
ar
X

iv
:2

20
8.

10
25

9v
1

 [
cs

.L
G

]
 1

8
A

ug
 2

02
2

1

Meta-Learning Online Control for

Linear Dynamical Systems
Deepan Muthirayan, Dileep Kalathil, and Pramod P. Khargonekar

Abstract—In this paper, we consider the problem of finding a
meta-learning online control algorithm that can learn across the
tasks when faced with a sequence of N (similar) control tasks.
Each task involves controlling a linear dynamical system for a
finite horizon of T time steps. The cost function and system
noise at each time step are adversarial and unknown to the
controller before taking the control action. Meta-learning is a
broad approach where the goal is to prescribe an online policy for
any new unseen task exploiting the information from other tasks
and the similarity between the tasks. We propose a meta-learning
online control algorithm for the control setting and characterize
its performance by meta-regret, the average cumulative regret
across the tasks. We show that when the number of tasks
are sufficiently large, our proposed approach achieves a meta-
regret that is smaller by a factor D/D∗ compared to an
independent-learning online control algorithm which does not
perform learning across the tasks, where D is a problem constant
and D∗ is a scalar that decreases with increase in the similarity
between tasks. Thus, when the sequence of tasks are similar the
regret of the proposed meta-learning online control is significantly
lower than that of the naive approaches without meta-learning.
We also present experiment results to demonstrate the superior
performance achieved by our meta-learning algorithm.

I. INTRODUCTION

Meta-learning is a powerful paradigm in machine learning

for learning-to-learn new tasks efficiently, e. g., with limited

data [1]. Meta-learning is based on the intuitive idea that if

the new task is similar to previous tasks, it can be learned

very quickly by using the data and knowledge from previously

encountered related tasks. Recently there has been tremendous

progress in practical algorithms for meta-learning [2]–[4] with

impressive performance in many applications such as image

classification [5], natural language processing [6], and robotic

control [7]. These algorithms, however, are in the batch

learning setting, where data sets composed of different tasks

are available for offline training. A meta-model (typically a

neural network) is then trained using these data sets with the

objective of fast adaptation to a new/unseen task at the test

time using only a few data samples corresponding to that new

task. Significantly different from the batch learning setting

which are offline by nature, many learning algorithms have

to operate in an online setting where the data samples are

obtained in a sequential manner. For example, personalized

recommendation systems [8], various applications in robotics

This work is supported in part by the National Science Foundation under
Grant ECCS-1839429 and NSF- CAREER-EPCN-2045783. D. Muthirayan
and P. P. Khargonekar are with the Department of Electrical Engineering
and Computer Sciences, University of California Irvine, Irvine, CA (emails:
deepan.m@uci.edu, pramod.khargonekar@uci.edu). Dileep Kalathil is with
the Department of Electrical and Computer Engineering, Texas A&M Uni-
versity (email:dileep.kalathil@tamu.edu).

[9]–[13], demand response management in smart grid [14], and

load balancing in data centers [15] require online learning.

Online convex optimization (OCO) [16], [17] focuses on de-

veloping algorithms for online learning setting where the loss

functions are sequentially revealed and the learner is trained

as well as tested at each round. The standard OCO objective

is to minimize the regret which is defined as the difference

between the cumulative cost incurred by the online algorithm

and the optimal policy from a certain class of policies. Even

though the OCO approach offers a fundamental theoretical

framework to analyze a variety of online learning scenarios,

the existing works do not consider how the past experience

can be used to accelerate adaptation to a new task, which is

the key idea behind meta-learning. There are many works in

the area of online control algorithms for dynamical systems

with uncertain/unknown disturbances, system parameters and

cost functions. The online control literature extends the OCO

approach to problems with dynamics [18]–[21]. However,

these existing works only consider the problem of learning

within a task assuming that the task is fixed. In particular,

they do not consider the possibility of learning across the

tasks when faced with a sequence of similar control tasks.

In this paper, we consider the problem of finding a meta-

learning online control algorithm that learns across the tasks

when faced with a sequence of N (similar) control tasks. Each

task involves controlling a linear dynamical system for T time

steps. The cost function and system noise at each time step

are adversarial and unknown to the algorithm before taking the

control action. The primary role of a meta-learning algorithm

is to prescribe an online control policy for any new unseen task

exploiting the information from prior tasks and the similarity

between the tasks. We characterize the performance of a meta-

learning online control algorithm by meta-regret, the average

(taken over the tasks) cumulative regret across the tasks. Our

goal is to develop a meta-learning online control algorithm

that can achieve superior performance, in theory and practice,

over an independent-learning online control algorithm which

applies a standard online control algorithm to each task

without performing any learning across the tasks.

Our approach is motivated by some recent works in online

meta-learning [22]–[24] which combine the meta-learning idea

with the OCO framework. In [22], the authors extend the

model-agnostic meta-learning (MAML) approach [2] to the

online setting. Their goal is to learn a good meta-policy

parameter that allows fast adaptation to all the previously

seen tasks by taking only a few gradient steps from this

meta-policy parameter. The work that is closest ours is

[23], which proposes the Follow-the-Meta-Regularized-Leader

http://arxiv.org/abs/2208.10259v1

2

(FTMRL) approach. FTMRL learns a meta-intialization for

a task specific OCO algorithm such that the individual task

regret of these algorithms improves with the similarity of the

online tasks. However, these works consider only the online

optimization setting without state evolution. In particular, they

do not consider the more challenging problem of online control

for uncertain dynamical systems.

Our contributions: We consider the problem of developing

a meta-learning online control algorithm for a sequence of

similar control tasks. Each task involves controlling a linear

dynamical system with adversarial cost functions and distur-

bances, which are unknown before taking the control action.

Our algorithm has a two loop structure where the outer loop

performs the meta-learning update to prescribe an initialization

parameter for the task specific online control algorithm used

in the inner loop. We show that when the number of tasks are

sufficiently large the meta-regret of our proposed approach

is smaller by a factor D/D∗ compared to an independent-

learning online control algorithm which does not perform

learning across the tasks, where D is a problem constant and

D∗ is a scalar that represents the task similarity (D∗ decreases

with similarity between tasks). Therefore, when the sequence

of tasks are similar, i.e., when D∗ ≪ D, we achieve a regret

that is significantly lower than that of the naive approaches

without meta-learning. We also present experiments results

to demonstrate the superior performance of our meta-learning

algorithm.

Our technical contribution lies in expanding the framework

and technical analysis of online control to incorporate meta-

learning. To the best of our knowledge, ours is the first work

that combines the ideas of meta-learning and online control to

develop a learning algorithm with provable guarantees for its

performance. The conference version of this paper presents a

simpler algorithm that assumes the knowledge of D∗. In this

version, we introduce a general algorithm that does not require

the knowledge of D∗.

Related Works:

Online Control: Substantial number of works have been

published in the area of online control [18]–[21], [25]–[27].

Most of these works focus on developing online control algo-

rithms for linear dynamical systems with provable guarantees

for the regret. In our work we make use of the task specific

online control algorithm proposed in [20]. This considers the

control of a known linear dynamic system with adversarial

disturbance and (convex) cost functions and shows that the

proposed algorithm can achieveO(
√
T) regret for a given task.

Our meta-learning online control algorithm is developed by

extending the task specific online control algorithm proposed

in [20] with an additional outer loop for performing the meta-

learning update and slightly modifying the task specific (inner

loop) update.

Adaptive and Robust Control: Classical adaptive and robust

control literature addresses the problem of control of systems

with parametric, structural, modeling and disturbance uncer-

tainties [28]–[31]. Typically, these classical approaches are

concerned with stability and asymptotic performance guaran-

tees of the systems. Online control literature focuses typically

on the finite time regret performance of the algorithms. This is

one of the key differences compared to the conventional adap-

tive and robust control literature, and it requires combining

techniques from statistical learning, online optimization and

control. In this work, we focus on the online control approach

for developing our meta-learning algorithm.

Notations: Unless otherwise specified ‖·‖ denotes the Eu-

clidean norm and the Frobenious norm for vectors and matri-

ces respectively. We use O(·) for the standard big-O notation

while Õ(·) denotes the big-O notation neglecting the poly-

log terms. We also use o(·) for the standard little-o notation.

Further, when a function g(n) = on(1), then g(n) → 0 as

n → ∞. We denote the sequence (xm1
, xm1+1, . . . , xm2

)
compactly by xm1:m2

.

II. PROBLEM SETTING

We consider the problem of finding a meta-learning online

control (M-OC) algorithm that learns across the tasks when

faced with a sequence of (similar) control tasks. The sequence

of tasks are denoted as τ1, τ2, . . . , τN . Each control task τi
involves controlling a linear dynamical system for T time steps

whose system dynamics is given by the equation

xi,t+1 = Aixi,t +Biui,t + wi,t, 1 ≤ t ≤ T, (1)

where Ai ∈ R
n×n and Bi ∈ R

n×m are the matrices that

paramaterize the system, and xi,t ∈ R
n is the state, ui,t ∈ R

m

is the action, wi,t ∈ R
n is the system noise at time t. For

conciseness we represent the system parameter for task τi as

θi = [Ai, Bi]. We assume that the systems noise is adversarial.

A control policy π for task τi selects a control action uπ
i,t at

each time t depending on the available information, resulting

in a sequence of actions uπ
i,1:T and the state trajectory xπ

i,1:T .

The cumulative cost of a policy π under the system dynamics

(1) is given by

Ji(π) =

T∑

t=1

ci,t(x
π
i,t, u

π
i,t), (2)

where ci,t is the cost function for task τi at time t. We assume

that ci,ts are arbitrary convex functions. The typical goal is to

find the optimal policy π⋆
i such that π⋆

i = argminπ Ji(π).
Clearly, computing π⋆

i requires the knowledge of the system

parameter θi and the entire sequence of cost functions ci,1:T .

The online control framework considers the more realistic

setting where the future cost functions are not available for

deciding the control action ui,t at time t. More precisely the

policy πi for task τi has only the following information at

each time t for selecting the action ui,t: (i) past and current

state observations xi,1:t, (ii) past control actions ui,1:t−1, (iii)
past cost functions ci,1:t−1. We also assume that the system

parameter θi is known to the control policy. The task regret

of the control policy πi for the task τi is defined as

Ri
T (πi) = Ji(πi)−min

π∈Π
Ji(π), (3)

where Π is the class of control policies. The objective is to find

a policy that minimizes the task regret assuming that the task

is fixed. In particular the existing online control algorithms

3

do not consider learning across tasks when faced with a

sequences of similar control tasks.

Our goal is to find a meta-policy πm that can learn across

the tasks when faced with a sequence of (similar) control

tasks τ1, τ2, . . . , τN and minimize the task regret for individual

tasks. A meta-policy πm produces a sequence of task specific

policies πm
i , 1 ≤ i ≤ N, by learning across the tasks. For

deciding the task specific policy πm
i for task τi the meta-policy

πm makes use of the observation available from the previous

tasks: the state observations, cost functions, and task specific

policies for all previous tasks j ≤ i − 1. Since the objective

of the meta-policy is to generate task specific policies which

can do well on individual tasks, the performance of the meta-

policy is characterized by the metric meta-regret, formally

defined as

Rmeta
N (πm) =

1

N

N∑

i=1

Ri
T (π

m
i). (4)

Our objective is to find a meta-policy that performs better

than an independent-learning online control algorithm which

applies a standard online control algorithm independently to

each task without performing any learning across the tasks.

We make the following assumptions. Please note that the

assumptions stated below are standard in the (task specific)

online control literature [20] and no further assumptions are

made.

Assumption 1 (System Model): (i) The system matrices for

each task are bounded, ‖Ai‖ ≤ κA, and ‖Bi‖ ≤ κB , where

κA and κB are constants. (ii) The disturbance at time t of any

task is bounded, ‖wi,t‖ ≤ κw, where κw is a constant.

Assumption 2 (Cost Functions): For all tasks i, 1 ≤ i ≤ N
and all time steps t, 1 ≤ t ≤ T , (i) the costs functions ci,ts
are convex, (ii) for any x and u with ‖x‖ ≤ S, ‖u‖ ≤ S,

‖ci,t(x, u)‖ ≤ βS2, ‖∇xci,t(x, u)‖, ‖∇uci,t(x, u)‖ ≤ GS,

III. REVIEW: ONLINE CONTROL ALGORITHM

In this section we give a brief description of the task

specific online control (OC) algorithm proposed in [20]. We

drop the task subscript i because the discussion here is for

a single task. Our meta-learning online control algorithm is

developed by extending the task specific OC algorithm with an

additional outer loop for performing the meta-learning update

and appropriately modifying the task specific (inner loop)

update.

The OC algorithm proposed in [20] uses a control policy

parameterized by two matrices, a fixed matrix K and a time

varying matrix Mt = (M
[1]
t ,M

[2]
t , . . . ,M

[H]
t). The control

action ut at time t by this OC algorithm is given by

ut = −Kxt +

H∑

k=1

M
[k]
t wt−k. (5)

Thus, the control action is a linear map of the current state and

the past disturbances up to a certain history. This property is

convenient as it permits efficient optimization of the costs.

We note that, since the state is fully observable, the past

disturbances can be precisely estimated using the information

at time t.

The parameter K is selected by the OC algorithm as a

(κ, γ)-strongly stable linear feedback control matrix for the

underlying system. A linear feedback control policy speci-

fied by the gain K is (κ, γ)-strongly stable if there exists

matrices L,H satisfying A − BK = HLH−1 such that the

following two conditions are met: (i) ‖L‖ ≤ 1 − γ, and (ii)
‖K‖ ≤ κ, ‖H‖, ‖H−1‖ ≤ κ. The OC algorithm considers the

class Π of all (κ, γ)-strongly stable linear feedback controllers

for characterizing its regret performance according to (3).

The OC algorithm uses the framework of Online Convex

Optimization (OCO) to update the parameters Mt at each time

step. The key idea of the algorithm is to design a sequence

of cost functions f1:T in terms of the parameters M1:T while

correctly representing the actual cost incurred by the true cost

functions c1:T . This is achieved by defining an idealized state

st and idealized control input at as follows. The idealized state

st is the state the system would have reached if the controller

had executed the policy with parameters (Mt−H , . . . ,Mt−1)
from time step t − H to time step t − 1, assuming that the

state at t−H is 0. The idealized action at is the action that

would have been executed at time t if the state observed

at time t is st. We can then define the idealized cost as

ft(Mt−H , . . . ,Mt) = ct(st, at).

The complete OC algorithm proposed in [20] is shown in

Algorithm 1. An Online Gradient Descent (OGD) approach

updates the parameters Mt by the gradient of the idealized cost

function. The algorithm requires the specification of a (κ, γ)-
strongly stable matrix K . Such a matrix can be calculated

offline before the task using an Semi-Definite Programming

(SDP) relaxation as described in [32].

Algorithm 1 Online Control (OC) Algorithm

Input: Step size η, parameters κB, κ, γ, T , (κ, γ)-strongly

stable control matrix K
Define H = logT/(log (1/1− γ))
Define M = {M = (M [1], . . . ,M [H]) : ‖M [k]‖ ≤ κ3κB(1−
γ)k}

Define gt(M) = ft(M, . . . ,M)
Initialize M1 ∈M
for t = 1,. . . ,T do

Choose the action ut = −Kxt +
∑H

k=1 M
[k]
t wt−k

Observe the new state xt+1, and wt = xt+1 −Axt −But

Update Mt+1 = ProjM (Mt − η∇gt(Mt))
end

A regret guarantee of Algorithm 1 is provided in [20]:

Theorem 1 (Theorem 5.1, [20]): Suppose Assumptions 1-2

hold, η = D√
Gf (Gf/2+LH2)T

, and D = κBκ3
√
d

γ . Then, under

Algorithm 1,

RT ≤
3D
√
Gf (Gf/2 + LH2)T

2
+ Õ(1), where

L = 2GD̃κwκBκ
3, Gf = GD̃κwHd

(
2κBκ

3

γ
+H

)
,

D̃ =
κw(κ

2 +Hκ2
Bκ

5)

γ(1− κ2(1− γ)H+1)
+

κBκ
3κw

γ
.

4

Remark 1 (Diameter of the domain): It can be shown that

[20, Theorem 5.1] the multiplicative constant D in the above

regret bound is the diameter of the domain M of the control

policy parameters, i.e., D = maxM1,M2∈M‖M1 − M2‖. In

the next section we show that our meta-learning approach can

significantly reduce this multiplicative constant by learning

across the tasks.

IV. META-LEARNING ONLINE CONTROL ALGORITHM

Our meta-learning online control (M-OC) algorithm builds

on the simple, yet a powerful idea of meta-initialization. In

the standard OC algorithms, the initialization parameter for

the control policy is selected arbitrarily from the domain of

possible parameters. So, inevitably the regret guarantee for

such algorithms includes a multiplicative constant that is of

the order of the radius of the domain (see Remark 1), which

can be very large in many problems. Similarly, when an

independent-learning OC algorithm is applied to a sequence

of tasks the parameters of the control policy for each task are

initialized arbitrarily ignoring the similarities and the benefit of

learning across tasks. When the tasks are similar, the optimal

parameters for the individual tasks are closer to each other, and

the optimal parameters for the earlier tasks in the sequence can

be used to improve the learning in a new upcoming task. Our

M-OC algorithm translates this intuitive idea into providing

a clever initialization for the control policy for the current

task by learning from the previous tasks. This results in a

multiplicative constant (in the regret) that is proportional to

the diameter D∗ of a much smaller subset that contains the

parameters of the optimal control policies of the individual

tasks, instead of the diameter of the generic domain. This

scenario is illustrated in Fig. 1, where the diameter D of

the original domain M is significantly larger than D∗, which

is the diameter of the smaller set M∗ that contains the

optimal parameters corresponding to the similar tasks. Here

the diameter D∗ can be interpreted as the similarity of the

sequence of tasks.

The architecture of our M-OC algorithm is given in Fig.

2. The meta-learning in the outer loop provides the meta-

initialization for the task specific OC algorithm in the inner

loop. The control policy for each specific task is of the

same form as the independent learning OC algorithm (5). At

the beginning of any task τi a (κ, γ) stabilizing feedback

gain matrix Ki for the task τi is computed. During the

task the algorithm updates the task specific policy parameters

Mi,t exactly as in Algorithm 1. The control action ui,t is

computed using the parameters Mi,t and the feedback gain

matrix Ki with the same form as the independent learning

OC algorithm (5). The difference between the M-OC algorithm

and Algorithm 1 lies in the initialization of the parameter Mi,1.

In particular, Algorithm 1 selects Mi,1 arbitrarily from the

domain M, whereas the outer loop of meta-learner provides

the initialization Mm
i for each task τi.

Specifically, the inner loop updates the control policy pa-

rameter Mi,t within each task τi by

Mi,t+1 = ProjM (Mi,t −∇gi,t(Mi,t)) , Mi,1 = Mm
i . (6)

M

D

D
∗

M∗

Fig. 1. Illustrative figure showing the domain M of the parameters of the
online control policies and the set M∗ of the optimal parameters of the control
policies corresponding to a set of similar tasks.

Outer Loop: Meta Learner

Meta-Update
Mm

i

Meta-Loss, Li

Inner Loop: Task Specific OC Algorithm

Policy Update

Mi,t

M⋆
i−1

System

xi,t+1

Control Policy

ui,t

Fig. 2. Meta-Learning Online Control (M-OC) Algorithm Architecture. Solid
line: within task signals. Dashed line: signals that are constant within a task
but that can change across the tasks.

In the outer loop, the meta-learner computes the initialization

parameter Mm
i for the inner loop as follows. Let M⋆

i the

optimal parameter in hindsight for task τi, i.e.,

M⋆
i = argmin

M∈M

T∑

t=1

gi,t(M). (7)

We note that M⋆
i is computable at the end of task τi. Given that

gi,ts are convex functions, finding M⋆
i is a convex optimization

problem, and thus can be solved efficiently. We define the

meta-learner’s loss for task i as

Li(Mm) =
1

2
‖Mm −M⋆

i ‖2. (8)

The meta-learner performs an online gradient descent step to

find the initialization Mm
i+1 for task τi+1 as

Mm
i+1 = ProjM

(
Mm

i −
1

i
∇Li(Mm

i)

)
. (9)

We note that performing the naive initialization Mm
i+1 =

M⋆
i does not improve the regret optimally as this will effec-

tively throw away the information from all the previous tasks.

Instead the meta-learner solves an online convex optimization

problem with N steps with the cost function at each step i
given by Li. Since the online gradient descent approach solves

this problem efficiently with provable guarantees for the regret

performance, we adapt this approach as the meta-learning

algorithm in the outer loop. We present two variations of the

algorithm: (i) a simpler algorithm which assumes knowledge

of the diameter D∗, and (ii) a complete algorithm that does

not require the knowledge of D∗.

5

A. Algorithm with the Knowledge of D∗

We first present the algorithm with the knowledge of D∗

for easier understanding of the idea and the technical analysis.

The key advantage of this assumption is that we can set

the learning rate η in the inner loop proportional to D∗ in

addition to updating the meta-initialization according to (9).

We emphasize that setting η ∝ D∗ is the optimal way to set

the rate, which follows from how η is set in Theorem 1 for

the independent learning OC algorithm. The assumption of

knowledge of D∗ simplifies the algorithm, which otherwise

requires setting the learning rate adaptively. We present the

more general algorithm in the next section. The algorithm with

the knowledge of D∗ is presented below.

Algorithm 2 Meta-learning Online Control (M-OC-1) Algo-

rithm
Input: Number of tasks N , the diameter D∗, inner loop step

size η, parameters κB, κ, γ, T
Define M = {M = (M [1], . . . ,M [H]) : ‖M [k]‖ ≤ κ3κB(1 −
γ)k}. Initialize Mm

1 ∈ M arbitrarily

for i = 1,. . . ,N do
For task τi, set the initialization Mi,1 = Mm

i for the OC

Algorithm (Algorithm 1) in the inner loop

Execute the OC Algorithm (Algorithm 1) for task τi
Compute M⋆

i as in (7)

Update Mm
i+1 as in (8)-(9)

end

We now present our main result which characterizes the

performance of Algorithm 2.

Theorem 2: Suppose Assumptions 1-2 hold, and η =
D∗√

Gf (Gf/2+LH2)T
. Then, under the M-OC-1 Algorithm (Al-

gorithm 2)

Rmeta
N ≤

(
O
(
logN

D∗N

)
+

D

2
+D∗

)√
G̃2T ,

where, D
2
= 1

N

∑N
i=1

(
M⋆

i − M̃⋆
)2

, M̃⋆ = 1
N

∑N
i=1 M

⋆
i ,

G̃2 = Gf

(
Gf

2 + LH2
)

.

Remark 2 (Comparison with independent-learning online

control algorithm): Under our M-OC-1 algorithm, when N
is sufficiently large, the multiplicative constant in the regret

upper bound is approximately equal to D
2 +D∗. When the tasks

are similar D∗ ≪ D, and by definition D ≤ D∗. Therefore,

when the tasks are similar the regret our algorithm achieves is

significantly better compared to the independent learning OC

algorithm. This clearly shows that M-OC-1 is able to learn

across tasks, which by default the independent learning OC

algorithm cannot do. This fact is verified by our numerical

simulations also; see Section VI.

Remark 3 (Achievability by meta-learning): We note that

the meta-regret scaling with respect to the duration T of a

control task is Õ(
√
T), which is same as the scaling achieved

by the independent learning OC algorithm. This aspect is

consistent with the existing theoretical results in online meta-

learning [22]–[24]. This is expected, as the meta-learner will

never be able to learn an initialization that does not require

further adaptation, especially, since the cost functions and

the disturbances are arbitrary. Furthermore, as pointed in [23,

Theorem 2.2], even in the simpler OCO setting, reductions to

the multiplicative constant are the best that can be achieved.

Remark 4 (Knowledge of D∗ vs M∗): We emphasize that

our algorithm only assumes the knowledge of a scalar D∗,

and not of the entire multi-dimensional setM∗. Assuming the

knowledge of M∗ is not realistic in most practical problems.

B. Algorithm without the Knowledge of D∗

In this subsection, we present a general version of our

algorithm which does not assume the knowledge of D∗. As

mentioned earlier, without the knowledge of D∗, requires

setting the learning rate adaptively.

Our approach is motivated by the idea proposed in [24],

but we present a simpler algorithm which lends itself to a

simpler proof. We set the learning rate for task τi as η =
Di√

Gf (Gf/2+LH2)T
, where Di is an estimate of the diameter

of the smallest bounding circle of the region M∗. We update

Di whenever there is evidence that Di is smaller that D∗.

The idea is to start Di from a guess (a small number ǫ) of D∗

and increase this guess by a factor ζ > 1 whenever ‖M⋆
i −

M̃m
i−1‖ > Di, where M̃m

i = 1
i

∑i
j=1 M

⋆
i . The term ‖M⋆

i −
M̃m

i−1‖ is the deviation of the optimal parameter for a new task

i from the average of the optimal parameters of the previous

tasks. Thus, this term is indicative of how smaller Di is, and

thus can be used to increase Di by comparing with it. In

addition, since M̃m
i−1 is equal to the output of the meta-learner

in Eq. (9) with Mm
1 set to zero, we use M̃m

i−1 itself as the

meta-initialization for the task τi. The complete algorithm is

shown in Algorithm 3.

Algorithm 3 Meta-learning Online Control (M-OC-2) Algo-

rithm
Input: Number of tasks N , parameters κB, κ, γ, T, ǫ, ζ > 1
Define M = {M = (M [1], . . . ,M [H]) : ‖M [k]‖ ≤ κ3κB(1−
γ)k}. Set Mm

1 to the origin. Initialize D1 = ǫ, k = 0.

for i = 1,. . . ,N do

Set η = Di√
Gf (Gf/2+LH2)T

For task τi, set the initialization Mi,1 = Mm
i for the OC

Algorithm (Algorithm 1) in the inner loop

Execute the OC Algorithm (Algorithm 1) for task τi
Compute M⋆

i as in (7)

Set Mm
i+1 = 1

i

∑i
j=1 M

⋆
j

if i > 1 then

if ‖M⋆
i −Mm

i ‖ > Di then
k ← k + 1

end

end

Di+1 = ζkǫ
end

We now present our main result which characterizes the

performance of Algorithm 3.

6

Theorem 3: Suppose Assumptions 1-2 hold, ǫ < D∗, and

ζ = (1+log(T))/ log(T). Then, under the M-OC-2 Algorithm

(Algorithm 3)

Rmeta
N ≤

(
O
(
logN

D∗N
+

D2

ǫN

)
+

D

2
+D∗ + oT (1)

)√
G̃2T

where, D
2
= 1

N

∑N
i=1

(
M⋆

i − M̃⋆
)2

, M̃⋆ = 1
N

∑N
i=1 M

⋆
i ,

G̃2 = Gf

(
Gf

2 + LH2
)

Remark 5 (Comparison with independent-learning online

control algorithm and M-OC-1 algorithm): Under M-OC-2

algorithm, when N is sufficiently large, the multiplicative

constant in the regret upper bound is approximately equal

to D
2 + D∗. We recall from Remark 2 that D ≤ D∗

(by definition), and when the tasks are similar D∗ ≪ D.

Therefore, when the tasks are similar, we observe that the

regret M-OC-2 achieves is significantly better compared to the

independent learning OC algorithm. We also observe that the

M-OC-2 algorithm has an additional term D2

ǫN compared to the

M-OC-1 algorithm. This indicates that when the initial guess

ǫ is very small, the number of tasks N that M-OC-2 observes

has to be sufficiently large. This is expected as, when ǫ is

much smaller compared to D∗ meta-learning will necessarily

require more experience to improve the initial guess Di = ǫ.

V. REGRET ANALYSIS

In this section, we present a detailed analysis of the M-OC

Algorithms 2 and 3. We first characterize the regret for a single

task under these algorithms. The task regret given by (3) for

a task specific policy πm
i can be decomposed as

Ri
T (π

m
i)

=

T∑

t=1

ci,t(x
πm
i

i,t , u
πm
i

i,t)−
T∑

t=1

fi,t(Mi,t−H , . . . ,Mi,t)

︸ ︷︷ ︸
Cost Approximation: Ri

T,1

+

T∑

t=1

fi,t(Mi,t−H , ..,Mi,t)−min
M∗

T∑

t=1

fi,t(M
∗, ..,M∗)

︸ ︷︷ ︸
Policy Regret: Ri

T,2

+min
M∗

T∑

t=1

fi,t(M
∗, . . . ,M∗)− J∗

i

︸ ︷︷ ︸
Policy Approximation: Ri

T,3

, (10)

where J∗
i = minπ∈Π Ji(π).

The term Ri
T,1 is the approximation of the cost by only

considering the disturbances upto certain history. The term

Ri
T,2 is the cost difference between the control policy in (5)

with Mi,t set as the best parameter in hindsight and the optimal

policy from the class Π. The result from [20, Theorem 5.1]

can be used directly to bound the terms Ri
T,1 and Ri

T,3.

Lemma 1: Under the M-OC Algorithm 2 and Algorithm 3,

the cost approximation term Ri
T,1 and the policy approxima-

tion term Ri
T,3 are bounded by

Ri
T,1 ≤ 2TGD̃(1− γ)H+1

(
κwHκ2

Bκ
3

γ
+ D̃κ3

)

= Õ(1),
Ri

T,3 ≤ 2TGD̃2κ3(1− γ)H+1 = Õ(1).

We note that H is O(log T), which results in the final Õ(1)
bound. Also note that Õ(·) hides the poly-log terms. Intuitively

the bound for Ri
T,1 follows from the fact that the idealized cost

function as stated earlier is a good approximation of the actual

cost. The bound for Ri
T,3 indicates that the best time invariant

control policy of the form 5 is a good approximation of the

best linear feedback policy in hindsight. Next we bound the

second term Ri
T,2. This is the key step in the proof of the regret

for the task specific online control, which we then leverage to

prove our meta-learning guarantee. This is where our proof

differs from the proof of [20].

Lemma 2: Under the M-OC Algorithm 2 and 3, the policy

regret term Ri
T,2 is bounded by

Ri
T,2 ≤

‖M⋆
i −Mm

i ‖2
2η

+
TG2

fη

2
+ ηLH2GfT.

The proof proceeds by splitting Ri
T,2 to two terms: first term

is the difference between the total idealized cost and the total

cost with the per step cost given by gt(Mt), and the second

term is the difference between the total cost with the per step

cost given by gt(Mt) and the total idealized cost with Mi,t set

as the best time invariant parameter in hindsight. The first term

is bounded by using the Lipschitz conditions in Assumption

2 and the second term is bounded by a standard OCO proof

methodology. Please see Appendix A for the full proof.

Next, we use the above two lemmas to prove Theorem 2

for the M-OC algorithm 2.

A. Proof of Theorem 2

By definition

Rmeta
N =

1

N

(
N∑

i=1

Ri
T,1 +Ri

T,2 +Ri
T,3

)
.

Since, from Lemma 1 Ri
T,1 = Ri

T,2 = Õ(1), we neglect these

terms and focus only on the remaining term.

Rmeta
N =

1

N

N∑

i=1

Ri
T,2 + Õ(1)

(a)
=

1

2Nη

N∑

i=1

‖M⋆
i −Mm

i ‖2 +
TG2

fη

2
+ ηLH2GfT

(b)
=

1

2Nη

(
N∑

i=1

‖M⋆
i −Mm

i ‖2 − min
Mm∈M

N∑

i=1

‖M⋆
i −Mm‖2

)

+
(∆⋆)2

2η
+

TG2
fη

2
+ ηLH2GfT. (11)

Here, (a) follows from Lemma 2 and in (b) we have used ∆⋆ =√
1
N minMm∈M

∑N
i=1‖Mm −M⋆

i ‖2. The key idea now is to

bound the term

N∑

i=1

‖M⋆
i −Mm

i ‖2 − min
Mm∈M

N∑

i=1

‖M⋆
i −Mm‖2 (12)

7

using the ideas from online convex optimization. For this,

consider the OCO problem where the decision at step i is

denoted by Mi ∈ M, and the corresponding loss at step i is

ℓi(Mi). The goal of an OCO algorithm is to find a sequence

of decisions M1,M2, . . . ,MN in order to minimize the regret:

Regret = RN =
N∑

i=1

ℓi(Mi)− min
M∈M

N∑

i=1

ℓi(M). (13)

Consider the case where ℓi is αi-strongly convex and G-

Lipschitz. Then, the following OCO algorithm, which uses

the online gradient descent approach, can achieve logarithmic

regret [23, Theorem A.2]:

Mi+1 = ProjM

(
Mi −

1
∑i

j=1 αj

∇ℓi(Mi)

)
. (14)

We state this result formally below.

Lemma 3 (Theorem A.2, [23]): Let ℓi : M → R be

a sequence of αi-strongly convex and G-Lipschitz functions

with respect to ‖·‖. Then the regret of the online optimization

algorithm given in (14) is O(log(N)).
Now, to bound (12), consider the loss function ℓi(M

o) =
1/2‖M⋆

i −Mo‖2. It is straight forward to show that ℓi is 1-

strongly convex. It is also Lipschitz inside the set M. Note

that the meta-learning step given by 9 in Algorithm 2 is indeed

the OCO algorithm given in (14). Since Eq. (12) represents

the regret corresponding to this OCO problem, Lemma 3 is

applicable here to bound the terms in (12). Hence, we get

Rmeta
N =

O(log(N))

Nη
+
(∆⋆)2

2η
+

TG2
fη

2
+ηLH2GfT +Õ(1).

(15)

The final result follows from substituting the value of η and

using the fact that ∆⋆ = D.

B. Proof of Theorem 3

The steps in the proof are similar to the proof of Theorem

2. By definition

Rmeta
N =

1

N

(
N∑

i=1

Ri
T,1 +Ri

T,2 +Ri
T,3

)
.

Since, the learning rate is set differently in each task τi, we

denote the learning rate in task τi by ηi. Since Ri
T,1 = Ri

T,2 =

Õ(1) from Lemma 1, we focus only on the remaining term.

Rmeta
N =

1

N

N∑

i=1

Ri
T,2

=
1

N

N∑

i=1

(
‖M⋆

i −Mm
i ‖2

2ηi
+

TG2
fηi

2
+ ηiLH

2GfT

)

Here the last equality follows from Lemma 2. The following

observations hold: (i) the average M̃m
i = 1

i

∑i
j=1 M

⋆
j is a

convex combination and thus lies within the smallest bounding

circle ofM∗. Thus, given the fact that M̃m
i−1 = Mm

i for i > 1,

Mm
i is always be within D∗ distance from M⋆

i for all is.

Given how Di is increased from one task to the next, it

follows from the previous observation that there are at the

most ⌊logζ(D
∗

ǫ)⌋ tasks after i = 1 when ‖M⋆
i −Mm

i ‖ > Di.

We index such instances by k and denote the corresponding

task indices by ik.

Lets define an alternate sequence in which D̃1 = D∗, D̃i =
Di when ‖M⋆

i −Mm
i ‖ ≤ Di for any i > 1, and D̃i = D∗

otherwise. Let G̃2 =
(

G2
f

2 + LH2Gf

)
. Then it follows that

ηi =
Di

G̃
√
T

. Then

Rmeta
N ≤ 1

N

(‖M⋆
1 −Mm

1 ‖2
2D1

+D1

)√
G̃2T

+
1

N

N∑

i=2

(‖M⋆
i −Mm

i ‖2
2Di

+Di

)√
G̃2T

(a)

≤ D2

2Nǫ

√
G̃2T

+
1

N

N∑

i=1

(‖M⋆
i −Mm

i ‖2

2D̃i

+ D̃i

)√
G̃2T

+
1

N

⌊logζ(
D∗

ǫ
)⌋∑

k=0

(‖M⋆
ik
−Mm

ik
‖2

2ζkǫ
+ ζkǫ

)√
G̃2T .

Here (a) follows from adding additional terms for all those

tasks when D̃i 6= Di, which by definition occurs when i = 1
and when ‖M⋆

i −Mm
i ‖ > Di for i > 1.

We make some observations. By definition, D̃i ≥ ‖M⋆
i −

Mm
i ‖ when i > 1. Consider the function g(x) = B2

x + x.

We observe that this function is increasing for x ≥ B. We

also observe that Di ≤ ζD∗. With these observations we can

simplify the bound to Rmeta
N as

Rmeta
N ≤ D2

2Nǫ

√
G̃2T

+
1

N

N∑

i=1

(‖M⋆
i −Mm

i ‖2
2D∗ + ζD∗

)√
G̃2T

+
1

N

⌊logζ(
D∗

ǫ
)⌋∑

k=0

(‖M⋆
ik
−Mm

ik
‖2

2ζkǫ
+ ζkǫ

)√
G̃2T .

Next we bound the last term. We note that by definition

‖M⋆
ik
−Mm

ik
‖ ≤ D∗ for all i > 1 and by definition ik > 1.

Let K = ⌊logζ(D
∗

ǫ)⌋. Therefore,
√
G̃2T

N

K∑

k=0

(‖M⋆
ik
−Mm

ik
‖2

2ζkǫ
+ ζkǫ

)

≤
√
G̃2T

N

K∑

k=0

(
D∗2

2ζkǫ
+ ζkǫ

)

=

√
G̃2T

N

(
D∗2(ζK+1 − 1)

2ζK(ζ − 1)ǫ
+

ǫ(ζK+1 − 1)

ζ − 1

)

= O
(
D∗2

ǫN

)√
G̃2T .

Next we bound the second term. Let M̃⋆ := 1
N

∑N
i=1 M

⋆
i .

8

Adding and subtracting ‖M⋆
i − M̃⋆‖ for each i, we get

1

N

N∑

i=1

(‖M⋆
i −Mm

i ‖2
2D∗ + ζD∗

)√
G̃2T

=

√
G̃2T

2D∗N

N∑

i=1

(
‖M⋆

i −Mm
i ‖2 − ‖M⋆

i − M̃⋆‖2
)

+

√
G̃2T

N

N∑

i=1

(
‖M⋆

i − M̃⋆‖2
2D∗ + ζD∗

)

(d)

≤
(O(log(N))

N
+

D

2
+ ζD∗

)√
G̃2T . (16)

Here (d) follows from (i)

M̃⋆ = arg min
M∈M

1

N

N∑

i=1

‖M⋆
i −M‖2,

(ii)
∑N

i=1

(
‖M⋆

i −Mm
i ‖2 − ‖M⋆

i − M̃⋆‖2
)

is the regret for

meta-learning given (i) and Lemma 3, and (iii) by definition

of D. The final result follows from combining all terms.

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to demon-

strate the benefits of our proposed meta-learning online control

algorithm. We consider only the M-OC-1 algorithm for the

simplicity of illustration. In our experiments, each task τi is

the problem of regulating a linear dynamical system given in

1 with dimensions n = 2,m = 1. The system model Ai in

each task τi is selected as a random matrix: a perturbation

around a nominal matrix. In particular, we set Ai = 1
2nI +

1
5nWi, where Wi is a random matrix with the value of each

element generated uniformly from the interval [0, 1]. This

structure implicitly incorporates the idea of task similarity.

The cost functions ci,ts are selected as quadratic cost functions

ci,t(x, u) = x⊤Qtx+u⊤Rtu, where Qt and Rt are randomly

chosen diagonal matrices with each diagonal element chosen

randomly from the range [0.375, 0.625]. The other parameters

are selected as κa = κb = κw = 1, κ =
√
nm, γ = 0.5.

In our experiments, we compare the performance of our M-

OC algorithm with the following benchmarks:

(i) Non-adaptive control algorithm which employs the control

policy ui,t = −Kixt, where Ki is a stabilizing controller

for task τi with system parameter θi = [Ai, Bi]. We select

Ki by solving a standard linear matrix inequality (LMI)

for finding a stabilizing controller. We call this non-adaptive

control because the control policy is invariant over the duration

of the control tasks. Moreover, there is no learning across the

tasks.

(ii) Independent-learning online control algorithm employs

the task specific OC algorithm (Algorithm 1) independently to

each control task. While this approach is capable of learning

within a task, it does not perform any meta-learning across

the tasks.

Different from these benchmarks, our M-OC algorithm can

learn within and across the tasks.

Figure 3 shows the meta-regret Rmeta
N as a function of the

number of tasks N with T = 25 for all tasks. Note that meta-

0 5 10 15

N

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

R
m

et
a

N

Non-Adaptive

Independent OC

M-OC (Meta Learner)

Fig. 3. Plot of Rmeta

N
versus the number for tasks N .

2 2.5 3 3.5 4

log(T)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

lo
g

(R
m

et
a

N
)

Non-Adaptive

Independent OC

M-OC (Meta Learner)

Fig. 4. Plot of logRmeta

N
vs log T .

regret is equivalent to the average (averaged over the tasks)

cumulative regret of the tasks; see (4). Since the non-adaptive

control algorithm and the independent-learning OC algorithm

do not perform any learning across the tasks, their meta-regret

does not improve with the number of tasks. In stark difference,

the meta-regret of our M-OC algorithm decreases with the

number of tasks; see Remark 2 also. This is because our

M-OC algorithm is designed to perform meta-learning across

the tasks. This clearly demonstrates the superior performance

of the M-OC algorithm over the benchmarks without meta-

learning.

Figure 4 shows the variation of the meta-regret with N = 15
tasks as a function of the duration T of each control task.

We see that, when the task duration is small, the M-OC

outperforms independent learning OC by a notable margin.

This indeed is the very purpose meta-learning, i.e., to improve

adaptation when the data or experience available for online

learning is limited.

VII. CONCLUSION

In this paper, we address the problem of developing a meta-

learning online control algorithm for a sequence of similar

control tasks. We focus on the setting where each task is the

problem of controlling a linear dynamical system with arbi-

trary disturbances and arbitrarily time varying cost functions.

9

We propose a meta-learning online control algorithm that prov-

ably achieves a superior performance compared to the standard

online control algorithm which does not use meta-learning.

We also present numerical experiments to demonstrate the

superior performance of our algorithm. In the future work, we

plan to extend this approach to the setting where the system

parameters θis are also unknown.

REFERENCES

[1] S. Thrun and L. Pratt, Learning to learn. Springer Science & Business
Media, 2012.

[2] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International Conference on

Machine Learning (ICML), 2017.
[3] S. Ravi and H. Larochelle, “Optimization as a model for few-shot

learning,” in International Conference on Learning Representations

(ICLR), 2017.
[4] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning

algorithms,” arXiv preprint arXiv:1803.02999, 2018.
[5] X. Wang, T. Huang, J. Gonzalez, T. Darrell, and F. Yu, “Frustratingly

simple few-shot object detection,” in International Conference on Ma-
chine Learning, 2020.

[6] J. Bragg, A. Cohan, K. Lo, and I. Beltagy, “Flex: Unifying evaluation
for few-shot nlp,” in Neural Information Processing Systems (NeurIPS),
2021.

[7] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine,
and C. Finn, “Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning,” in International Conference on
Learning Representations (ICLR), 2019.

[8] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in International
conference on World Wide Web, 2010, pp. 661–670.

[9] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Dı́az-
Rodrı́guez, “Continual learning for robotics: Definition, framework,
learning strategies, opportunities and challenges,” Information fusion,
vol. 58, pp. 52–68, 2020.

[10] T. Petrič, A. Gams, L. Žlajpah, and A. Ude, “Online learning of task-
specific dynamics for periodic tasks,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 1790–
1795.

[11] F. Alambeigi, Z. Wang, R. Hegeman, Y.-H. Liu, and M. Armand, “A
robust data-driven approach for online learning and manipulation of
unmodeled 3-d heterogeneous compliant objects,” IEEE Robotics and

Automation Letters, vol. 3, no. 4, pp. 4140–4147, 2018.
[12] D. Romeres, M. Zorzi, R. Camoriano, S. Traversaro, and A. Chiuso,

“Derivative-free online learning of inverse dynamics models,” IEEE
Transactions on Control Systems Technology, vol. 28, no. 3, pp. 816–
830, 2019.

[13] S. Tesfazgi, A. Lederer, J. F. Kunz, A. J. Ordóñez-Conejo, and S. Hirche,
“Personalized rehabilitation robotics based on online learning control,”
arXiv preprint arXiv:2110.00481, 2021.

[14] D. Kalathil and R. Rajagopal, “Online learning for demand response,”
in Annual Allerton Conference on Communication, Control, and Com-
puting (Allerton), 2015, pp. 218–222.

[15] M. Lin, Z. Liu, A. Wierman, and L. L. Andrew, “Online algorithms
for geographical load balancing,” in International Green Computing
Conference (IGCC), 2012.

[16] S. Shalev-Shwartz et al., “Online learning and online convex optimiza-
tion,” Foundations and trends in Machine Learning, vol. 4, no. 2, pp.
107–194, 2011.

[17] E. Hazan, “Introduction to online convex optimization,” arXiv preprint

arXiv:1909.05207, 2019.
[18] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, “Regret bounds

for robust adaptive control of the linear quadratic regulator,” in Neural

Information Processing Systems (NeurIPS), 2018.
[19] H. Mania, S. Tu, and B. Recht, “Certainty equivalence is efficient for

linear quadratic control,” in Neural Information Processing Systems
(NeurIPS), 2019.

[20] N. Agarwal, B. Bullins, E. Hazan, S. Kakade, and K. Singh, “Online
control with adversarial disturbances,” International Conference on

Machine Learning (ICML), pp. 111–119, 2019.
[21] M. Simchowitz, K. Singh, and E. Hazan, “Improper learning for non-

stochastic control,” Conference on Learning Theory (COLT), pp. 3320–
3436, 2020.

[22] C. Finn, A. Rajeswaran, S. Kakade, and S. Levine, “Online meta-
learning,” in International Conference on Machine Learning (ICML),
2019, pp. 1920–1930.

[23] M.-F. Balcan, M. Khodak, and A. Talwalkar, “Provable guarantees for
gradient-based meta-learning,” International Conference on Machine

Learning (ICML), pp. 424–433, 2019.

[24] M. Khodak, M.-F. F. Balcan, and A. S. Talwalkar, “Adaptive gradient-
based meta-learning methods,” Neural Information Processing Systems

(NeurIPS), 2019.

[25] A. Cohen, T. Koren, and Y. Mansour, “Learning linear-quadratic reg-
ulators efficiently with only

√
T regret,” International Conference on

Machine Learning (ICML), pp. 1300–1309, 2019.

[26] M. Simchowitz and D. Foster, “Naive exploration is optimal for online
lqr,” International Conference on Machine Learning (ICML), pp. 8937–
8948, 2020.

[27] E. Hazan, S. Kakade, and K. Singh, “The nonstochastic control prob-
lem,” Algorithmic Learning Theory, pp. 408–421, 2020.

[28] S. Sastry and M. Bodson, Adaptive control: stability, convergence and
robustness. Dover Publications, 2011.

[29] K. J. Åström and B. Wittenmark, Adaptive control. Courier Corporation,
2013.

[30] P. A. Ioannou and J. Sun, Robust adaptive control. Dover Publications,
2012.

[31] K. Zhou, J. Doyle, and K. Glover, Robust and optimal control. Prentice
hall, 1996.

[32] A. Cohen, A. Hasidim, T. Koren, N. Lazic, Y. Mansour, and K. Tal-
war, “Online linear quadratic control,” in International Conference on
Machine Learning (ICML), 2018, pp. 1029–1038.

APPENDIX A

PROOF OF LEMMA 2

In the following, for convenience we drop the subscript

i. We first introduce [20, Lemma 5.6] and [20, Lemma 5.7]

which are useful in our proof.

Lemma 4 (Lemma 5.6, [20]): Consider two policy sequences

(Mt−H , . . . ,Mt−k, . . . ,Mt) and (Mt−H , . . . , M̃t−k, . . . ,Mt)
which differ only in the policy at time t − k, where k ∈
{0, 1, . . . , H}. Then,

|ft(Mt−H . . .Mt−k . . .Mt)− ft(Mt−H . . . M̃t−k . . .Mt)|
≤ L‖Mt−k − M̃t−k‖.

Lemma 5 (Lemma 5.7, [20]): For all M such that ‖M [j]‖ ≤
κBκ

3(1− γ)j , ∀ j ∈ {1, . . . , H}, we have that

‖∇Mft(M, . . . ,M)‖ ≤ Gf .

We now give the main proof. We can split the policy regret

term RT,2 as

RT,2

=

T∑

t=1

ft(Mt−H , . . . ,Mt)−min
M∗

T∑

t=1

ft(M
∗, . . . ,M∗)

=

T∑

t=1

ft(Mt−H , . . . ,Mt)−
T∑

t=1

ft(Mt, . . . ,Mt)

︸ ︷︷ ︸
Term I

+

T∑

t=1

ft(Mt, . . . ,Mt)−min
M∗

T∑

t=1

ft(M
∗, . . . ,M∗)

︸ ︷︷ ︸
Term II

.

10

First we bound Term I.

Term I
(a)

≤ L

T∑

t=1

H∑

j=1

‖Mt −Mt−j‖

(b)

≤ L

T∑

t=1

H∑

j=1

j∑

l=1

‖Mt−l+1 −Mt−l‖

(c)

≤ Lη

T∑

t=1

H∑

j=1

j∑

l=1

‖∇ft−l(Mt−l)‖
(d)

≤ TLH2ηGf .

Here (a) follows from subtracting and adding

ft(Mt−H , . . . ,Mt−j ,Mt, . . . ,Mt) for all j ∈ {2, . . . , H}
and for all t, applying triangle inequality, and Lemma

4, (b) follows from adding and subtracting Mt−l, for all

l ∈ {1, . . . , j − 1}, inside the norm for all j and t, and

applying triangle inequality, (c) follows from Eq. (9) and (d)

follows from applying Lemma 5 and summing all terms.

Next we bound Term II. Since ct is convex and st and at
are linear in Mt−j for all j ∈ {0, . . . , H}, it follows that

ft(M, . . . ,M) is convex in M . In the following, we use the

notation ft(M, . . . ,M) = gt(M). In the steps to follow, we

use vectorial expansion for the matrices and the gradients to

simplify the algebraic manipulation. We denote the ∇vgt(Mt)
as the vectorial expansion of the gradient of gt(Mt) and Mv

t

and M⋆,v as the vectorial expansion of the matrices Mt and

M⋆. Since gt(M) is convex in M , we get that

Term II =

T∑

t=1

gt(Mt)− min
M∗∈M

T∑

t=1

gt(M
∗)

≤
T∑

t=1

∇vgt(Mt)
⊤(Mv

t −M⋆,v
i). (17)

Now

‖Mv
t −M⋆,v‖2 − ‖Mv

t+1 −M⋆,v‖2 (e)
= ‖Mv

t −M⋆,v‖2

− ‖Proj (Mv
t − η∇vgt(Mt))−M⋆,v‖2

(f)

≥ ‖Mv
t −M⋆,v‖2 − ‖Mv

t − η∇vgt(Mt)−M⋆,v‖2
(g)

≥ 2η∇vgt(Mt)
⊤(Mv

t −M⋆,v)− η2‖∇vgt(Mt)‖2. (18)

Here (e) follows using the meta-update rule Eq. (6), (f)

follows from the trivial fact that projection to a set decreases

the euclidean distance to any element within the set, (g)

follows from just expanding the second term and canceling

out the identical terms.

Then from Eq. (18) it follows that

∇vgt(Mt)
⊤(Mv

t −M⋆,v)

≤ 1

2η

(
‖Mv

t −M⋆,v‖2 − ‖Mv
t+1 −M⋆,v‖2

)
+

ηGf

2
.

Then combining Eq. (17) and the previous equation, and

summing over t we get that

Term II ≤ 1

2η

(
‖Mv

1 −M⋆,v‖2 − ‖Mv
T+1 −M⋆,v‖2

)

+
TηGf

2
≤ 1

2η
‖Mv

1 −M⋆,v‖2 + TηGf

2

(h)
=

1

2η
‖M1 −M⋆‖2 + TηGf

2
(i)
=

1

2η
‖Mm −M⋆‖2 + TηGf

2
. (19)

Here (h) follows from the fact that square of the Frobenious

norm of a matrix is the square of the Euclidean norm of its

vectorial expansion, (i) follows from the fact that M1 in task

τi is equal to Mm
i . Combining the bounds for Term I and

Term II we get the final result.

PLACE
PHOTO
HERE

Deepan Muthirayan is currently a Post-doctoral
Researcher in the department of Electrical Engi-
neering and Computer Science at the University
of California at Irvine. He obtained his Phd from
the University of California at Berkeley (2016) and
B.Tech/M.tech degree from the Indian Institute of
Technology Madras (2010). His doctoral thesis work
focused on market mechanisms for integrating de-
mand flexibility in energy systems. Before his term
at UC Irvine he was a post-doctoral associate at
Cornell University where his work focused on online

scheduling algorithms for managing demand flexibility. His current research
interests include control theory, machine learning, learning for control, online
learning, game theory, and their application to smart systems.

PLACE
PHOTO
HERE

Dileep Kalathil (Senior Member, IEEE) received
his Ph.D. degree from the University of Southern
California (USC) in 2014. From 2014 to 2017, he
was a Postdoctoral Researcher with the Department
of Electrical Engineering and Computer Sciences,
University of California at Berkeley. He is currently
an Assistant Professor with the Department of Elec-
trical and Computer Engineering, Texas A& M Uni-
versity. His main research focus is on reinforcement
learning theory and algorithms, with applications
in energy systems, communication networks and

mobile robotics. He was a recipient of the Best Academic Performance from
the EE Department, IIT Madras and the Best Ph.D. Dissertation Prize in the
USC Department of Electrical Engineering, NSF CRII Award in 2019 and
NSF CAREER award in 2021.

PLACE
PHOTO
HERE

Pramod Khargonekar received B. Tech. Degree
in electrical engineering in 1977 from the Indian
Institute of Technology, Bombay, India, and M.S.
degree in mathematics in 1980 and Ph.D. degree in
electrical engineering in 1981 from the University
of Florida, respectively. He was Chairman of the
Department of Electrical Engineering and Computer
Science from 1997 to 2001 and also held the position
of Claude E. Shannon Professor of Engineering
Science at The University of Michigan. From 2001
to 2009, he was Dean of the College of Engineering

and Eckis Professor of Electrical and Computer Engineering at the University
of Florida till 2016. After serving briefly as Deputy Director of Technology
at ARPA-E in 2012-13, he was appointed by the National Science Foundation
(NSF) to serve as Assistant Director for the Directorate of Engineering (ENG)
in March 2013, a position he held till June 2016. Currently, he is Vice
Chancellor for Research and Distinguished Professor of Electrical Engineering
and Computer Science at the University of California, Irvine. His research
and teaching interests are centered on theory and applications of systems
and control. He has received numerous honors and awards including IEEE
Control Systems Award, IEEE Baker Prize, IEEE CSS Axelby Award, NSF
Presidential Young Investigator Award, AACC Eckman Award, and is a Fellow
of IEEE, IFAC, and AAAS.

	I Introduction
	II Problem Setting
	III Review: Online Control Algorithm
	IV Meta-learning Online Control Algorithm
	IV-A Algorithm with the Knowledge of D*
	IV-B Algorithm without the Knowledge of D*

	V Regret Analysis
	V-A Proof of Theorem 2
	V-B Proof of Theorem 3

	VI Numerical Experiments
	VII Conclusion
	References
	Appendix A: Proof of Lemma 2
	Biographies
	Deepan Muthirayan
	Dileep Kalathil
	Pramod Khargonekar

