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Abstract— We study the problem of data-driven attack de-
tection for unknown LTI systems using only input-output
behavioral data. In contrast with model-based detectors that
use errors from an output predictor to detect attacks, we
study behavior-based data-driven detectors. We construct a
behavior-based chi-squared detector that uses a sequence of
inputs and outputs and their covariance. The covariance of
the behaviors is estimated using data by two methods. The first
(direct) method employs the sample covariance as an estimate of
the covariance of behaviors. The second (indirect) method uses
a lower dimensional generative model identified from data to
estimate the covariance of behaviors. We prove the consistency
of the two methods of estimation and provide finite sample error
bounds. Finally, we numerically compare the performance and
establish a tradeoff between the methods at different regimes
of the size of the data set and the length of the detection
horizon. Our numerical study indicates that neither method
is invariable superior, and reveals the existence of two regimes
for the performance of the two methods, wherein the direct
method is superior in cases with large data sets relative to the
length of the detection horizon, while the indirect method is
superior in cases with small data sets.

I. INTRODUCTION

Cyber-physical systems are growing in complexity and
size since the advent of better communication and higher
computation power. This has also introduced a greater pos-
sibility for adversarial attacks. Several attacks, such as the
ones on the power grid in Ukraine in 2015, the Maroochy
attack in 2000, and others mentioned in [1], have exposed
the vulnerability of CPSs. Detection and mitigation of attacks
has broadly been addressed using model-based [2]–[8] and
data-driven techniques [9]–[15]. Model-based attack detec-
tion and their fundamental limitations have been understood
well [2], [3], model-based techniques assume knowledge of
the underlying system or the knowledge of the statistics
of the measured signals. Therefore the implementation of
model-based methods need prior system identification, which
could be difficult to achieve due to the complexity of the
system or lack of data. In contrast, data-driven methods
usually operate with no knowledge of the system, yet offer
scalable and accurate detection. However, their limitations
are not fully understood. We study the problem of data-driven
attack detection in stochastic systems and, in particular, the
tradeoffs between direct and indirect methods of detection.
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Related work: Machine Learning approaches to attack
detection [9]–[11] have gained popularity recently due to
their ease of implementation. However, these techniques lack
an insight into their functioning. System theoretic approaches
provide more explainable solutions, and they can broadly be
classified into direct and indirect methods. Direct methods
map observations to nominal or attacked conditions [12] us-
ing past data. Indirect methods [13]–[15] utilize information
about the underlying system to detect attacks. [13] considers
the noiseless case where future outputs are predicted from
past data and predictions are compared with measurements,
while [14], [15] address the noisy case. [14] proposes a data-
driven filter for fault detection and isolation. [15] analyses
the conditions for successful attacks when the adversary does
not have the knowledge of the system parameters. Differently
from these works, this paper focuses on a finite-sample
analysis and tradeoffs between direct and indirect methods.

A promising model-based approach that can be adapted for
the data-driven problem is the χ2 anomaly detector [4]–[6].
These works use the detector in conjunction with innovations
from a state estimator and assume the knowledge of the
system. We provide a modified data-driven approach using a
χ2 detector constructed from the measured system behaviors.

Contributions: This paper contributes a data-driven at-
tack detector that uses the behaviors of an unknown LTI
system to differentiate between nominal operation and at-
tacked operation. To implement the detector, we propose
two methods to estimate the covariance of the behaviors,
namely the direct and indirect method. The direct method is
motivated by discriminative classification where we use data
to differentiate between nominal and attacked conditions.
The indirect method is motivated by generative classification
and the fact that an underlying lower dimensional system
generates the observed behaviors. We analytically show that
both methods are consistent. We also provide finite sample
error bounds for the estimates of the two methods. Finally,
we numerically compare the two methods at different noise
levels using the ROC curve as a metric for performance, and
establish different regimes where one outperforms the other.

II. DATA-DRIVEN ATTACK DETECTION

We consider the following discrete-time stochastic system:

xt+1 = Axt +But + wt +Bauat ,

yt = Cxt + vt +Gayat ,
(1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n are the system
matrices, xt ∈ Rn, ut ∈ Rm, and yt ∈ Rp are the state,
control input and the output, respectively, uat and yat are the
malicious input and false sensor measurement injected by an
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adversary as attacks on the system. The attacks are affecting
the system through the matrices Ba and Ga, respectively. We
assume that the system is stable, controllable, and observable.
The process noise wt and measurement noise vt are i.i.d.
Gaussian processes with zero mean. The data-driven attack
detection problem is posed as follows.

Data-driven attack detection: Given inputs u =[
u>0 , . . . , u

>
T−1

]>
and outputs y =

[
y>1 , . . . , y

>
T

]>
over the

detection horizon T , determine if (ua,ya) 6≡ 0, where
ua = [ua0

>, . . . , uaT−1
>]> and ya = [ya1

>, . . . , yaT
>]>.

To perform attack detection, we have input-output data
from N attack-free experiments

(
u(i),y(i)

)
, where i ∈

{1, 2, . . . , N}. Each experiment runs over a horizon of length
T , with x0 = 0. The inputs for the experiments are generated
by a Gaussian random process N (0,Σu).

We begin by noting that the outputs y are generated by
inputs u, noises w and v, and attacks ua and ya as,

y = Cu + C′w + v + Caua + F aya. (2)

Here w and v are the process and measurement noise wt
and vt over the horizon T . The matrix C is defined as

C =


CB 0 . . . 0
CAB CB . . . 0

...
...

. . .
...

CAT−1B CAT−2B . . . CB

 . (3)

C′ is obtained by replacing B with the identity matrix I in C,
and Ca is obtained by replacing B with Ba in C. Note that
in the attack-free case, the assumptions made earlier ensure
that y as well as the behavior Z are stationary Gaussian
processes. In general, control inputs need not be generated
by a Gaussian distribution. However, any output stabilizing
controller will generate stationary measurements when the
system is in operation.

Although we have access to the inputs u and outputs y
over the detection horizon, we have access to neither the
system matrices nor the Markov parameters CAiB, making
it difficult to perform attack detection using methods that
rely on a model based χ2 detector or KL-divergence [3]. We
propose to modify the usage of the χ2 detector as follows,

g = Z>S−1Z
H0

≶
H1

λ, (4)

where Z = [u>,y>]> is the behavior of the system (1) over
the time horizon T . The covariance matrix S = E[ZZ>].
Note that E[Z] = 0 under nominal operation. Further, hy-
pothesis H1 denotes an alarm, whereas H0 denotes nominal
operation. λ is an arbitrary threshold used to differentiate
nominal and attacked operation. To implement the above
detector, we need to estimate S for which we propose the
direct and indirect methods.

A. Direct method

The direct method is motivated by discriminative methods
of classification, where a measured signal is mapped to
nominal or attacked operation using data. We propose to

use the data from N experiments to estimate the covariance
S without considering the structure or characteristics of the
samples. In particular, we use the sample covariance as a
direct estimate,

Ŝd =
1

N

N∑
i=0

z(i)z(i)> =
1

N
ZZ>. (5)

Here, z(i) = [u
(i)
0

>
, . . . , u

(i)
T−1

>
, y

(i)
1

>
, . . . , y

(i)
T

>
]> ∈

RT (m+p)×1 , and Z = [z(1) z(2) . . . z(N)] ∈ RT (m+p)×N .
The direct method is computationally simple. In cases with
large data sets, the sample covariance is a good estimator
of the true covariance matrix S. As the dimension of the
covariance matrix S grows with the detection horizon T , the
sample covariance needs more data for accurate estimation.
Further, when N < T (m+ p), the sample covariance is not
a good estimator. Therefore, in the sequel, we propose the
indirect method which can potentially outperform the direct
method in cases with little data.

B. Indirect method
In the indirect method, we identify a lower dimensional

generative model that gives rise to the behaviors. We first
break the behavior Z into smaller behaviors called minor
behaviors, each of length L denoted by ft. In particular,
ft = [u>t−L u>t−L+1 . . . u>t |y>t−L y>t−L+1 . . . y>t ]>. Note
that we can construct T − L + 1 minor behaviors from Z.
We seek to regress future minor behaviors on past minor
behaviors of the form, ft+1 = Mft + εt using data. M
defines the linear evolution of the minor behaviors while εt
is additive noise entering the system which is uncorrelated
to the behaviors. By exploiting the nature of the underlying
dynamics of the minor behaviors, we can potentially estimate
the covariance matrix of the behaviors with less data. We first
note that the minor behaviors follow a stationary process
owing to our initial assumptions. Let the covariance of the
minor behaviors be P , and the covariance of the noise εi be
Σε. Now, the covariance of the behaviors can be computed
as,

Cov (fi+1) = Cov (Mfi + εi) ,

P =MPM> + Σε.
(6)

It is clear that equation (6) is in the form of a Lyapunov equa-
tion. Therefore, the covariance matrix P can be computed
from (6) if M and Σε are available. If M is regressed from
data, Σε can be estimated from the residuals of the regression
using the sample covariance. In turn, P can be estimated by
solving the Lyapunov equations using the estimates of M
and Σε. We propose to estimate M using Ordinary Least
Squares (OLS) as,

M̂ = F ′F>
(
FF>

)−1
, (7)

where F and F ′ are data matrices constructed from the minor
behaviors obtained from the experimental data:

F =
[
f

(1)
1 . . . f

(1)
T−L f

(2)
1 . . . f

(N)
T−L

]
∈ RL(p+m)×N(T−L),

F ′ =
[
f

(1)
2 . . . f

(1)
T−L+1 f

(2)
2 . . . f

(N)
T−L+1

]
.



If ε̂i are the residuals from the regression (7), Σε can be
estimated using the sample covariance.

ε̂
(i)
j = f

(i)
j+1 − M̂f

(i)
j , (8)

Σ̂ε =
1

Nid
EE>. (9)

Here E = [ε̂
(1)
1 ε̂

(1)
2 . . . ε̂

(N)
T−L] and Nid = N(T − L). f (i)

j

represents the minor behavior fj from the experiment i with
j ∈ {1, 2, . . . , T −L+1}. We now have the estimates ofM
and Σε to solve equation (6). Therefore, P is estimated by
solving P̂ = M̂P̂ M̂ + Σ̂ε.

We next describe the estimation of S using the covariance
of the minor behaviors P . Let D =

[
f>1 f>2 . . . f>T−L+1

]>
.

Then Z = KD, where K is a known sparse matrix
that reconstructs Z from D. Let the covariance of D be
E
[
DD>

]
= ΣD. Therefore S = E[ZZ>] = KΣDK

>. Let
the matrix F be given as,

F =


I M . . . MT−L

M I . . . MT−L−1

...
...

. . .
...

MT−L MT−L−1 . . . I

 .
Then the covariance ΣD is,

ΣD = F ⊗ P, (10)

where ⊗ denotes the Kronecker product. Therefore, ΣD can
be estimated as Σ̂D = F̂ ⊗ P̂ , where F̂ is obtained by
replacingM with its estimate M̂. Finally, S is estimated as
Ŝid = KΣ̂DK

>.

III. CONSISTENCY AND FINITE-SAMPLE ANALYSIS

In this section, we establish that both the direct and
indirect methods are consistent estimators of the covariance
matrix S. We also provide finite sample analysis on the
deviation of the estimated covariance matrices Ŝd and Ŝid

from the true covariance.
Theorem 3.1: (Consistency) Let the covariance matrix S

be estimated as Ŝd and Ŝid using the direct and indirect
methods, respectively, then,

lim
N→∞

Ŝd = lim
N→∞

Ŝid = S.

�
We refer the reader to Appendix A for the proof. This result
establishes that with infinite data, both the methods estimate
the covariance matrix S perfectly. We next establish a finite
sample error bound for the two methods. We denote the
spectral norm of a matrix by ‖ · ‖.

Theorem 3.2: (Finite-sample bound on error - Direct
method) If the covariance S is estimated as Ŝd using the
direct method, then for any θ ≥ 0, and r = Tr(S)

‖S‖ ,

‖S − Ŝd‖ ≤

(√
2θ(r + 1)

N
+

2θr

N

)
‖S‖ (11)

with probability at least 1 − 2T (m + p)e−θ, for any N >
T (m+ p). �

We provide the proof in Appendix B. Theorem 3.2 character-
izes a finite sample bound on the error in estimation arising
from using the direct method. This bound grows larger with
the dimension of S as r is a strictly increasing function of the
size of S. This contributes to high sample complexity of the
direct method, leading to poor estimates at low data regimes
for big S matrices. Further, the above bound converges to 0
at a rate of the order O( 1√

N
).

For the indirect method, it is evident from equation (10)
that solving the OLS problem introduces errors in the matri-
ces F and P . Define the errors arising from the OLS solution
as ∆M =M−M̂ and ∆Σε = Σε − Σ̂ε. Using result from
Theorem 1 of [16], we obtain with probability at least 1−θ,

‖∆M‖ ≤
√

k

Nid
γs

(
M,

θ

4

)
, (12)

for any Nid ≥ max
(
Nη(θ), Ns(θ)

)
. Here k is an absolute

constant. We define γs(M, θ4 ), Nη(θ) and Ns(θ) as follows,

γs(M, θ) =

√
8L(m+ p)

(
log

5

θ
+

log 4Tr(ΓN (M)) + 1

2

)
,

Nη(θ) = k log
2

θ
+ (L(m+ p) log 5),

Ns(θ) = k
(
L(m+ p) log(Tr(ΓN (M)) + 1)

+ 2L(m+ p) log
5

θ

)
,

ΓN (M) =

Nid∑
j=0

MjMj>.

Equation (12) is a tight probabilistic bound on the error
arising from the OLS problem. The error in covariance of
the residuals ∆Σε follows the same distribution as established
in equation (11) because the residuals of the OLS solution
are uncorrelated Gaussian random variables. Therefore both
‖∆M‖ and ‖∆Σε‖ converge to 0 with rate O

(
1√
N

)
.

Before we bound the error in estimation from the indirect
method, we first provide a sensitivity analysis for matrices
F and P when they are estimated.

Lemma 3.3: (Sensitivity of F and P ) Given estimated
matrices F̂ and P̂ , let the errors in estimation of P be ∆P =
P̂ − P , and F be ∆F = F̂ − F . Then,

(a) Sensitivity of P is,

‖∆P ‖ ≤
(√

L(m+ p)‖I ⊗ I −M> ⊗M>‖
)

(
(1 + ‖M+ ∆M‖)2

( ‖∆Σε‖
‖Σε + ∆Σε‖

)
+ 2(‖M‖+ ‖∆M‖)2

( ‖∆M‖
‖M+ ∆M‖

))
.

(13)

if ∆P and ∆Σε are positive semi-definite.



(b) Sensitivity of F is,

‖∆F‖ ≤ ‖F‖+ 1 + 2
(
‖M+ ∆M‖

+ ‖M+ ∆M‖2 + · · ·+ ‖M+ ∆M‖T−L
)
.

(14)
�

We provide the proof in Appendix C. The above sensitivity
analysis allows us to provide the rate of convergence for
both ∆P and ∆F . Since ‖∆M‖ and ‖∆Σε‖ both converge
at the rate of O

(
1√
N

)
, ‖∆P ‖ converges to 0 at the rate

of O
(

1√
N

)
, and ‖∆F‖ converges to a system dependent

constant at the rate of O
(

1√
N

)
.

Following Lemma 3.3, we provide a probabilistic bound
on the estimation error of the indirect method obtained from
finite samples. We bound the estimation error ‖S − Ŝid‖ as
a function of ∆P and ∆F . Recall that S = KΣDK

> and
Ŝid = KΣ̂DK

>. Here, the matrix K has at most one identity
matrix per column as it picks elements from the vector D to
construct Z, therefore ‖K‖ = 1. Using the properties of the
Kronecker product and the triangle inequality, we obtain the
error bound.

‖S − Ŝid‖ = ‖K(F ⊗ P )K>

−K ((F + ∆F )⊗ (P + ∆P ))K>‖
≤ ‖F ⊗ P − (F + ∆F )⊗ (P + ∆P )‖
≤ ‖F‖ ‖∆P ‖+ ‖∆F‖ ‖P‖+ ‖∆F‖ ‖∆P ‖.

(15)

The indirect method scales at the rate O(L) while the direct
method scales at the rate O(T ). The data set expands for
the indirect method to N(T −L) as each experiment z(i) is
broken into minor behaviors f (i)j with j ∈ {1, . . . , T −L+
1}. This makes the indirect method better suited for cases
with low data sizes and longer detection horizons as L ≤ T .
The performance of the indirect method is also dependent on
the choice of L. When L = n, the representation of the minor
behaviors in equation (6) is exact as proven in Appendix A.
However, choosing a large value for L increases the model
complexity, thereby overfitting the data. Contrary to this,
choosing a small L can underfit the data. The direct method
is free of design parameters and can potentially outperform
the indirect method when the size of the available data set
N is large.

IV. SIMULATIONS

In this section we numerically compare and establish
a tradeoff in performance of the detector using the two
proposed methods of estimation. To make a comparison, we
consider the case when the system is operating nominally
as well as when the system is attacked by an adversary. As
the performance of the detector depends on both nominal
and attacked conditions, we compare the False Positive Rate
(FPR) and True Positive Rate (TPR) of the two methods. We
also investigate the effect of the noise on the performance of
the two methods by varying the signal to noise ratio.

We consider a stable SISO system with n = 3 with
randomly generated A,B, and C matrices. Also, for exper-
imental data we use ut ∼ N (0, σuI), wt ∼ N (0, σwI), and
vt ∼ N (0, σvI). We vary σu, σv and σw to compare the
performance of the estimates under various signal to noise
ratios using ROC curves.

Under nominal conditions, the performance of the detector
is determined by the FPR, which is defined as P(g ≥
λ|(ua,ya) ≡ 0). Under an attack, the performance is
determined by the TPR defined as P(g ≥ λ|(ua,ya) 6≡ 0).
To compute the TPR, we introduce a detectable attack where
uat ∼ N (0, 1.5), and yat ∼ N (0, 1.5). The TPR and FPR in
the following comparisons have been averaged over 50 trials.
For the indirect method, L = n.

1) Comparison 1: In this comparison, we set σu =
σv = σw = 1 and compare the ROC curves of the two
methods by plotting the logarithm of the FPR versus the
logarithm of the TPR. In Figure 1, it is evident that the
direct method performs poorly at low data-regimes while
the indirect method performs better. However, as the data
size N increases, the direct method outperforms the indirect
method. As the detection horizon increases to T = 14 in
Figure 1 (e)-(h), the direct method takes longer to outperform
the indirect method. However, both methods feature higher
TPR as T increases.

2) Comparison 2: In this comparison, we vary the the
signal to noise ratio in the data. Similar to the first compar-
ison, we compare the ROC curves of the two methods. We
first set σu = 0.5 and σv = σw = 1. From Figure 2(a)-
(d), we can see that the performance of both the methods
deteriorates as the SNR decreases. However, the indirect
method is consistently better when the size of the data set is
small. The direct method is affected more by the decrease in
SNR with a decrease in TPR. Further, it takes more data for
the direct method to outperform the indirect method. Next,
we set σu = 2 and σv = σw = 1, thereby increasing the
SNR. In Figure 2(e)-(h), the gap between the direct and
indirect methods decreases across all data sizes. Further, with
more data the direct method outperforms the indirect method
quicker.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a data-driven χ2 attack detector
that uses the behaviors of the system to differentiate between
nominal and attacked operation. The proposed detector re-
quires estimation of the covariance of input-output behaviors
of the system. This is achieved by the two proposed methods,
the direct and indirect method. We analytically showed the
consistency of the two methods and established a probabilis-
tic finite-sample error bounds. After a numerical study of
the performance of the two methods, it was evident that
the neither method is invariably superior. The direct method
performs well in cases with more data and shorter detection
horizons. However, as the attack detection horizon increases,
the direct method starts to perform poorly. The indirect
method, with its reliance on an underlying generative model
of the system, outperforms the direct method in small data
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Fig. 1. ROC curves for the two proposed methods. For (a)-(d), detection horizon T = 7. The direct method performs worse than the indirect method in
regimes of low data and soon outperforms the indirect method as the size of the data set N increases. For (e)-(h) detection horizon T = 14. Both methods
show better performance, however the gap between the two methods increases when the data size is low and direct method takes more data to outperform
the indirect method.
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Fig. 2. ROC curves for different SNR with detection horizon T = 7. For (a)-(d) σu = 0.5, σw = σv = 1, which means that SNR is low. The direct
method performs worse for the same amount of data with low SNR. For figures (e)-(h) σu = 2, σw = σv = 1, which means that SNR is high. The direct
method performs better and takes fewer samples to outperform the indirect method. However, the indirect method is affected less by the change in SNR.



regimes. This study shows that neither method has invariably
superior performance and that the choice of method must be
based on the size and characteristics of the available data set.
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APPENDIX

A. Proof of Theorem 3.1

We provide a sketch of the proof in two parts. We
first prove the consistency of the direct method using the

properties of the Wishart distribution [17]. Next, we prove
the consistency of the indirect method using properties of
the OLS solution.

1) Direct method: The sample covariance matrix is an
unbiased estimator of the true covariance. Since z(i) are i.i.d.
gaussian experiments, ZZ> in fact follows a Wishart dis-
tribution [17]. By the properties of the Wishart distribution,
for every element Ŝdij ,

Var
[
Ŝdij

]
=

1

N

(
S2
ij − SiiSjj

)
.

Therefore, as N → ∞, Var
[
Ŝdij

]
→ 0. By applying

the Chebyshev inequality for every element Ŝdij , it follows
that the sample covariance is a consistent estimator of the
covariance S.

2) Indirect method: First, consider the augmented behav-
ior ht = [f>t |ζ>t ]>, where ζt defined as,

ζt = [w>t−L w>t−L+1 . . . w>t |v>t−L v>t−L+1 . . . v>t ]>.

When L = n, ht follows a stationary Vector Auto-
Regressive(1) process such that ht+1 = Ght+et, where et is
a vector of external noises. We divide the matrix G into block
matrices G11, G12, G21, and G22. G11 ∈ RL(p+m)×L(p+m)

captures the dependence of future minor behaviors ft+1 on
past minor behaviors ft which is in the Brunovsky canonical
form. G12 captures the dependence of ft+1 on the past noises
ζt. G21 is a zero matrix as the noises ζt do not depend on
the behaviors ft. Lastly, G22 is the matrix that captures the
dependence of future noise ζt+1 on past noises ζt. Let the
covariance of the augmented behaviors be E[hth

>
t ] = H.

Then, H = Cov[Ght + et] = GHG> + Σe, which is in
the form of a Lyapunov equation. Therefore, it is sufficient
to know G and Σe to compute H. However, we are only
interested in the first L(m + p) × L(m + p) block of H as
it captures the covariance of the minor behaviors ft given
by P from equation (6). We now describe how P can be
computed from the Lyapunov equation H = GHG> + Σe.

Define the (1, 1), (1, 2), (2, 1) and (2, 2) blocks of H as
P11, P12, P21 and P22 of appropriate size. It is crucial to note
that P11 = P in equation (6) as it captures the covariance of
the minor behaviors. Then P11 can be computed by solving
the Lyapunov equation as,

P = (G11 + G12P21P
−1)P (G11 + G12P21P

−1)>+

Σe11 + G12(H/P )G>12. (16)

Let G̃ = G11 + G12P21P
−1 and Σ̃ = Σe11 + G12(H/P )G>12.

Then equation (16) can be rewritten as P = G̃P G̃ + Σ̃.
This implies that there exists a VAR(1) system such that
ft+1 = G̃ft + ht, where ht ∼ N (0, Σ̃).

Next, we prove that regressing future minor behaviors over
past minor behaviors using OLS yields G̃. We seek to solve
the following problem.

min
Ĝ

E
[
‖ft+1 − Ĝft‖2

]
(17)



Note that ft+1 = G11ft + G12ζ + ẽt, where ẽt is the first
L(m+ p) elements of the vector et. Then,

E[‖ft+1 − Ĝft‖] = E
[
‖
(

(G11 − Ĝ)ft + G12ζt + ẽt

)
‖
]

= E
[ (

(G11 − Ĝ)ft + G12ζt + ẽt

)>
(

(G11 − Ĝ)ft + G12ζt + ẽt

) ]
= E

[
Tr
((

(G11 − Ĝ)ft + G12ζt + ẽt

)
(

(G11 − Ĝ)ft + G12ζt + ẽt

)> )]
= Tr

(
(G11 − Ĝ)P (G11 − Ĝ)>

+ (G11 − Ĝ)P12G>12 + G12P21(G11 − Ĝ)>
)

Optimality condition for the problem occurs when the deriva-
tive of the cost function with respect to Ĝ is 0. Differentiating
the cost function using above expression with respect to Ĝ
and setting it to 0, we obtain,

dE
[
‖ft+1 − Ĝft‖2

]
dĜ

= (G11 − Ĝ)P − G12P21 = 0

Ĝ = G12P21P
−1 + G11 = G̃.

Therefore, as N → ∞, Ĝ → G̃. Residuals of the least
squares regression are now ft+1 − G̃ft. By computing the
covariance of the residuals, we obtain

E
[
(ft+1 − G̃ft)(ft+1 − G̃ft)>

]
= Σe11 + G12(H/P )G>12.

Therefore the ordinary least squares problem is consistent
with equation (16). Further, from equation (6) we have that,
Σε = Σe11 + G12(H/P )G>12 = Σ̃. This also proves that the
residuals are uncorrelated with the regressors ft. �

B. Proof of Theorem 3.2

We provide a sketch of the proof. We follow the ap-
proach from [18]. Firstly, the i.i.d. experiments z(i) satisy
the Bernstein moment condition. The Bernstein moment
condition states that, for any sequence of random variables
ξi ∼ N (0,Σξ), and for any l ≥ 2, and H > 0

E
[
(ξiξ

>
i )l
]
� l!

2
H l−2J,

where J is a positive definite matrix. Then it follows from
Theorem 3.6 in [19] that, for any θ > 0,

λ1(
∑
i

ξiξ
>
i ) ≥ Nλ1(S) +

√
2Nθλ1(J) + θH, (18)

λd(
∑
i

ξiξ
>
i ) ≤ Nλd(S)−

√
2Nθλd(J) + θH, (19)

with probability not more than de−θ. Here λ1 and λd denote
the largest and smallest eigenvalues, respectively, d is the
length of the vector ξi and N is the sample size. Next,
to provide error bounds we follow the Bernstein moment

condition for (z(i)z(i)> − S). Using Lemma 4 of [18] we
get:

E
[
z(i)z(i)> − S)l

]
� l!

2
H l−2J,

E
[
S − z(i)z(i)>

]
� l!

2
H l−2J,

where J = Tr(S)S and H = 2Tr(S). Using r = Tr(S)
S ,

we have that ‖J‖ ≤ (r + 1)‖S‖2 and H = 2r‖S‖. From
equations (18) and (19), we get for any θ > 0,

‖ 1

N
ZZ> − S‖ ≥

(√
2θ(r + 1)

N
+

2θr

N

)
‖S‖ (20)

with probability not greater than 2T (p + m)e−θ. Note that
equation (20) is a lower bound on ‖ 1

NZZ>−S‖. The upper
bound on ‖ 1

NZZ>−S‖ follows with probability 1−2T (p+
m)e−θ. �

C. Proof of Lemma 3.3

We provide a sketch of the proof for brevity.
(a) Sensitivity of P : We obtain this result from the

characterizing the sensitivity of the Lyapunov equation (6).
We use the result from Corollary 2.7 of [20]

(b) Sensitivity of F: We exploit the structure of F̂ to obtain
the bound. We have the same elements in the off-diagonals
of the matrix.

F̂ =


I M̂ . . . M̂T−L

M̂ I . . . M̂T−L−1

...
...

. . .
...

M̂T−L M̂T−L−1 . . . I

 = I

+ M̂ ⊗




0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
0 0 0 . . . 0

+


0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
0 0 0 . . . 0


>

+
...

+ M̂T−L ⊗




0 . . . 0 I
0 . . . 0 0
...

...
. . .

...
0 . . . 0

+


0 . . . 0 I
0 . . . 0 0
...

...
. . .

...
0 . . . 0


> .

Here, all the matrices with only the identity matrices on the
off diagonal positions have an operator norm equal to 1 as
they have utmost 1 identity per column. We use the property
that for any arbitrary matrices X and Y of appropriate
dimensions, ‖X ⊗ Y ‖ = ‖X‖ ‖Y ‖. Consequently,

‖F̂‖ ≤ ‖1 + 2‖M̂‖+ 2‖M̂2‖+ · · ·+ 2‖M̂T−L‖ ‖
≤ 1 + 2‖M̂‖+ 2‖M̂‖2 + · · ·+ 2‖M̂‖T−L �
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