + αE[‖y̌(k)‖] + λ̄E[‖η̌(k)‖]
≤ λ̄γ1rk + αγ2r

k + λ̄nmq̄kd̄η, (35)

E[‖y̌(k + 1)‖] ≤ λ̄E[‖y̌(k)‖] + ‖A‖E[‖x(k)− x∞‖]
+ ‖A‖E[‖x(k + 1)− x∞‖] + λ̄E[‖ζ̌(k)‖]
≤ λ̄γ2rk + ‖A‖γ3rk + λ̄nmq̄kd̄ζ

+ ‖A‖E[‖x(k + 1)− x∞‖]. (36)



Under Assumption 1, (32) implies that

E[‖x(k + 1)− x∞‖] = E[‖∇f∗(Aµ(k + 1))−∇f∗(Aµ∞)‖]

≤ ‖A‖
ϕ

E[‖µ̌(k + 1)‖] +
‖A‖
ϕ

E[‖µ̄(k + 1)− µ∞‖],

(37)

where the last inequality is due to the Lipschitz smoothness
of f∗.

Note that constant λ̄, C ∈ (0, 1), due to Lemma 2, there
exist γ1, γ2, γ3, γ4 > 0 such that

Cγ4 +
‖A‖α
ϕ

γ1 < γ4r, (38)

λ̄γ1 + αγ2 < γ1r, (39)
λ̄γ2 + 2‖A‖γ3 < γ2r, (40)
‖A‖
ϕ

(γ1 + γ4) < γ3. (41)

Basd on equations (38)-(41), taking suffciently large
γ1, γ2, γ3, γ4 > 0 yields

Cγ4r
k +
‖A‖α
ϕ̄

γ1r
k + nmq̄kd̄η +

αnmq̄kd̄ζ
1− q̄

≤ γ4rk+1,

λ̄γ1r
k + αγ2r

k + λ̄nmq̄kd̄η ≤ γ1rk+1,

λ̄γ2r
k + 2‖A‖γ3rk ≤ γ2rk+1,

‖A‖
ϕ

(γ1 + γ4)rk+1 ≤ γ3rk+1,

where we use the definition of rLB and substituting these
equations into (34)-(37) completes the proof. �

Based on Theorem 1, we prove the linear convergence
property of diff-DMAC and quantify its convergence accu-
racy.

Theorem 2: Suppose the conditions in Theorem 1 are
satisfied. If α further satisfies

α <
Φ[−(1− C) +

√
(1− C)2 + 2(1− C)(1− λ̄)2]

2‖A‖
,

(42)

the sequence {x(k)}k≥0 generated by diff-DMAC will con-
verge linearly to the neighbor of the optimum x? in mean
square and we have

1

n2‖A‖2
Nζ ≤ E{‖x∞ − x?‖2} ≤ L

2

nϕ2[λ(AᵀA)]2
Nζ ,

(43)

where Nζ is defined as Nζ =
∑n
i=1

2md2
ζi

1−q2
ζi

.

Proof: Note that λ̄, C ∈ (0, 1), it is not difficult to see that
with α chosen to satisfy (42), we can always find a constant
r ∈ (rLB , 1) such that equations (25)-(28) hold. Thus, the
convergence of diff-DMAC is proved by Theorem 1.

Due to (29) and W̄Ax? = 0, we have

E[‖W̄A(x∞ − x?)‖2] = E[‖
∞∑
t=0

ζ̄(t)‖2] =
1

n2

n∑
i=1

2md2ζi
1− q2ζi

.

(44)

Since W̄ = 1ᵀ1
n ⊗ Im, it is easy to obtain that

E[‖W̄A(x∞ − x?)‖2] ≤ ‖A‖2E[‖x∞ − x?‖2]. (45)

The optimality condition of the x−update (10) implies
that

(∇fi(x∞i )−Aᵀ
i µ
∞
i )ᵀ(x?i − x∞i ) ≥ 0, (46)

(∇fi(x?i )−A
ᵀ
i µ

?
i )

ᵀ(x∞i − x?i ) ≥ 0,∀i. (47)

Based on (46) and (47), we obtain

(µ∞i − µ?i )ᵀAi(x∞i − x?i )
≥ (∇fi(ᵀx∞i )−∇fi(ᵀx?i ))ᵀ(x∞i − x?i )

≥ Φ‖Ai‖
L̄
‖µ∞i − µ?i ‖‖x∞i − x?i ‖,∀i. (48)

The facts that W̄µ∞ = µ∞ and W̄µ? = µ? imply

µ∞i − µ?i =
1

n

n∑
i=1

µ∞i −
1

n

n∑
i=1

µ?i , ∀i ∈ V,

(49)
(µ∞ − µ?)ᵀA(x∞ − x?) = (µ∞ − µ?)ᵀW̄A(x∞ − x?)

≤ ‖µ∞ − µ?‖‖W̄A(x∞ − x?)‖,
(50)

Then combining (48)-(50) yields

E[‖x∞ − x?‖2] ≤ L̄2

nϕ2[λ(AᵀA)]2
E[‖W̄A(x∞ − x?)‖2].

(51)

Substituting (44) into (45), (51) completes the proof. �

V. DIFFERENTIAL PRIVACY

In this section, we present the privacy preserving perfor-
mance of the proposed algorithm by theoretical analysis.

Theorem 3: Suppose the conditions in Theorem 2 hold, if
qi0 satisfies

qi0 ∈ (
α‖Ai0‖2 + ‖Ai0‖

√
α2‖Ai0‖2 + 4αϕi0

2ϕi0
, 1), (52)

the proposed diff-DMAC preservses εi0 -differential privacy
for the cost function of agent i0 , where

εi0 = (
1

αdζi0
+

1

dηi0
)

αϕi0δ‖Ai0‖
ϕi0q

2
i0
− αqi0 − α

. (53)

Proof: Two function sets have the same initialization and
all auxiliary variables are known to attackers as mentioned
in Section II. Therefore, exchanged variables must be same,
i.e., z(1)µ (k) = z

(2)
µ (k) and z(1)y (k) = z

(2)
y (k), otherwise, the

two function sets will be easily distinguished. Therefore, for
any i 6= i0, due to the realation f (1)i = f

(2)
i , the added noise

should satisfy

ζ
(1)
i (k) = ζ

(2)
i (k), η

(1)
i (k) = η

(2)
i (k),∀k,∀i 6= i0.

And for i = i0, since f (1)i 6= f
(2)
i the noise should satisfy

∆ηi0(k) = −∆µi0(k), ∆ζi0(k) = −∆yi0(k), (54)



where ∆ζi0(k) = ζ
(1)
i0

(k) − ζ(2)i0
(k), ∆ηi0(k) = η

(1)
i0

(k) −
η
(2)
i0

(k), ∆µi0(k) = µ
(1)
i0

(k) − µ
(2)
i0

(k) and ∆yi0(k) =

y
(1)
i0

(k)− y(2)i0 (k). Furthermore, it follows that

∆µi0(k + 1) = −α∆yi0(k), ∆yi0(k + 1) = ∆Ai0gi0(k),
(55)

where ∆gi0(k) = ∆xi0(k + 1) − ∆xi0(k) and ∆xi0(k) =

x
(1)
i0

(k)− x(2)i0 (k).
Following the analysis in [13], we need to obtain the upper

bound of fζη(ζ
(1),η(1))

fζη(B(ζ(1),η(1)))
to quantify the privacy level εi0 ,

P{ζ,η ∈ Ω|ZT (1)(ζ,η) ∈ O}
P{ζ,η ∈ Ω|ZT (2)(ζ,η) ∈ O}

≤ sup
(ζ,η)

fζη(ζ(1),η(1))

fζη(B(ζ(1),η(1)))
,

(56)

where ZT (l)(ζ(l)η(l)) = {z(l)µ (k), z
(l)
y (k)}k≥0, l = 1, 2,

belongs to attacker’s observation.
For l ∈ {1, 2}, the x-update can be reritten as

x
(l)
i0

(k + 1) = arg min
z∈X (l)

i0

{f (l)i0 (z)− µ(l)
i0

ᵀ
(k + 1)Ai0z}.

From Definition 1, we have x
(1)
i0
, x

(2)
i0
− δ′ ∈ X (1)

i0
and

x
(2)
i0
, x

(1)
i0

+ δ′ ∈ X (1)
i0

. Similar to the analysis of Theorem 2,
the optimal condition of the written x-update yields

(µ
(1)
i0

(k)− µ(2)
i0

(k))ᵀAi0(x
(1)
i0

(k) + δ′ − x(2)i0 (k))

≥ (∇f (1)i0
(x

(1)
i0

(k))−∇f (2)i0
(x

(2)
i0

(k)))ᵀ(x
(1)
i0

(k) + δ′ − x(2)i0 (k))

≥ ϕi0
‖Ai0‖2

‖Ai0(x
(1)
i0

(k) + δ′ − x(2)i0 (k))‖2. (57)

The last inequality uses the relation ∇f (1)i0
(x

(1)
i0

(k)) =

∇f (2)i0
(x

(1)
i0

(k) + δ′). Then applying Cauchy–Schwarz in-
equality to the LHS of (57) yields

‖Ai0(x
(1)
i0

(k) + δ′ − x(2)i0 (k))‖ ≤ ‖Ai0‖
2

ϕi0
‖∆µi0(k)‖. (58)

From (54), (55) and the relation (58), we have

‖∆ηi0(k + 1)‖ =α ‖Ai0∆gi0(k − 1)‖2
=α
∥∥∥Ai0(x

(1)
i0

(k)− x(2)i0 (k)− δ)

−Ai0
(
x
(1)
i0

(k − 1)− x(2)i0 (k − 1)− δ
)∥∥∥

≤α‖Ai0‖
2

ϕi0
(‖∆ηi0(k)‖2 + ‖∆ηi0(k − 1)‖) .

(59)

The two roots of ϕi0x
2−α‖Ai0‖2x−α‖Ai0‖2 = 0, denoted

as τ1, τ2 are different and all lie in (−1, 1). Therefore, from
(59), we have

‖∆ηi0(k)‖2 ≤
αδ‖Ai0‖
τ1 − τ2

(τk−11 − τk−12 ), (60)

since ‖∆ηi0(1)‖ = 0 and ‖∆ηi0(2)‖ < αδ‖Ai0‖ which can
be derived from (54) and (55). These two equations also give

that α|∆ζi0(k)| = |∆ηi0(k + 1)|,∀k. Thus,

fζη(ζ(1),η(1))

fζη

(
B(ζ(1),η(1))

) =

∞∏
k=1

fL(ζ
(1)
i0

(k), θζik)fL(η
(1)
i0

(k), θηik)

fL(ζ
(2)
i0

(k), θζik)fL(η
(2)
i0

(k), θηik)

≤
∞∏
k=1

e

|∆ζi0 (k)|

dζi0
qk
i0

∞∏
k=2

e

|∆ηi0 (k)|

dηi0
qk
i0 .

≤ e

(
1

αdζi0
+ 1
dηi0

)
αϕi0

δ‖Ai0‖

ϕi0
q2
i0
−αqi0−α = eεi0 ,

(61)

where the last inequality follows the the sum formula of
geometric series. And the inequality ϕi0q

2
i0
− α‖Ai0‖2qi0 −

α‖Ai0‖2 > 0 holds under (52).
Combining (56) and (61) yields the result corresponding

to the definition of differential privacy of the cost function
in Definition 2. Thus, the proof completes. �

Note that the privacy level ε in Theorem 3 is related to
both noise ζ and η. Both of them are necessary, since if
at least one of them are set to zero, there does not exist a
finite number ε > 0, i.e., the differential privacy cannot be
preserved.

Since the convergence accuracy is only related to the noise
ζ, the optimal value of εi can be obtained by setting dηi →
∞ and it gives

ε?i =
ϕiδ‖Ai‖

dζi(ϕiq2i − αqi − α)
,∀i ∈ {1, . . ., n}. (62)

Combining (43) with (62), we can derive that increasing
added noise leads to a high level privacy but a low accuracy
which shows the trade-off between accuracy and privacy.

VI. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to verify
our theoretical analysis. The proposed algorithm is tested on
a multi-MG system with 14 microgrids [16]. Regarding the
communication network, we generate an undirected graph
by adding random links to a ring network. We consider the
following problem with quadratic cost functions fi(xi) =
uix

2
i + vixi + wi,∀i

min
x∈Rn×1

f(x) =

n∑
i=1

fi(xi)

s.t.

n∑
i=1

aixi =

n∑
i=1

di, x
min
i ≤ xi ≤ xmax

i ,∀i. (63)

where coefficients ai are randomly chosen and the parame-
ters of the generators are adopted from [1].

Set total load demand dtotal = 231MW , the exchanged
information is masked by independent Laplace noise with
q = 0.98, dη = dζ = 1 and we apply diff-DMAC to
problem (63). Fig. 2 (a) shows how the mean square error
(MSE) E[‖x(k)−x?‖2] changes with iteration time k, where
the expected errors are approximated by averaging over 100
simulation results. The results validate the linear convergence
rate of the proposed algorithm. Fix q = 0.98, the relation
between error and dζ is shown in Fig. 2 (b). We find



that as dζ becomes larger, the MSE of x increases, which
means larger noise brings lower accuracy. Moreover, the
experimental result is strictly between the lower bound and
upper bound given in Theorem 2.

(a)

(b)

Fig. 2. (a) MSE versus Iteration time k with different stepsizes; (b) Relation
between MSE and dζ .

As for the differential privacy of diff-DMAC, Theorem 3
is numerically tested with different dζ as shown in Fig. 3(a).
The experimental result is upper bounded by the theoretical
result, i.e. εe ≤ ε, which verifies Theorem 3. Combining Fig.
3(a) with Fig. 3(b) shows that a bigger and slower decaying
noise leads to a better privacy level. However, large noise also
influences the convergence accuracy and Fig. 4 validates the
aforementioned trade-off between privacy and accuracy.

VII. CONCLUSION

In this paper, a differentially private distributed mismatch
tracking algorithm has been proposed to solve constraint-
coupled resource allocation problems with privacy concerns.
Its linear convergence property has been established for
strongly convex and Lipschitz-smooth cost functions. Then,
the differential privacy of the proposed algorithm is the-
oretically proved and we also characterize the trade-off
between accuracy and privacy. The theoretical results have
been examined by numerical experiments.
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imization Algorithms II: Advanced Theory and Bundle Methods.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, vol. 306.

[22] D. Bertsekas, Nonlinear Programming. Belmont,
Massachusetts:Athena Scientific, 2016.


	I INTRODUCTION
	II Problem Formulation
	III Algorithm Development
	IV Convergence Analysis for diff-DMAC
	V Differential Privacy
	VI Numerical Experiments
	VII Conclusion
	References

