
ar
X

iv
:2

20
4.

00
59

3v
1 

 [
ee

ss
.S

Y
] 

 1
 A

pr
 2

02
2

Population Games With Erlang Clocks:

Convergence to Nash Equilibria For Pairwise Comparison Dynamics

Semih Kara Nuno C. Martins Murat Arcak

Abstract— The prevailing methodology for analyzing popula-
tion games and evolutionary dynamics in the large population
limit assumes that a Poisson process (or clock) inherent to
each agent determines when the agent can revise its strategy.
Hence, such an approach presupposes exponentially distributed
inter-revision intervals, and is inadequate for cases where each
strategy entails a sequence of sub-tasks (sub-strategies) that
must be completed before a new revision time occurs. This
article proposes a methodology for such cases under the premise
that a sub-strategy’s duration is exponentially-distributed, lead-
ing to Erlang distributed inter-revision intervals. We assume
that a so-called pairwise-comparison protocol captures the
agents’ revision preferences to render our analysis concrete.
The presence of sub-strategies brings on additional dynamics
that is incompatible with existing models and results. Our main
contributions are twofold, both derived for a deterministic ap-
proximation valid for large populations. We prove convergence
of the population’s state to the Nash equilibrium set when a
potential game generates a payoff for the strategies. We use
system-theoretic passivity to determine conditions under which
this convergence is guaranteed for contractive games.

I. INTRODUCTION

Population games and evolutionary dynamics have been

used as a tractable framework to model the strategic inter-

actions in populations with large numbers of agents [1]–[3].

In this framework, each agent follows one strategy at a time,

chosen from a finite set available to the population. At any

time, each available strategy has a payoff specified by a

population game. The agents repeatedly revise their strategies

at the so-called revision times governed by a stochastic

process (or clock) inherent to each agent. At a revision time,

the agent may alter its strategy in response to the payoffs

and the strategy profile of the population. When revising their

strategies, the agents act according to a probabilistic heuristic

specified by a so-called revision protocol, which reflects

the population’s decision behavior and often has a simple

structure. The agents are nondescript, consequently a vector,

called population state, whose entries are the proportions of

the population following the available strategies suffices to

represent the population’s strategic profile.

A. Erlang Revision Times

Existing work assumes that the agents’ inter-revision times

are exponentially distributed [1], including the generalization
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in [4], which allows for strategy-dependent revision rates.

Applications where each strategy entails a sequence of

tasks (sub-strategies) an agent must complete before a new

revision opportunity occurs are not compatible with the

existing theory because the sum of the tasks’ service times

is generally not exponentially distributed. In this article,

our main goal is to propose a methodology to model and

analyze the equilibrium stability of population games and

evolutionary dynamics for such non-preemptive multi-task

applications. Inspired by the queueing literature, we assume

that the sub-strategies’ service times are independent and ex-

ponentially distributed, resulting in Erlang distributed inter-

revision times [5, Chapter 4.2].

The generalization that we propose is further motivated

by its pertinence to traffic analysis. Congestion games,

originally proposed in [6], are well-studied examples of

population games that represent the strategic environment in

road networks. This, combined with the success of revision

protocols in capturing myopic decision behavior, make the

population games and evolutionary dynamics framework an

adequate candidate for analyzing traffic in road networks.

Several studies [7]–[9] find that, in many cases, Gamma and

Erlang distributions are suitable representations of the time

spent in traffic. Thus, noting that the Erlang and Gamma

distributions coincide for certain parameter values, extending

the framework to account for revision interarrival times with

Erlang distributions enhances its applicability to analyzing

traffic in road networks.

B. Deterministic Approximation And Stability Analysis

Results in the population games and evolutionary dynam-

ics paradigm often seek to ascertain whether the population

state converges to a neighborhood of the Nash equilibria of

the population game with high probability. Similar to an

extensive body of literature [1], [2], [10]–[12], in this pa-

per, we examine the aforementioned problem by employing

stochastic approximation theory [13], [1, Appendix 12.B]

and analyzing a system of deterministic differential equa-

tions. Following the nomenclature in [2], we refer to this

system as the Erlang Evolutionary Dynamics Model.

High probability convergence of the population state to

a close vicinity of the Nash equilibria of the population

game can’t be guaranteed under exponentially distributed

inter-revision times, unless further structure is imposed on

the game and the revision protocol. Pairwise comparison

protocols, in combination with potential and strictly contrac-
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tive1 games, are known to provide such structure [14]–[16].

Moreover, pairwise comparison protocols have undemanding

informational requirements and allow for agents to operate

in a decentralized manner [4], [14]. Hence, we confine our

focus to pairwise comparison protocols along with potential

and strictly contractive games, and investigate whether the

convergence properties of the population state persist when

the inter-revision times are extended from exponential to

Erlang distributions. Notably, congestion games, which is a

part of the motivation in §I-A, are potential games.

II. OVERVIEW OF THE FRAMEWORK

We start by presenting an overview of the population

games and evolutionary dynamics paradigm.

A. Agents, Strategies and the Population State

Consider a set of N agents, where N is large. We refer to

the collection of agents as the population.2 At any time, each

agent follows a single strategy from the same set of strategies

{1, . . . , n}. As will be clarified throughout §II, the agents

are “nondescript”; therefore, proportions of agents playing

each strategy suffices to characterize the strategy profile of

the population. We denote the proportion of agents playing

strategy i ∈ {1, . . . , n} at time t ≥ 0 by X̄i(t). Moreover,

we define X̄ :=
[

X̄1 . . . X̄n

]T
, and refer to X̄ as the

population state.

B. Payoffs and Population Games

At any time t ≥ 0, each strategy i ∈ {1, . . . , n} is

endowed with a payoff Pi(t). We assume that the mechanism

assigning these payoffs is a continuously differentiable func-

tion F : Rn → Rn, called a population game, that operates

on the population state X̄ . The payoff of strategy i is denoted

Fi and we write F :=
[

F1 . . . Fn

]T
. Consequently, the

payoff vector at time t is given by P (t) = F(X̄(t)).
The notion of Nash equilibria is defined for population

games as given below:

NE(F) :=

{

ξ ∈ ∆

∣

∣

∣

∣

ξi > 0 =⇒ i ∈ argmax
j∈{1,...,n}

Fj(ξ)

}

,

where ∆ := {ξ ∈ Rn
≥0 |

∑n
i=1 ξn = 1}. According to [1,

Theorem 2.1.1], the set NE(F) is nonempty.

C. The Revision Paradigm

Agents repeatedly revise their strategies conforming to

a procedure characterized by two components. The first

component is the process that specifies the agents’ revision

times. The second component is the so-called revision pro-

tocol, which describes how a revising agent decides on its

subsequent strategy.

1Contractive games are also known as stable games. The recent arti-
cle [12] defines weighted-contractive games, which subsume contractive
ones. For simplicity, we limit our analysis to the non-weighted case.

2Although our results hold in the case of multiple populations (see [1]
for the setting with multiple populations), for ease of exposition, we assume
that there is a single population.

1) Revision Times in the Traditional Framework: In the

traditional framework, revision times of the agents are con-

structed by assigning the agents independent and identically

distributed (i.i.d.) Poisson processes and defining the revision

times of an agent as the jump times of its process. Hence, the

interarrival times of revisions of agents are i.i.d. exponential

random variables [1].

The recent work in [4] extends this construction by allow-

ing the revision times of agents to depend on their current

strategies. In this paper we abide by the strategy-independent

structure of the traditional framework. However, in §III,

we propose an alternative generalization of the traditional

process according to which revision times are determined.

2) Revision Protocols: The revision protocol of the pop-

ulation is a Lipschitz continuous function T : Rn ×
Rn → R

n×n
≥0 that satisfies

∑n
j=1 Ti,j(ξ, π) = λ for all

i ∈ {1, . . . , n}, π ∈ Rn and ξ ∈ ∆. Intuitively, for any

i, j ∈ {1, . . . , n}, Ti,j gives the rate with which agents

playing strategy i switch to strategy j. An important quantity

that appears in the stability analysis in §V is

c := max
i∈{1,...,n}, ξ∈∆

n
∑

j=1, j 6=i

Ti,j(ξ,F(ξ)), (1)

which is a measure of the maximum rate of strategy switch-

ing that omits “self-switches”.

More precisely, the revision protocol determines the sub-

sequent strategy of a revising agent according to the follow-

ing description. Assume that an agent receives a revision

opportunity at time t̄. It follows from the definition of

revision times that, with probability 1, there is a t∗ (strictly)

between t̄ and the previous revision time of the population.

Denoting the strategy at t∗ of the revising agent as i, the

probability of its subsequent strategy being j is assumed

to be Ti,j
(

X̄(t∗), P (t∗)
)

/λ for any j ∈ {1, . . . , n}. Then,

the realization of this strategy is assigned to be the revising

agent’s strategy at time t̄.

D. The Evolutionary Dynamics Model

If the revision times of the agents are as constructed in

§II-C.1, payoffs are characterized by a population game, and

agents decide on their subsequent strategies according to the

procedure in §II-C.2, then the resulting population state X̄
is a pure jump Markov process [1, Chapter 11].

Subsequently, an important question is whether X̄ con-

verges to NE(F). As explained in [2, Section 5] and [1,

Appendix 12.B], stochastic approximation theory provides

a methodology to answer this question. Namely, provided

that N is large, from [13] and [1, Appendix 12.B], it

follows that the convergence with high probability of X̄ to a

neighborhood of NE(F) can be concluded by verifying that

NE(F) is globally attractive under a deterministic dynamical

system. This dynamical system is referred to as the Evolu-

tionary Dynamics Model (EDM) [2], where in this paper we

call it the standard EDM to distinguish it from its Erlang

counterpart introduced in §III.



III. ERLANG EVOLUTIONARY DYNAMICS

In this section, we propose a generalization of the popula-

tion games and evolutionary dynamics framework, outlined

in §II, by allowing inter-revision times of agents to be

independent and identical Erlang random variables.

A. Erlang Revision Times

To introduce Erlang distributed inter-revision times to the

population games and evolutionary dynamics framework, we

follow a construction similar to that in §II-C.1 and assign

the agents i.i.d. arrival processes. We assume the interarrival

times of an agent’s process to have independent and identical

Erlang distributions with rate λ > 0 and parameter m ∈ N.

Consequently, we define the revision times of an agent to be

the arrival times of its process.

If the revision times of the agents are as constructed in

§III-A (instead of the traditional construction in §II-C.1) then

the resulting population state X̄ is a pure jump stochastic

process, but not necessarily a Markov process. This is

undesirable because, to the best of our knowledge, stochastic

approximation results similar to that in [13] or [1, Ap-

pendix 12.B] do not exist for pure jump processes with

Erlang distributed waiting times. So, it is not directly evident

how the deterministic approach summarized in §II-D can be

altered to fit the framework with Erlang distributed inter-

revision times. Therefore, in the following part, we present

an alternative way in which the results in [13] and [1,

Appendix 12.B] can be leveraged.

B. Erlang Evolutionary Dynamics

In what follows, we first characterize the population state

in terms of a pure jump Markov process that conforms to

the assumptions in [13] and [1, Appendix 12.B]. Then, we

apply the aforementioned stochastic approximation results

to this process and derive a deterministic dynamical system,

which we utilize in the upcoming sections to ascertain the

convergence properties of X̄ .

1) Characterizing the Population State in Terms of a

Markov Process: Given a strategy i ∈ {1, . . . , n}, let us de-

fine (i, j) to be the j-th sub-strategy of i for j ∈ {1, . . . ,m}.

Now, consider that an agent who chooses strategy i starts

playing (i, 1). Suppose that, for any j ∈ {1, . . . ,m − 1},

after playing (i, j) for a period of time the agent transitions to

playing (i, j+1). Let the time that the agent spends playing

sub-strategy (i, j), for any j ∈ {1, . . . ,m}, be distributed

exponentially with parameter λ. Furthermore, assume that

the agent is given a revision opportunity after it is finished

playing sub-strategy (i,m) and that, when it is given an op-

portunity, the agent chooses its subsequent strategy according

to the procedure in §II-C.2. Finally, assume that the times

spent by agents playing the sub-strategies are i.i.d.

In the scenario described above, interarrival times of

agents’ revision opportunities are i.i.d. Erlang random vari-

ables with parameters λ and m. As a result, the revision

interarrival times constructed above and the ones constructed

in §III-A have the same joint distributions.

Let us denote the proportion of agents playing sub-strategy

(i, j) by Xi,j and define

X :=
[

X1,1 . . . X1,m . . . Xn,1 . . . Xn,m

]T
.

Then, X is a pure jump Markov process, to which the results

in [13] and [1, Appendix 12.B] can be applied. Moreover,

given any i ∈ {1, . . . , n},
∑m

j=1 Xi,j and X̄i have the same

distribution. Therefore, we can infer the long term behavior

of X̄ by analyzing X .

2) The Deterministic Approximation: Provided that the

number of agents is large, stochastic approximation theory

presents a methodology to analyze the progression of X .

Namely, from the results in [13], [2, Section V] and [1,

Appendix 12.B] we have for any T > 0 and ǫ > 0 that

lim
N→∞

P

(

sup
t∈[0,T ]

‖X(t)− x(t)‖ < ǫ

)

= 1,

where

x :=
[

x1,1 . . . x1,m . . . xn,1 . . . xn,m

]T

is the solution with x(0) = X(0) of the system of differential

equations given for 1 ≤ i ≤ n and 2 ≤ ℓ ≤ m by

ẋi,1 =

n
∑

j=1

xj,mTj,i(x̄, p) − λxi,1, (EEDMa)

ẋi,l = λ(xi,l−1 − xi,l), (EEDMb)

in which p := F(x̄), x̄ :=
[

x̄1 . . . x̄n

]T
and

x̄i :=

m
∑

l=1

xi,l

for all i ∈ {1, . . . , n}. We refer to x̄ as the mean population

state, x as the extended mean population state, p as the deter-

ministic payoff and the dynamical system given by (EEDM)

as the Erlang Evolutionary Dynamics Model (Erlang EDM).

For all t ≥ 0, we have x̄(t) ∈ ∆ and x(t) ∈ X, where

X :=

{

ξ ∈ R
nm
≥0

∣

∣

∣

∣

n
∑

i=1

m
∑

l=1

ξi,l = 1

}

.

In the remainder of the paper, given ξ ∈ Rnm, we denote

ξ =
[

ξ1,1 . . . ξ1,m . . . ξn,1 . . . ξn,m
]T

and ξ̄i :=
∑m

l=1 ξi,l for any i ∈ {1, . . . , n}.

Importantly, the discussions in [2, Section V] and [1,

Appendix 12.B] indicate that, if a set S is globally attractive

under the Erlang EDM, then the stationary distributions of X
concentrate near S as the number of agents tends to infinity.

This result and the assumption that N is large legitimizes

the stability analysis carried out in the subsequent sections.

Note that, if m = 1, then the Erlang EDM reduces to the

standard EDM that results from the traditional framework

[1], [2]. This agrees with the fact that, when m = 1, the

constructions of the revision times in §II-C.1 and §III-A

coincide. Furthermore, the Erlang EDM conforms to the

higher order evolutionary dynamics format, which requires

the number of states to be greater than the number of



strategies. Instances of such dynamics have been analyzed

in [17], [18], although the results therein do not address the

dynamics that we investigate in this paper.

C. Prelude to Stability Analysis

In the upcoming sections, we analyze the stability prop-

erties of the Erlang EDM. However, to have a meaningful

analysis, we need further structure on the revision protocols

and the game.

1) Pairwise Comparison Protocols: An important class

of protocols that induce preferable stability results is the

pairwise comparison class [14].

Definition 1: A protocol T is said to belong to the

pairwise comparison (PC) class if for all i ∈ {1, . . . , n},

j ∈ {1, . . . , n} \ {i} and ξ, π ∈ R
n it can be written as

Ti,j(ξ, π) = φi,j(π),

where φi,j : Rn → R≥0 satisfies sign preservation in the

sense that φi,j(π) > 0 if πj > πi and φi,j(π) = 0 if πj ≤ πi.

Essentially, an agent following a PC protocol can only

switch to strategies with payoffs that are greater than the

payoff of its current strategy. Their desirable incentive prop-

erties [14, §2.5] and inherently fully decentralized operation

result in the applicability of the PC class in many engineering

problems. For instance, the Smith protocol [19], which

belongs to the PC class, has been widely used to study traffic

problems.

Thus, in the remainder of this paper, we consider the

Erlang EDM under the assumption that T is a PC protocol.

We refer to the resulting dynamics as the Erlang Pairwise

Comparison EDM (Erlang PC-EDM).

Confining the protocol to be of the PC class readily

yields a desirable characteristic. Namely, leveraging the so-

called Nash stationarity of PC protocols [14], we identify the

equilibria of the Erlang PC-EDM as

ENE(F) :=
{

ξ ∈ X
∣

∣ ξ̄ ∈ NE(F), ξi,l =
1
m ξ̄i

}

,

which has a Nash-like form in the sense that ξ̄ ∈ NE(F) for

all ξ ∈ ENE(F).
2) Potential and Contractive Game: Having confined our

attention to the Erlang PC-EDM, we ask whether the mean

population state converges to NE(F), i.e., whether

lim
t→∞

inf
ξ̄∈NE(F)

‖x̄(t)− ξ̄‖ = 0.

For the answer of this question to be affirmative, we need to

assume some structure also on the game.3

Two classes of games that introduce such structure are

potential [15], [20] and strictly contractive games [16].

Definition 2: A game F is said to be a potential game if

there is a continuously differentiable function f : Rn → R

satisfying ∇f = F . We refer to f as the game’s potential.

Definition 3: A game F is said to be contractive if

ηTDF(ξ)η ≤ 0 for all η ∈ T∆ := {ν ∈ R
n |
∑n

i=1 νi = 0}
and ξ ∈ ∆, where DF denotes the Jacobian of F . Moreover,

3Assumptions on the game is necessary to guarantee stable behavior under
PC protocols even in the traditional framework [1, Chapter 9].

F is said to be strictly contractive if ηTDF(ξ)η < 0, in

which case we define

¯
γ := − max

ξ∈∆,η∈T∆
ηTDF(ξ)η,

γ̄ := − min
ξ∈∆,η∈T∆

ηTDF(ξ)η.

We note that the class of potential and strictly contractive

games do not contain one another. For instance, the 123-

coordination game [1, Example 3.1.5] is potential, but not

contractive, and the “good” rock-paper-scissors (RPS) game

[1, Example 3.3.2] is strictly contractive, but not potential.

IV. RESULTS UNDER POTENTIAL GAMES

In this section, we assume that F is potential and show that

the mean population state converges to NE(F). Our analysis

follows a similar approach to that in [15], which proposes

to investigate the potential of the game evaluated along the

trajectories of the mean population state.

Theorem 1: If F is a potential game, then

lim
t→∞

inf
ξ̄∈NE(F)

‖x̄(t)− ξ̄‖ = 0.

Proof: Since F is a potential game, it has a potential

f as specified in Definition 2. Let us define L : Rn → R

as L(ξ) = −f(ξ̄). Taking the time-derivative of L along the

trajectories of the Erlang PC-EDM yields

−
d

dt
f(x̄) = −

n
∑

i=1

n
∑

j=1

xi,mφi,j(p)(pj − pi) ≤ 0, (3)

where the inequality in (3) follows from the sign-preservation

property of PC protocols. Moreover, the inequality in (3)

holds with equality if and only if, whenever i, j ∈ {1, . . . , n}
and t ≥ 0 satisfies pj(t) > pi(t), we have xi,m(t) = 0.

Noting that X is compact and positively invariant under the

Erlang PC-EDM (see §III-B.2), it follows from LaSalle’s

invariance principle [21, Theorem 3.4] that x converges to

the largest invariant subset of Θ defined below:

Θ :=

{

ξ ∈ X

∣

∣

∣

∣

ξi,m > 0 =⇒ i ∈ argmax
j∈{1,...,n}

Fj(ξ̄)

}

,

where i ranges from 1 to n. Subsequently, we show that such

a largest invariant subset of Θ is in {ξ ∈ X | ξ̄ ∈ NE(F)}.

To begin with, notice that Θ ⊇ {ξ ∈ X | ξ̄ ∈ NE(F)}.

Furthermore, observe that for all t ≥ 0 satisfying x(t) ∈ Θ,

we have ˙̄x(t) = 0. This implies that {ξ ∈ X | ξ̄ ∈ NE(F)}
is invariant under the Erlang PC-EDM.

Now, take ξ ∈ Θ such that ξ̄ /∈ NE(F) and con-

sider the trajectory of the Erlang PC-EDM from the ini-

tial state ξ. Since ξ̄ /∈ NE(F), the set I = {i /∈
argmaxj∈{1,...,n}Fj(ξ̄) | ξ̄i > 0} is non-empty. Therefore,

from (EEDMb) and the fact that p is stationary at states in

Θ, it follows that there exist some i ∈ I and
¯
t ≥ 0 such that

ẋi,m(
¯
t) > 0 and ˙̄x(t) = 0 for all t ∈ [0,

¯
t]. Consequently, the

trajectory leaves Θ at time
¯
t. As a result, the largest invariant

subset of Θ under the Erlang PC-EDM has to be a subset of

{ξ ∈ X | ξ̄ ∈ NE(F)}.

When the game F has a strictly concave potential, Theo-

rem 1 can be augmented to arrive at the following corollary.



Corollary 1: If F is a potential game with a strictly

concave potential, then

lim
t→∞

inf
ξ∈ENE(F)

‖x(t)− ξ‖ = 0.

Proof: If F has a strictly concave potential f , then

NE(F) = {ξ̄∗}, where ξ̄∗ is the unique maximizer of f
over ∆ [1, Corollary 3.1.4]. From Theorem 1, it follows that

limt→∞ x̄(t) = ξ̄∗. Moreover, ˙̄x is uniformly continuous,

because T and F are Lipschitz continuous and x takes values

in a compact set. Hence, leveraging Barbalat’s lemma, we

obtain limt→∞ ˙̄x(t) = 0.

Now, consider the dynamics (6) of the auxiliary state x̃
defined in Appendix A. From A (which is given in (5)) being

Hurwitz and limt→∞ ˙̄x(t) = 0, we have limt→∞ x̃(t) =
0. Thus, for all i ∈ {1, . . . , n} and l ∈ {1, . . . ,m},

limt→∞ |xi,l(t)− xi,m(t)| = 0. This and limt→∞ x̄(t) = ξ̄∗

imply that limt→∞ infξ∈ENE(F) ‖x(t)− ξ‖ = 0.

V. CONVERGENCE FOR STRICTLY CONTRACTIVE GAMES

In this section, we assume that F is strictly contractive

and present a condition that ensures the convergence of the

extended mean population state to ENE(F).
When the game is strictly contractive, it is known that

the standard PC-EDM does not necessarily exhibit stable

behavior (see [1, Exercise 7.2.10]). Since the Erlang PC-

EDM with m = 1 corresponds to the standard PC-EDM [14],

these instability results are inherited by the Erlang PC-EDM.

Nonetheless, when the game is strictly contractive, stability

of the standard PC-EDM can be ensured by assuming that

the protocol belongs to a refinement of the PC class. This

refinement requires the PC protocol to be impartial according

to the definition given below.

Definition 4: A protocol T is said to be of the impartial

pairwise comparison (IPC) class if for i, j in {1, . . . , n},

with i 6= j, and π ∈ R
n it can be written as Ti,j(ξ, π) =

φj(πj − πi), where φj : R → R≥0 is sign preserving.

Consequently, in our analysis of the Erlang PC-EDM

regarding strictly contractive games, we consider IPC pro-

tocols.

In addition to impartiality, given a strictly contractive

F , we use the following constant to establish the global

attractivity of ENE(F) under the Erlang PC-EDM:

¯
λ := 2cσ̄

(

nγ̄

(m+ 1)
¯
γ

)1/2

. (4)

Here, γ̄,
¯
γ are given in Definition 3, c is specified by (1), and

σ̄ := supω∈[0,∞) σmax((jω − A)−1B), where σmax denotes

the maximum singular value, and A, B are given by

A :=











−1 0 . . . 0 −1

1 −1 . . . 0 −1

0 1 . . . 0 −1

..

.
..
.

. . .
..
.

..

.
0 0 . . . 1 −2











⊗ In, B := e1 ⊗ In, (5)

in which ⊗ denotes the Kronecker product, In is the n× n
identity matrix and e1 is the first standard basis vector in

Rm−1. We note that σ̄ is the H∞-norm of the linear system

specified by ż = Az+Bu (with input u and output z). For the

case when m ≤ 4, we can compute σ̄ simply as σ̄ = ((2m2−
3m+ 1)/(6m))1/2. As for the m > 4 case, computation of

σ̄ is more challenging, yet can be done numerically via the

bisection H∞-norm computation algorithm [22].

Having presented IPC protocols and introduced the con-

stant
¯
λ, we are now ready to state the theorem which provides

a condition that ensures the global attractivity of ENE(F)
under the Erlang PC-EDM.

Theorem 2: If F is strictly contractive, the protocol is

impartial and λ >
¯
λ, then

lim
t→∞

inf
ξ∈ENE(F)

‖x(t)− ξ‖ = 0.

We present a proof of Theorem 2 in Appendix B, which

follows mainly from the two time-scale structure of the

Erlang EDM. Namely, when λ is large in comparison to

c, the dynamics associated with the sub-strategies gives the

“fast” part of (EEDM), whereas the dynamics of x̄ gives

its “slow” part. Thus, for any i ∈ {1, . . . , n}, xi,1, . . . , xi,m

rapidly equalize and closely track x̄i/m. Thereafter, (EEDM)

approximates the standard EDM, and global attractivity of

ENE(F) ensues from the stability properties of the standard

PC-EDM [2], [23].

Note from Theorem 2 and the definition of ENE(F)
that, if λ >

¯
λ, the game F is strictly contractive and the

PC protocol is impartial, then the mean population state

converges to NE(F).

VI. NUMERICAL EXAMPLES

We proceed to illustrate our results via two population

games. In both examples, we assume that the revision pro-

tocol is the Smith protocol [19], meaning that the Ti,j(ξ, π)
in (EEDMa) is given for all ξ̄ ∈ ∆, π ∈ Rn and i, j ∈
{1, . . . , n} such that i 6= j by Ti,j(ξ, π) = max(πj − πi, 0).

A. A Congestion Game Example

A well-studied example of population games is congestion

games [1, Chapter 2.2.2]. We utilize the congestion game

characterized by the graph in Figure 1 to demonstrate how

Theorem 1 can come into play.

O D

link 1 link 2

link 3

link 4 link 5

Fig. 1: Congestion game example with one origin/destination

pair and 3 strategies.

In this graph, O denotes the origin, D denotes the desti-

nation, links represent roads and arrows on links represent

the direction in which an agent choosing the link travels.

Agents can choose to go from the origin to the destination via

one of the three available routes. Accordingly, these routes

constitute the strategies available to the agents. To each link

l ∈ {1, . . . , 5}, we assign a utilization-dependent cost given



by cl
∑

{i | i∈Ωl}
ξ̄i, where Ωl denotes the set of routes in

which link l is used, ξ̄i is the percentage of agents playing

strategy i and cl is a positive constant quantifying how well

the link accommodates traffic. Hence, the payoffs of using

the routes under the population state value ξ̄ ∈ ∆ is

FCon(ξ̄) = −

[

c1 + c2 0 c1

0 c4 + c5 c5

c1 c5 c1 + c3 + c5

]

ξ̄,

where the route formed by links 1, 2 is defined to be the first

strategy, links 4, 5 form the second strategy, and the third

strategy is the route given by links 1, 3, 5. Suppose that the

parameters of this congestion game is given by c1 = 2.5,

c2 = 1.5, c3 = 0.5, c4 = 2.5, and c5 = 0.7.

Let us consider the Erlang PC-EDM induced by FCon

and the Smith revision protocol. Moreover, assume that the

number of sub-strategies is m = 3 and the revision rate

is λ = 5. Since congestion games are potential games [1,

Example 3.1.2] and the Smith protocol belongs to the PC

class, we can invoke Theorem 1 to conclude that the mean

population state resulting from the specified Erlang PC-EDM

converges to NE(FCon).

To display this outcome, we simulate the Erlang PC-EDM

with the aforementioned specifications from the initial state

given by x1,3(0) = x2,1(0) = 0.2, x3,1(0) = 0.6 and

xi,l(0) = 0 for all other i, l ∈ {1, 2, 3}. The trajectory of the

mean population state acquired from this simulation is por-

trayed in Fig. 2. Observe from Fig. 2 that the mean popula-

tion state converges to the Nash equilibrium of FCon, which

is the singleton at approximately (0.349, 0.513, 0.137). Fig. 2

also portrays the trajectory of the mean population state

acquired by simulating the standard counterpart of the Er-

lang PC-EDM with the aforementioned specifications from

the same initial state. Recall from §III-B.2 that the stan-

dard counterpart conforms to the traditional framework (see

§II-C.1) and is obtained by setting m = 1 while keeping all

the other parameters of the Erlang PC-EDM unchanged.

0.2

0.25

0.3

0.2

0.3

0.4

0.5

0.2

0.4

0.6

(0.2,0.2,0.6)

(0.349,0.513,0.137)

Erlang

Standard

Fig. 2: Mean population states from the Erlang and standard

PC-EDMs induced by FCon and the Smith protocol.

B. A Rock-Paper-Scissors Game Example

As noted in §III-C.2, the class of potential games and

strictly contractive games do not contain one another, and

the good RPS game [1, Example 3.3.2] is an example of a

strictly contractive game that is not potential.

Let us specify the good RPS game by

FRPS(ξ̄) =

[

0 −2 3

3 0 −2

−2 3 0

]

ξ̄

for all ξ̄ ∈ ∆, and consider the Erlang PC-EDM induced by

the Smith protocol and FRPS . Moreover, let the number of

sub-strategies be m = 4. Since FRPS is strictly contractive

but not potential, Theorem 1 can’t be utilized and we have

to resort to Theorem 2. To apply Theorem 2, we compute

(γ̄,
¯
γ, c) as (1, 1, 4). Furthermore, as stated in §V, when m ≤

4 we have σ̄ = ((2m2 − 3m − 1)/(6m))1/2, meaning that

for m = 4 the value of σ̄ is 0.9354. Hence, we obtain
¯
λ =

5.7965. Noting that the Smith protocol belongs to the IPC

class, it follows from Theorem 2 that, if λ > 5.7965, then the

extended mean population state resulting from the specified

Erlang PC-EDM converges to ENE(FRPS).

To display this outcome, we set λ = 5.8 and simulate

the Erlang PC-EDM with the aforementioned specifications

from the initial state given by x1,4(0) = x2,1(0) = 0.2,

x3,1(0) = 0.6 and xi,l(0) = 0 for all other i ∈ {1, 2, 3},

l ∈ {1, 2, 3, 4}. The trajectory of the mean population state

acquired from this simulation, along with the trajectory from

the simulation of its standard counterpart, is portrayed in

Fig. 3. We can observe from Fig. 3 that the mean population

state converges to the Nash equilibrium of FRPS , which is

the singleton at (1/3, 1/3, 1/3).

0.2

0.3

0.4

0.2

0.3

0.4

0.2

0.4

0.6

(0.2,0.2,0.6)

(1/3,1/3,1/3)

Erlang

Standard

Fig. 3: Mean population states from the Erlang and standard

PC-EDMs induced by FRPS and the Smith protocol.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we present an extension of the population

games and evolutionary dynamics paradigm by allowing

agents’ inter-revision times to be i.i.d. Erlang random vari-

ables. We show that the long term behavior of the population

state resulting from this generalization can be inferred by

analyzing, what we call, the Erlang EDM. Then, we confine

our focus to PC revision protocols and consider the Erlang

PC-EDM. When the game is potential, we show that the

mean population state converges to NE(F) for any revision

rate and number of sub-strategies. Similarly, when the game



is strictly contractive, we show that ENE(F) is globally at-

tractive under the Erlang PC-EDM provided that the protocol

is impartial and λ satisfies a bound condition.

The work presented in this paper also raises questions for

future research. For instance, despite the results in §V, it

is still unclear whether global attractivity of ENE(F) under

the Erlang PC-EDM induced by an impartial protocol and

strictly contractive game is guaranteed for any revision rate.

Moreover, [2], [11], [12] generalizes the class of admissible

payoff mechanisms to so-called payoff dynamics models;

however we only consider static games. Hence, it can be

investigated whether the analysis in §V can be altered to

fit the δ-passivity [2] or δ-dissipativity [12] framework,

which would broaden the global attractivity results therein

to accommodate more general payoff structures.
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APPENDIX

A. Auxiliary Notation and Analysis

In this section we introduce the auxiliary states used in

the proofs of Corollary 1 and Theorem 2, and characterize

the dynamics of these states.

Given any l ∈ {1, . . . ,m}, let El be the n× nm matrix

El := In ⊗ eTl ,

where el is the l-th standard basis vector in Rm. Moreover,

given ξ ∈ Rnm we denote

ξ̃ :=
[

(E1 − Em)ξ . . . (Em−1 − Em)ξ
]T

.

Now, let us introduce the auxiliary states y, δ and x̃:

y :=
[

y1,1 . . . y1,m−1 . . . yn,1 . . . yn,m−1

]T
,

δ :=
[

δT1 . . . δTm−1

]T
, x̃ :=

[

x̃1 . . . x̃m−1

]T
,

where, for any i ∈ {1, . . . , n} and l ∈ {1, . . . ,m − 1} we

set δl :=
[

y1,l . . . yn,l
]T

, x̃l := (El − Em)x, and define

yi,l to be a solution of ẏi,l =
∑n

j=1 φi(pi − pj)xj,l − λxi,l.

Notice that, from the definition of x̃ we have ˙̃xl = (El −
Em)ẋ. Consequently,

˙̃x = λAx̃ +B ˙̄x, (6)

where we remind that A and B are given in (5).

Moreover, let us define Φ : Rn → Rn×n as the matrix-

valued function given for all π ∈ Rn by

Φij(π) =

{

φi(πi − πj), if i 6= j,
∑n

j=1 φj(πj − πi), if i = j.

Then, for all l ∈ {1, . . . ,m− 1}, we can write

δ̇l = Φ(p)Elx− Φ(p)Emx = Φ(p)x̃l. (7)

B. Proof of Theorem 2

We proceed to present a proof of Theorem 2 and the

discussion that leads up to it. Our approach is based on

analyzing the function Lα : Rn×Rn → R≥0 inspired by the

Lyapunov function for the standard IPC-EDM [16]. Namely,

based on a modification of that in [16, Theorem 7.1], we set

Lα(ξ, π) :=

n
∑

i=1

ξ̄i

n
∑

j=1

Ψj(πj − πi) + αξ̃TMξ̃, (8)

https://www.frontiersin.org/article/10.3389/fbuil.2020.00070
https://www.sciencedirect.com/science/article/pii/S0022053113001439


where M is the solution of the Lyapunov equation ATM +
MA = −I (since A is Hurwitz, such M exists and is sym-

metric positive-definite), α is a positive constant satisfying

α < (m+ 1)
¯
γ/(2‖MB‖22), and Ψ : Rn → Rn is given by

Ψj(πj − πi) :=

∫ πj−πi

0

φj(s)ds.

From a procedure similar to that in [16, Appendix A.4],

we obtain the following time-derivative of Lα along the

trajectories of a solution of the Erlang PC-EDM and the

deterministic payoff:

d
dtLα(x, p) = −P(x, p) +Q(x, p), (9)

where P(x, p) and Q(x, p) are specified as

P(x, p) = −αλx̃T x̃

+
n
∑

i,j=1

φi(pi − pj)xj,m

n
∑

k=1

Ψk(pk − pi)−Ψk(pk − pj),

Q(x, p) =
(

m ˙̄xT ṗ+
[

ṗT . . . ṗT
]

δ̇ + α2x̃TMB ˙̄x
)

.

The argument in [16, Appendix A.4] can be readily

adapted to prove the following proposition.

Proposition 1: If F is contractive, then for all ξ ∈ X and

π ∈ Rn we have P(ξ, π) ≥ 0.

We now focus on the Q term. The following proposition

is a key step in proving Theorem 2.

Proposition 2: Assume that F is strictly contractive and

λ satisfies

λ ≥

(

2σ̄(α+ 2γ̄nc2)

(m+ 1)
¯
γ − 2α‖MB‖22

)1/2

, (10)

where γ̄,
¯
γ are given in Definition 3, c is specified by (1)

and σ̄ is the supremum of the maximum singular value of

((jω −A)−1B) over ω ∈ [0,∞). Then, the following holds

for all t ≥ 0:
∫ t

0

Q(x(τ), p(τ))dτ ≤
(

α+ 2γ̄nc2
)

‖eλAtx̃(0)‖22. (11)

Proof: We begin by deriving a bound on
∫ t

0 ‖x̃(τ)‖
2
2dτ .

Observe from (6) that

x̃(t) = eλAtx̃(0) +

∫ t

0

eλA(t−τ)B ˙̄x(τ)dτ.

Thus, utilizing Parseval’s theorem, we get

∫ t

0

‖x̃(τ)‖22dτ ≤ ‖e−λAtx̃(0)‖22 +
σ̄

λ2

∫ t

0

‖ ˙̄x(τ)‖22dτ.

(12)

We proceed by deriving a bound on ‖δ̇(t)‖2. Notice from

(7) that for all l ∈ {1, . . . ,m− 1} we have

‖δ̇l(t)‖
2
2 ≤ ‖Φ(p(t))‖22‖x̃l(t)‖

2
2

≤ n‖Φ(p(t))‖21‖x̃l(t)‖
2
2 = 4nc2‖x̃l(t)‖

2
2, (13)

where c = maxξ̄∈∆

∑n
j=1 φj(Fj(ξ̄)−Fi(ξ̄)) exists, since φ

and F are Lipschitz continuous, and ∆ is compact.

Now, we leverage (12) and (13) to obtain a condition that

guarantees (11). Negative definiteness of DF(x̄) with respect

to T∆ implies for all l ∈ {1, . . . ,m− 1} that

1

2
(−δ̇Tl DF(x̄)δ̇l − ˙̄xTDF(x̄) ˙̄x) ≤ |δ̇Tl DF(x̄) ˙̄x|. (14)

From (14), with 2|x̃TMB ˙̄x| ≤ ‖x̃‖22 + ‖MB‖22‖ ˙̄x‖
2
2 and

negative definiteness of DF(x̄) with respect to T∆, we get

∫ t

0

m ˙̄x(τ)T ṗ(τ) +

m−1
∑

l=1

δ̇l(τ)
T ṗ(τ) + α2x̃(τ)TMB ˙̄x(τ)dτ

≤

∫ t

0

−
m+ 1

2 ¯
γ‖ ˙̄x(τ)‖22 +

1

2
γ̄‖δ̇(τ)‖22

+ α‖x̃(τ)‖22 + α‖MB‖22‖ ˙̄x(τ)‖
2
2dτ. (15)

Finally, combining (15), (12) and (13), it follows that

∫ t

0

m ˙̄x(τ)T ṗ(τ) +

m−1
∑

l=1

δ̇l(τ)
T ṗ(τ) + α2x̃(τ)TMB ˙̄x(τ)dτ

≤
(

α+ 2γ̄nc2
)

‖eλAtx̃(0)‖22 +

∫ t

0

(

−
m+ 1

2 ¯
γ

+ α‖MB‖22 + (α+ 2γ̄nc2)
σ̄

λ2

)

‖ ˙̄x(τ)‖22dτ. (16)

As a result, if (10) holds, then
∫ t

0

Q(x(τ), p(τ))dτ ≤
(

α+ 2γ̄nc2
)

‖eλAtx̃(0)‖22. (17)

Now, we are ready to present a proof of Theorem 2,

which is a direct consequence of Propositions 1 and 2, and

Barbalat’s lemma.

Proof: Assume that λ >
¯
λ, where

¯
λ is specified in

(4). Then, there exists α∗ > 0 satisfying α∗ < (m +
1)
¯
γ/(2‖MB‖22) such that (10) holds with α = α∗. Thus,

we can leverage Propositions 1 and 2 to arrive at
∫ t

0

|P(x(τ), p(τ))|dτ

≤ −Lα∗(x(t), p(t)) + Lα∗(x(0), p(0))

+
(

α∗ + 2γ̄nc2
)

‖eλAtx̃(0)‖22

≤ Lα∗(x(0), p(0)) +
(

α∗ + 2γ̄nc2
)

‖eλAtx̃(0)‖22 (18)

for all t ≥ 0. Combining (18) with the fact that A is Hurwitz,

we get

lim
t→∞

∫ t

0

|P(x(τ), p(τ))|dτ < ∞. (19)

Since
∫ t

0
|P(x(τ), p(τ))|dτ is increasing in t, it follows from

(19) that
∫ t

0
|P(x(τ), p(τ))|dτ has a finite limit as t → ∞.

Additionaly, F and T are Lipschitz continuous and x takes

values in a compact set. Therefore x and p are uniformly

continuous, meaning that P(x, p) is uniformly continuous.

As a result, we can invoke Barbalat’s lemma to conclude

that P(x(t), p(t)) → 0 as t → ∞. Finally, combining

limt→∞ P(x(t), p(t)) = 0 with P(ξ,F(ξ̄)) = 0 if and only

if ξ ∈ ENE(F), we get limt→∞ infξ∈ENE(F) ‖x(t)−ξ‖ = 0.
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