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Abstract— In this paper, we study the problem of distributed
estimation with an emphasis on communication-efficiency. The
proposed algorithm is based on a windowed maximum a
posteriori (MAP) estimation problem, wherein each agent in the
network locally computes a Kalman-like filter estimate that ap-
proximates the centralized MAP solution. Information sharing
among agents is restricted to their neighbors only, with guar-
antees on overall estimate consistency provided via logarithmic
opinion pooling. The problem is efficiently distributed using
the alternating direction method of multipliers (ADMM), whose
overall communication usage is further reduced by a value of
information (VoI) censoring mechanism, wherein agents only
transmit their primal-dual iterates when deemed valuable to
do so. The proposed censoring mechanism is mission-aware,
enabling a globally efficient use of communication resources
while guaranteeing possibly different local estimation require-
ments. To illustrate the validity of the approach we perform
simulations in a target tracking scenario.

I. INTRODUCTION

Distributed estimation plays an important role in many
systems and domains. The desire for distributed operation
stems from many different sources. In some cases, central-
ization is simply not possible, and in other cases, distributed
operation is strongly preferred, whether it be due to issues
related to scalability, robustness to single point of failure,
or any other reasons. Importantly, decentralized operation
introduces a new set of concerns into the estimation problem,
as issues such as distributed computation or communication
efficiency take a prominent role in algorithm design.

Under the traditional assumption of linear-Gaussian dy-
namics, the Kalman filter [1] provides an optimal central-
ized solution to the sequential estimation problem. Due to
this, distributed variants of the Kalman filter have received
considerable attention in the literature. Chief among them is
the consensus Kalman filter [2] and a large body of related
variants [3]–[5]. A key challenge among these methods is the
fact that consensus is only achieved to the mean of the es-
timate, with covariances possibly diverging among different
nodes in the network [6]. Issues that are usually alleviated by
combining these methods with covariance intersection rules
[7], [8]. Furthermore, these concerns also exist and have
been studied for more general non-linear and non-Gaussian
systems. In the general case, the optimal filtering process
is provided by the Bayes’ filter [9], of which distributed
versions have been obtained via logarithmic opinion pooling
[10], [11].

Another major concern of distributed estimation methods
is communication efficiency. In general, approximating the
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centralized estimate requires flooding information across the
network [12], which can be prohibitively expensive in com-
munication resources. Attempts to mitigate this problem have
led to algorithms based on a single round of communication
among neighbors [13], [14] and further reductions have
been achieved by the use of censoring and communication-
triggered estimation mechanisms [3]–[5], [15].

This work presents a communication-efficient distributed
filtering algorithm. We formulate a maximum a posteriori
(MAP) estimation problem, which, to solve it in a sequen-
tial manner while staying close to the batch estimate, we
reformulate as a rolling window tracking problem. Motivated
by [16], we distribute the problem using the alternating
direction method of multipliers (ADMM) [17]. Under linear-
Gaussian assumptions, the iterates of the algorithm can be
computed in closed form, resulting in a variant of the Kalman
filter. The proposed distributed algorithm approximates the
centralized solution, addressing the issue of covariance dis-
crepancy among network nodes via the use of logarithmic
opinion pooling. This method aggregates information with
neighborhood-only communication, providing guarantees in
estimate consistency.

In order to further reduce the communication overhead,
we introduce a censoring mechanism based on Value of
Information (VoI) [18], which we have previously applied
with success to distributed filtering [19]. At a given time
instance, this censoring method compares by way of the
Kullback-Leibler divergence, a node’s local information and
the incoming information from its measurements and neigh-
bors, transmitting when information is deemed sufficiently
valuable. In contrast to our previous work [19], in which
the state of the target determines the VoI, in this work the
role of information pertains to the primal-dual variables. This
enables the VoI censoring mechanism to be further enhanced
by the introduction of mission-awareness, accounting for
individual requirements that must be satisfied by agents to
operate successfully. These local mission requirements are
introduced in the form of estimation constraints distributed
by the ADMM mechanism. This allows for different agents
in the network to guarantee different estimation require-
ments, while making an efficient use of communication
resources across the network. Finally, we test the proposed
algorithm in a simulated target tracking scenario, where a
set of heterogeneous nodes with different sensing capabilities
attempt to jointly estimate the trajectory of a target. Com-
pared to our previous work [19], these results show that the
proposed method is capable of achieving lower estimation
error while being communication-efficient and guaranteeing
node-specific mission requirements.
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II. PROBLEM FORMULATION

We begin by considering a discrete-time dynamic process
with state xk ∈ Rn at a given k-th time instant. This process
evolves following linear-Gaussian dynamics given by

xk+1 = Akxk + wk, (1)

with dynamics matrix Ak ∈ Rn×n and independent and
identically distributed (i.i.d.) additive Gaussian noise wk ∼
N (0,Qk). We consider a set of N sensors performing
an estimation task. The i-th sensor at time k obtains an
observation vector zik ∈ Rmi given by

zik = Hi
kxk + vik, (2)

with measurement matrix Hi
k ∈ Rmi×n and measurement

noise vik ∈ Rmi distributed according to vik ∼ N (0,Ri
k).

First, for simplicity, we will formulate the centralized es-
timation problem. To this end, we can concatenate all the
measurements to obtain the joint centralized observation

zk = Hkxk + vk, (3)

where zk, Hk, and vk, correspond to the column-wise
concatenations of the specific i-th agent counterparts.

A. Formulating the Centralized MAP Estimation Problem
In order to obtain a centralized estimate, we infer the state

based on the joint centralized observations, and a prior x̄0

with covariance P̄0. We can then formulate the maximum a
posteriori (MAP) batch estimate as follows

x̂MAP
0:k = argmax

x0:k

p(xk |x̄0, z1:k) (4)

where we have introduced the notation x0:k to denote the
state trajectory over the time horizon [0, . . . , k] and equiv-
alently with z1:k for the set of observations {z1, . . . , zk}.
Now, using Bayes’ rule we can rewrite this problem as

x̂MAP
0:k =argmax

x0:k

p(x0 |x̄0)

k∏
l=1

p(xl|xl−1)

k∏
l=1

p(zl |xl). (5)

Under the linear-Gaussian model (1)–(3), the previous max-
imization can be solved by forming a system of linear
equations. In practice, we might however opt to solve (5)
in a sequential manner. The Kalman filter does so, obtaining
the estimate x̂k by conditioning on the prior estimate x̄k−1.
In any case, the Kalman filter only replicates the solution
of the batch estimate (5) at the final time instance k. To
ameliorate this shortcoming, we include a rolling window
into the estimation problem, which has shown success in
practice [16]. We can then write the rolling window tracking
(RWT) estimate over time horizon H as

x̂RWT
k−H:k=argmax

xk−H:k

p(xk−H:k−1|x̄k−H:k−1)p(xk|xk−1)p(zk|xk)

(6)

Then, under the linear-Gaussian model (1)–(3), we can define
the cost

J(xk−H:k) = ‖xk −Ak−1xk−1‖2Q−1
k−1

+ ‖zk −Hkxk‖2R−1
k

+ ‖xk−H:k−1 − x̄k−H:k−1‖2P̄−1
k−H:k−1

(7)

and write the estimation task in the optimization problem
form as simply the minimization of this cost, [9]

x̂RWT
k−H:k = argmin

xk−H:k

J(xk−H:k). (8)

III. DISTRIBUTED ESTIMATION PROBLEM

The problem (8) introduced in the previous section is a
centralized problem, which requires centralized observations
(3). In practice, we have a network of agents, each obtaining
different observations (2) of the target. In order to perform
the estimation task, the sensors must communicate with each
other. They do so over a communication network given by the
network graph G = (N , E), with N being the set of N nodes
in the network and E ⊆ N × N the set of communication
links, such that if node i is capable of communicating with
node j, we have (i, j) ∈ E . Furthermore, we denote the
neighborhood of node i by the set Ni = {j|(i, j) ∈ E}.

Since communicating all measurements among all nodes
in order to solve the centralized problem is prohibitively
expensive in communication resources, we resort to a dis-
tributed formulation. We obtain a distributed formulation of
the problem via the introduction of consensus constraints

minimize
xi
k−H:k

N∑
i=1

J i(xik−H:k) (9a)

subject to xik−H:k = tij ∀j ∈ Ni,∀i ∈ N (9b)

xjk−H:k = tij ∀j ∈ Ni,∀i ∈ N (9c)

where now xik−H:k denotes the rolling window estimate at
the i-th agent, and the auxiliary variables tij have been
introduced to enable the distributed operation of the problem.
Further, the per-agent cost is defined as

J i(xik−H:k) = ‖xik −Ak−1x
i
k−1‖2Q−1

k−1

+ ‖zik −Hi
kx

i
k‖2Ri,−1

k

+ ‖xik−H:k−1 − x̄ik−H:k−1‖2P̄i,−1
k−H:k−1

. (10)

This decomposition matches the centralized one if the prior
covariance matrices P̄i

k−H:k−1 across all the network satisfy
P̄−1
k−H:k−1 =

∑N
i=i P̄

i,−1
k−H:k−1, i.e., they are equivalently

decomposed. In practice this would require an asymptotic
consensus loop on the covariance matrices, which might pose
to be prohibitively expensive, as it requires full communi-
cation over the whole network at all instances, defeating
some of the purpose of a fully distributed formulation. This
problem is at the heart of distributed filtering. When desiring
to operate in a neighborhood communication only basis,
we resort to a single logarithmic opinion pool (LogOP)
consensus step [20]. Namely, at the i-th node of the network,
the prior covariance is updated following

P̄i,−1
k−H:k = P̄i,−1

k−H:k−1 +
∑
j∈Ni

P̄j,−1
k−H:k−1. (11)

While this will result in a suboptimal solution (when com-
pared to the centralized one), using this covariance update
has several desirables properties. Besides being computable
with neighborhood-only communication, it guarantees the



consistency of the resulting estimates, preventing the esti-
mate belief across the network does from diverging [11].

We can now proceed to solve the distributed problem (9).
To do so we resort to the alternating direction method of
multipliers (ADMM) [17], an efficient method to solve prob-
lems of this form. We start by constructing the augmented
Lagrangian of the problem. Namely,1

Lρ(x,λ) =

N∑
i=1

Ji(x
i) (12)

+
∑
i∈N

∑
j∈Ni

µTij
(
xi − tij

)
+
∑
i∈N

∑
j∈Ni

νTij
(
xj − tij

)
+
ρ

2

∑
i∈N

∑
j∈Ni

∥∥xi − tij
∥∥2

+
ρ

2

∑
i∈N

∑
j∈Ni

∥∥xj − tij
∥∥2

where ρ is the scalar penalty parameter of the augmented La-
grangian, and we have introduced the dual variables µij and
νij , associated with constraints (9b) and (9c), respectively.
We can aggregate the per-agent dual variables by defining
λii ,

∑
j∈Ni

(µij +νij) [21]. The primal update is given by

xik+1 = argmin
xi

(
Ji(x

i) + λi,Tk xi

+ ρ
∑
j∈Ni

∥∥xi − xik + xjk
2

∥∥2
)
, (13)

which by substituting the linear-Gaussian model (1)–(3), we
can obtain in closed-form

xik+1 =
(
Ci,T
k Wi,−1

k Ci
k + 2NρI

)−1

×

Ci,T
k Wi,−1

k rik − λik + ρ
∑
j∈Ni

(
xik + xjk

) (14)

and the covariance update is given by

Pi
k+1 =

(
Ci,T
k Wi,−1

k Ci
k

)−1
, (15)

where we have defined the auxiliary rolling window vector
rik, and matrices Wi

k and Ci
k as

rik =

 0
zit

x̄ik−1

, Wi
k =

Qk−1 0 0
0 Ri

k 0
0 0 P̄i

k−1

 , (16)

Ci
k =


0 · · · −Ak−1 I
0 · · · 0 Hi

k

I · · · 0 0
...

. . .
...

...
0 · · · I 0

 . (17)

Finally, the dual update at the i-th node is simply obtained
by performing gradient ascent on the augmented Lagrangian
with respect to the dual variables, resulting in the iterate

λik+1 = λik + ρ
∑
j∈Ni

(
xik − xjk

)
. (18)

1With a slight abuse of notation, for simplicity, we drop the window
horizon [k −H : k] from the variables’ subscript.

Alternating between the primal minimization (14) and dual
gradient ascent (18), the agents are guaranteed to converge
to the optimal solution of the distributed problem [17].

IV. COMMUNICATION EFFICIENCY

By solving the distributed problem (9) instead of the
centralized problem (8) we have avoided the need of sharing
all the information among all the nodes in order to solve the
centralized problem. While obtaining the same solution as (8)
is still a communication expensive problem to solve, we have
further reduced the communication needs by using a LogOP
aggregation of prior beliefs, avoiding an inner consensus loop
on the covariances. Still, we can obtain further reductions
in communication use by censoring information and only
transmitting when it is valuable to do so. In order to address
this, we introduce the concept of value of information.

A. Value of Information

Value of Information (VoI) [18] consists on quantifying
the information acquired at each node and making transmit
decisions depending on it. Formally, we define the value
of information as the divergence between local and new
information

DKL
(
N (yik+1,Y

i
k+1) ‖ N (ỹik+1, Ỹ

i
k+1)

)
≥ γ (19)

where DKL(p‖q) =
∫
p(x) log

(
p(x)
q(x)

)
dx is the Kullback-

Leibler (KL) divergence, and (yik+1,Y
i
k+1) are the aggre-

gated primal-dual variables,

yik+1 =

[
xik+1

λik+1

]
, Yi

k+1 =

[
Pi
k+1 0
0 1

]
(20)

The variables (ỹik+1, Ỹ
i
k+1), correspond to the baseline local

values obtained from the last primal-dual iteration (14)–(18)
being updated without new information, either from local
measurements or neighbor transmissions, i.e., Ni = ∅. The
parameter γ corresponds to the censoring level. Only for
value on information over this level will the agent transmit
its variables (xik+1,P

i
k+1) to its neighbors.

B. Mission-aware Censoring Mechanism

In a communication scenario without censoring, all the
required information is transmitted at all times and all agents
obtain the best possible estimate. In contrast, this is not
necessarily the case when using a censoring mechanism, as
a trade-off occurs between communication use and resulting
estimation error. Thus, if individual nodes have specific
estimation needs, they must be explicitly specific. We denote
these as mission requirements. Agents have a specific mission
(i.e., a task that they need to perform) and their ability
to accomplish this task is tied to the estimate itself (e.g.,
requiring the estimation error to be under a certain threshold).
To account for this, we introduce the following mission
requirement function

gi(xi) ≤ ci, i ∈ Nm (21)

where ci is the level of requirement and Nm ⊆ N is the
subset of nodes that have a mission specified. We can then



introduce this into the distributed estimation problem (9),
formulating the mission-aware estimation problem

minimize
xi
k−H:k

N∑
i=1

J i(xik−H:k) (22a)

subject to xik−H:k = tij ∀j ∈ Ni,∀i ∈ N (22b)

xjk−H:k = tij ∀j ∈ Ni,∀i ∈ N (22c)

gi(xik−H:k) ≤ ci ∀i ∈ Nm (22d)

Similarly to Section III, we can distribute this problem by
constructing the mission-aware augmented Lagrangian

Lρ(x,λ) =

N∑
i=1

J i(xi) (23)

+
∑
i∈N

∑
j∈Ni

µTij
(
xi − tij

)
+
∑
i∈N

∑
j∈Ni

νTij
(
xj − tij

)
+
ρ

2

∑
i∈N

∑
j∈Ni

∥∥xi − tij
∥∥2

+
ρ

2

∑
i∈N

∑
j∈Ni

∥∥xj − tij
∥∥2

+
∑
i∈Nm

Φi,T
(
gi(xi)− ci

)
+
ρ

2

∑
i∈Nm

‖gi(xi)− ci‖2,

where we have introduced the new Lagrange multipliers Φi

associated to the mission constraints (22d). The process to
obtain the primal update follows the same steps as before,
where instead of the primal update (13) we have now a
primal minimization which depends on the mission. Namely,

xik+1 = argmin
xi

(
Ji(x

i) + ρ
∑
j∈Ni

∥∥xi − xik + xjk
2

∥∥2

+ λi,Tk xi +
ρ

2
‖gi(xi)− ci + Φik‖2I{i ∈ Nm}

)
(24)

where I{i ∈ Nm} denotes the indicator function such that
I{i ∈ Nm} = 1 if i ∈ Nm. The closed-form solution
to this minimization will depend on the structure of the
mission function gi(xi). In the case that a specific node has
no mission specified, the closed-form solution corresponds
to (14). Furthermore, the introduction of the new mission
constraints to the optimization problem (22), results in an
additional dual variable that is updated by gradient ascent

Φik+1 =

[
Φik + ρ

(
gi(xik)− ci

)]+

. (25)

Additionally, the aggregated primal-dual variables
(yik+1,Y

i
k+1) over which the VoI censoring decision

is taken are further augmented with the dual variables
associated with the mission requirement. Thus,

yik+1 =

xik+1

λik+1

Φk+1

 , Yi
k+1 =

Pi
k+1 0 0
0 1 0
0 0 1

 . (26)

Finally, in order to guarantee knowledge of mission require-
ments across the network, a consensus mechanism is utilized.
Nodes keep local copies of the dual variables associated to

Algorithm 1 Mission-aware VoI-censored distributed filter
1: for k = 0, 1 . . . do
2: if mission-aware node (i ∈ Nm) then
3: Compute primal update:

xik+1 = argmin
xi

(
Ji(x

i) + ρ
∑
j∈Ni

∥∥xi − xik + xjk
2

∥∥2

+ λi,Tk xi +
ρ

2
‖gi(xi)− ci + Φik‖2

)
4: Compute mission dual update:

Φik+1 =

[
Φik + ρ

(
gi(xik)− ci

)]+

5: else if not mission-aware node (i 6∈ Nm) then
6: Compute primal update:

xik+1 =
(
Ci,T
k Wi,−1

k Ci
k + 2NρI

)−1

×

Ci,T
k Wi,−1

k rik − λik + ρ
∑
j∈Ni

(
xik + xjk

)
7: end if
8: Update local covariance:

Pi
k+1 =

(
Ci,T
k Wi,−1

k Ci
k

)−1

9: Compute dual update:

λik+1 = λik + ρ
∑
j∈Ni

(
xik − xjk

)
10: Transmit (yik+1,Y

i
k+1) if VoI:

DKL
(
N (yik+1,Y

i
k+1) ‖ N (ỹik+1, Ỹ

i
k+1)

)
≥ γ

11: Merge received neighborhood covariances:

P̄i,−1
k+1 = Pi,−1

k+1 +
∑
j∈Ni

Pj,−1
k+1

12: Merge received neighborhood duals:

Φi
k+1 =

1

|Ni|
∑
j∈Ni

Φj
k+1

13: end for

the mission requirements of other nodes, and update them
following an average consensus step,

Φi
k+1 =

1

|Ni|
∑
j∈Ni

Φj
k+1. (27)

The agents under the mission update the evolution of the
requirement via (25) while the rest of the agents in the
network receive this information via network consensus (27).
This ensures that appropriate knowledge is disseminated
across the network, ensuring mission-aware VoI censoring
decisions. Overall, the resulting algorithm is summarized in
Algorithm 1.
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Fig. 1. Map of the evaluation scenario. Axis’ distances are shown in
Kilometers. The red line corresponds to the target’s trajectory. Two types
of agents are deployed, equipped with Direction-Of-Arrival (DOA, red) and
Time-Of-Arrival (TOA, blue) sensors. All agents have a uniform sensing
range of 1.25km (illustrated by the dashed circle). Underlying network
connectivity is shown in green.

V. NUMERICAL RESULTS

We provide now simulations to evaluate the performance
of the proposed mission-aware and VoI-censored distributed
estimation mechanism. We consider a canonical target track-
ing problem [22]. Consider a system with linear-Gaussian
dynamics, where the state of the system is given by the
tracked target’s position along the x- and y-axis and its
corresponding velocities, namely xk = [x, ẋ, y, ẏ]T . At the
k-th time instance, this state evolves according to

xk+1 = Axk + wk, (28)

where the process noise is Gaussian distributed according to
wk ∼ N (0,Q), with covariance matrix Q given by [22]

Q =


∆3

3
∆2

2 0 0
∆2

2 ∆ 0 0

0 0 ∆3

3
∆2

2

0 0 ∆2

2 ∆

 , (29)

where ∆ is the sampling interval of the system. The system
dynamics follow a nearly-constant velocity model with

A =


1 ∆ 0 0
0 1 0 0
0 0 1 ∆
0 0 0 1

 . (30)

A network of agents is deployed to estimate the trajectory
of the target. Heterogeneous measurements are considered,
with ranging (Time-Of-Arrival) and bearing (Direction-Of-
Arrival) nodes being considered. These two types of nodes
acquire target measurements using the following model

zik =

{√
(xk − xi)2 + (yk − yi)2 + vi,rk if TOA

arctan
(
xk−xi

yk−yi
)

+ vi,θk if DOA
(31)

where vi,rk ∼ N (0, σr) and vi,θk ∼ N (0, σθ). The non-
linearity of the measurement model is addressed following

0 0.05 0.10 0.15 0.20 0.25
0

10

15

30

Medium Access

R
M

SE
(m

)

Proposed
Baseline

Fig. 2. Operating region of the VoI filter. Solid lines correspond to the
asymptotic values averaged over the network. Shaded interval corresponds
to the range between the best and worst performing sensors in the network.
The proposed method outperforms the VoI baseline.

700 750 800 850 900 950 1,000
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80

Time (k)
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(m
)

Mission-aware
Mission-agnostic

Fig. 3. Comparison performance between a mission-aware filter and
its agnostic counterpart. Solid lines correspond to running average errors,
while the instantaneous error is shown by the dashed lines. The mission
requirement is for the DOA node at the top left corner (see Fig. 1) to have
an average estimation error (solid lines) under 10 m. Only the mission-aware
filter satisfies this requirement, with an average error of 9.72 m.

the usual extended Kalman filter procedure. To estimate the
target’s state, the nodes use the proposed filter (Algorithm
1). A map of the environment is shown in Fig. 1.

We start by evaluating the region of operation of the pro-
posed filter, as shown in Fig. 2. This corresponds to the trade-
off between error and medium access, obtained by sweeping
over a range of possible censoring values γ. As the threshold
γ increases in value, the nodes produce more censoring
decisions. Hence, reducing the number of transmission, but
unavoidably leading to an increase in the overall estimation
error. However, as previously discussed, a large reduction
of transmission can be obtained with minimal effect in
the estimation error. We compare the algorithm introduced
in this work, with the baseline VoI algorithm introduced
in our previous work [19]. The baseline filter utilizes a
similar (mission-agnostic) VoI censoring mechanism and
LogOP aggregation, but is formulated in a simpler first-order
manner, without relying on an augmented Lagrangian and
ADMM formulation. We observe that the ADMM approach
introduced in this work allows us to obtain a more efficient
region of operation for the filter. With a characterized region
of operation, a choice in trade-off between estimation error
and transmissions can be made, which in the following we
set to the knee of the curve.

As discussed in Section IV-B, the proposed algorithm
allows for mission-aware operation. In this case, we evaluate
the same scenario highlighted in Fig. 1, but now we require
the DOA agent situated at the top left corner to have an
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Fig. 4. Mission requirement for nodes highlighted by red circles is to have
an estimation error ≤ 10 m. Green circles correspond to amount of network
transmissions (radius of 2 corresponds to 100% transmission usage).

average estimation error under 10 m. The resulting estimation
error is shown in Fig. 3. For this mode of operation, the
mission-agnostic form of the filter does not satisfy the
requirement, which is not a fault of the algorithm, as it is
simply not specified. In contrast, the mission-aware version
of the filter succeeds in satisfying the average requirement.

To better understand the network behavior induced by the
mission-aware filter, we show in Fig. 4 how information
flows among nodes. In this figure, we compare the same
mission but specified for two distinct agents. The left figure
corresponds to the behavior discussed previously in Fig.
3. For this case, the average transmission rate across the
network is of 27%, with the highlighted node transmitting
41% of the time. In contrast, specifying the same mission to
the node shown on the right requires an average transmission
of 18% across the network, with the highlighted node trans-
mitting in 19% of the time instances. In this scenario, the left
specification is more restrictive, as it is placed on an isolated
node that heavily relies on a small number of surrounding
nodes to access the rest of the network. The node on the right
is more densely connected, so when the mission changes
to that node, the overall level of transmissions across the
network are reduced, and as expected, the communication
for the top left nodes is reduced dramatically. Importantly,
regardless of the underlying network usage, both cases satisfy
the mission requirement. Further, we can observe how certain
nodes play an important role in the distributed estimation
task, regardless of the mission requirement, e.g., the DOA
node in the center of the network (7.1, 4.5) is both well-
situated to sense the target and is mostly surrounded by
TOA nodes, resulting in high value of information and conse-
quently a relatively higher than average level of transmissions
for both missions.

VI. CONCLUSIONS

In this paper, we have introduced a new communication-
efficient and mission-aware distributed filtering algorithm.
By formulating the MAP estimation problem and having
each agent sequentially solve a windowed version of the
batch problem, we have more closely approximated the
centralized solution. A distributed version of the problem
has been achieved by the use of ADMM, wherein com-
munication has been restricted to neighbors only. We have

provided further communication reductions by the use of
a mission-aware VoI censoring mechanism that provides
communication-efficiency while ensuring that agents satisfy
their local estimation requirements. Target tracking simula-
tions have served to validate the viability of our approach.

REFERENCES

[1] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of Basic Engineering, vol. 82, pp. 35–45, 03 1960.

[2] R. Olfati-Saber, “Kalman-consensus filter: Optimality, stability, and
performance,” in 48h IEEE Conference on Decision and Control
(CDC), pp. 7036–7042, IEEE, 2009.

[3] X. Meng and T. Chen, “Optimality and stability of event triggered
consensus state estimation for wireless sensor networks,” in 2014
American Control Conference, pp. 3565–3570, IEEE, 2014.

[4] Q. Liu, Z. Wang, X. He, and D.-H. Zhou, “Event-based recursive
distributed filtering over wireless sensor networks,” IEEE Transactions
on Automatic Control, vol. 60, no. 9, pp. 2470–2475, 2015.

[5] M. Ouimet, D. Iglesias, N. Ahmed, and S. Martı́nez, “Coopera-
tive robot localization using event-triggered estimation,” Journal of
Aerospace Information Systems, vol. 15, no. 7, pp. 427–449, 2018.

[6] M. Kamgarpour and C. Tomlin, “Convergence properties of a decen-
tralized Kalman filter,” in 2008 47th IEEE Conference on Decision
and Control, pp. 3205–3210, IEEE, 2008.

[7] S. J. Julier and J. K. Uhlmann, “A non-divergent estimation algorithm
in the presence of unknown correlations,” in Proceedings of the 1997
American Control Conference, vol. 4, pp. 2369–2373, IEEE, 1997.

[8] L. Chen, P. O. Arambel, and R. K. Mehra, “Estimation under unknown
correlation: Covariance intersection revisited,” IEEE Transactions on
Automatic Control, vol. 47, no. 11, pp. 1879–1882, 2002.

[9] Z. Chen et al., “Bayesian filtering: From Kalman filters to particle
filters, and beyond,” Statistics, vol. 182, no. 1, pp. 1–69, 2003.

[10] S. Bandyopadhyay and S.-J. Chung, “Distributed estimation using
Bayesian consensus filtering,” in 2014 American Control Conference,
pp. 634–641, IEEE, 2014.

[11] S. Bandyopadhyay and S.-J. Chung, “Distributed Bayesian filtering
using logarithmic opinion pool for dynamic sensor networks,” Auto-
matica, vol. 97, pp. 7–17, 2018.

[12] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,”
in 46th IEEE Conference on Decision and Control, pp. 5492–5498,
IEEE, 2007.

[13] A. T. Kamal, J. A. Farrell, and A. K. Roy-Chowdhury, “Information
weighted consensus filters and their application in distributed camera
networks,” IEEE Transactions on Automatic Control, vol. 58, no. 12,
pp. 3112–3125, 2013.

[14] S. Das and J. M. Moura, “Consensus+ innovations distributed Kalman
filter with optimized gains,” IEEE Transactions on Signal Processing,
vol. 65, no. 2, pp. 467–481, 2016.

[15] C. Nowzari, E. Garcia, and J. Cortés, “Event-triggered communication
and control of networked systems for multi-agent consensus,” Auto-
matica, vol. 105, pp. 1–27, 2019.

[16] O. Shorinwa, J. Yu, T. Halsted, A. Koufos, and M. Schwager, “Dis-
tributed multi-target tracking for autonomous vehicle fleets,” in 2020
IEEE International Conference on Robotics and Automation (ICRA),
pp. 3495–3501, IEEE, 2020.

[17] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Dis-
tributed optimization and statistical learning via the alternating di-
rection method of multipliers,” Foundations and Trends® in Machine
learning, vol. 3, no. 1, pp. 1–122, 2011.

[18] B. Mu, G. Chowdhary, and J. P. How, “Efficient distributed sensing
using adaptive censoring-based inference,” Automatica, vol. 50, no. 6,
pp. 1590–1602, 2014.

[19] M. Calvo-Fullana and J. P. How, “Distributed filtering with value of
information censoring,” in 2022 American Control Conference, IEEE,
2022.

[20] C. Genest, J. V. Zidek, et al., “Combining probability distributions:
A critique and an annotated bibliography,” Statistical Science, vol. 1,
no. 1, pp. 114–135, 1986.

[21] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed opti-
mization via inexact consensus admm,” IEEE Transactions on Signal
Processing, vol. 63, no. 2, pp. 482–497, 2014.

[22] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with appli-
cations to tracking and navigation: theory algorithms and software.
John Wiley & Sons, 2004.


	I Introduction
	II Problem Formulation
	II-A Formulating the Centralized MAP Estimation Problem

	III Distributed Estimation Problem
	IV Communication Efficiency
	IV-A Value of Information
	IV-B Mission-aware Censoring Mechanism

	V Numerical Results
	VI Conclusions
	References

