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Abstract— In this paper, we consider the problem of repairing
a data-trained Rectified Linear Unit (ReLU) Neural Network
(NN) controller for a discrete-time, input-affine system. That
is we assume that such a NN controller is available, and
we seek to repair unsafe closed-loop behavior at one known
“counterexample” state while simultaneously preserving a
notion of safe closed-loop behavior on a separate, verified set of
states. To this end, we further assume that the NN controller
has a Two-Level Lattice (TLL) architecture, and exhibit an
algorithm that can systematically and efficiently repair such
an network. Facilitated by this choice, our approach uses the
unique semantics of the TLL architecture to divide the repair
problem into two significantly decoupled sub-problems, one of
which is concerned with repairing the un-safe counterexample
– and hence is essentially of local scope – and the other of which
ensures that the repairs are realized in the output of the network
– and hence is essentially of global scope. We then show that one
set of sufficient conditions for solving each these sub-problems
can be cast as a convex feasibility problem, and this allows
us to formulate the TLL repair problem as two separate, but
significantly decoupled, convex optimization problems. Finally,
we evaluate our algorithm on a TLL controller on a simple
dynamical model of a four-wheel-car.

I. INTRODUCTION
The proliferation of Neural Networks (NNs) as

safety-critical controllers has made obtaining provably
correct NN controllers vitally important. However, most
current techniques for doing so involve a repeatedly training
and verifying a NN until adequate safety properties have
been achieved. Such methods are not only inherently
computationally expensive (because training and verification
of NNs are), their convergence properties can be extremely
poor. For example, when verifying multiple safety properties,
such methods can cycle back and forth between safety
properties, with each subsequent retraining achieving one
safety property by undoing another one.

An alternative approach obtains safety-critical NN
controllers by repairing an existing NN controller.
Specifically, it is assumed that an already-trained NN
controller is available that performs in a mostly correct
fashion, albeit with some specific, known instances
of incorrect behavior. But rather than using retraining
techniques, repair entails systematically altering the
parameters of the original controller in a limited way, so
as to retain the original safe behavior while simultaneously
correcting the unsafe behavior. The objective of repair is
to exploit as much as possible the safety that was learned
during the training of the original NN parameters, rather
than allowing re-training to unlearn safe behavior.

Despite these advantages, the NN repair problem is
challenging because it has two main objectives, both of
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which are at odds with each other. In particular, repairing an
unsafe behavior requires altering the NN’s response in a local
region of the state space, but changing even a few neurons
generally affects the global response of the NN – which
could undo the initial safety guarantee supplied with the
network. This tension is especially relevant for general deep
NNs, and repairs realized on neurons in their latter layers.
This is especially the case for repairing controllers, where the
relationship between specific neurons and their importance to
the overall safety properties is difficult to discern. As a result,
there has been limited success in studying NN controller
repair, especially for nonlinear systems.

In this paper, we exhibit an explicit algorithm that can
repair a NN controller for a discrete-time, input-affine
nonlinear system. The cornerstone of our approach is
to consider NN controllers of a specific architecture: in
particular, the recently proposed Two-Level Lattice (TLL)
NN architecture [1]. The TLL architecture has unique
neuronal semantics, and those semantics greatly facilitate
finding a balance between the local and global trade-offs
inherent in NN repair. In particular, by assuming a TLL
architecture, we can separate the problem of controller repair
into two significantly decoupled problems, one consisting of
essentially only local considerations and one consisting of
essentially only global ones.

Related Work: Repairing (or patching) NNs can be
traced to the late 2000s. An early result on patching
connected transfer learning and concept drift with patching
[2]; another result established fundamental requirements to
apply classifier patching on NNs by using inner layers
to learn a patch for concept drift in an image classifier
network [3]. Another approach based on a Satisfiability
Modulo Theory (SMT) formulation of the repair problem
was proposed by [4] where they changed the parameters of
a classifier network to comply with a safety specification,
i.e. where the designer knows exactly the subset of the
input space to be classified. This prior work nonetheless is
heuristic-based and so not guaranteed to produced desired
results, which was noticed by [5] who cast the problem of
patching (minimal repair) as a verification problem for NNs
(including Deep ones). However, this work focused on a
restricted version of the problem in which the changes in
weights are limited to a single layer. Finally, [6] proposed
a verification-based approach for repairing DNNs but not
restricted to modifying the output; instead, proposed to
identify and modify the most relevant neurons that causes
the safety violation using gradient guidance.

II. PRELIMINARIES

A. Notation

We will denote the real numbers by R. For an (n ×m)
matrix (or vector), A, we will use the notation JAKi,j to
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denote the element in the ith row and jth column of A.
Analogously, the notation JAKi,· will denote the ith row of
A, and JAK·,j will denote the jth column of A; when A is a
vector instead of a matrix, both notations will return a scalar
corresponding to the corresponding element in the vector.
Let 0n,m be an (n×m) matrix of zeros. We will use bold
parenthesis ⦗ ·⦘ to delineate the arguments to a function that
returns a function. We use the functions First and Last to
return the first and last elements of an ordered list (or a vector
in Rn). The function Concat concatenates two ordered lists,
or two vectors in Rn and Rm along their (common) nontrivial
dimension to get a third vector in Rn+m. Finally, B(x; δ)
denotes an open Euclidean ball centered at x with radius δ.
The norm ‖·‖ will refer to the Euclidean norm.

B. Dynamical Model
In this paper, we will consider the general case of a

discrete-time input-affine nonlinear system Σ specified by:

Σ :
{
xi+1 = f(xi) + g(xi)ui (1)

where x ∈ Rn is the state, u ∈ Rm is the input. In addition,
f : Rn → Rn and g : Rn → Rn are continuous and smooth
functions of x.

Definition 1 (Closed-loop Trajectory). Let u : Rn → Rm.
Then a closed-loop trajectory of the system (1) under u,
starting from state x0, will be denoted by the sequence
{ζx0
i (u)}∞i=0. That is ζx0

i+1(u) = f(ζx0
i (u)) + g(ζx0

i (u)) ·
u(ζx0

i (u)) and ζx0
0 (u) = x0.

Definition 2 (Workspace). We will assume that trajectories
of (1) are confined to a connected, compact workspace, Xws
with non-empty interior, of size ext(Xws) , supx∈Xws

‖x‖.

C. Neural Networks
We will exclusively consider Rectified Linear Unit Neural

Networks (ReLU NNs). A K-layer ReLU NN is specified
by composing K layer functions, each of which may be
either linear and nonlinear. A nonlinear layer with i inputs
and o outputs is specified by a (o × i) real-valued matrix
of weights, W , and a (o × 1) real-valued matrix of biases,
b as follows: Lθ : z 7→ max{Wz + b, 0} with the max
function taken element-wise, and θ , (W, b). A linear layer
is the same as a nonlinear layer, only it omits the nonlinearity
max{·, 0}; such a layer will be indicated with a superscript
lin, e.g. Llin

θ . Thus, a K-layer ReLU NN function as above
is specified by K layer functions {Lθ(i) : i = 1, . . . ,K} that
are composable: i.e. they satisfy ii = oi−1 : i = 2, . . . ,K.
We will annotate a ReLU function NN by a list of its
parameters Θ , (θ|1, . . . , θ|K)1.

The number of layers and the dimensions of the matrices
θ|i = ( W |i, b|i ) specify the architecture of the ReLU NN.
Therefore, we will denote the architecture of the ReLU NN
NN Θ by Arch(Θ) , ((n, o1), (i2, o2), . . . , (iK ,m)).

D. Special NN Operations
Definition 3 (Sequential (Functional) Composition). Let
NN Θ1

and NN Θ2
be two NNs where Last(Arch(Θ1)) =

(i, c) and First(Arch(Θ2)) = (c, o). Then the functional
composition of NN Θ1

and NN Θ2
, i.e. NN Θ1

◦NN Θ2
, is a

1That is Θ is not the concatenation of the θ(i) into a single large matrix,
so it preserves information about the sizes of the constituent θ(i).

well defined NN, and can be represented by the parameter
list Θ1 ◦Θ2 , Concat(Θ1,Θ2).

Definition 4. Let NN Θ1
and NN Θ2

be two K-layer NNs
with parameter lists: Θi = ((W |1

i , b
|1
i ), . . . , (W |K

i , b|Ki )), i =
1, 2. Then the parallel composition of NN Θ1

and NN Θ2
is

a NN given by the parameter list

Θ1 ‖ Θ2 ,
(([W |11

W
|1
2

]
,

[
b
|1
1

b
|1
2

])
, ...,

([
W
|K
1

W
|K
2

]
,

[
b
|K
1

b
|K
2

]))
. (2)

That is Θ1‖Θ2 accepts an input of the same size as (both) Θ1

and Θ2, but has as many outputs as Θ1 and Θ2 combined.

Definition 5 (n-element min/max NNs). An n-element
min network is denoted by the parameter list Θminn .
NN⦗Θminn⦘ : Rn → R such that NN⦗Θminn⦘(x) is
the the minimum from among the components of x (i.e.
minimum according to the usual order relation < on R). An
n-element max network is denoted by Θmaxn , and functions
analogously. These networks are described in [1].

E. Two-Level-Lattice (TLL) Neural Networks
In this paper, we will be especially concerned with ReLU

NNs that have the Two-Level Lattice (TLL) architecture, as
introduced with the AReN algorithm in [1]. Thus we define
a TLL NN as follows.

Definition 6 (TLL NN [1, Theorem 2]). A NN that maps
Rn → R is said to be TLL NN of size (N,M) if the size
of its parameter list ΞN,M can be characterized entirely by
integers N and M as follows.

ΞN,M ,ΘmaxM◦
(
(ΘminN◦ΘS1

)‖ ...‖(ΘminN◦ΘSM)
)
◦Θ` (3)

where
• Θ` , ((W`, b`));
• each ΘSj has the form ΘSj =

(
Sj ,0M,1

)
; and

• Sj = [ JIN Kι1,·
T
... JIN KιN ,·

T ]
T for some sequence ιk ∈

{1, . . . , N}, where IN is the (N ×N) identity matrix.
The matrices Θ` will be referred to as the linear function
matrices of ΞN,M . The matrices {Sj |j = 1, . . . ,M} will
be referred to as the selector matrices of ΞN,M . Each set
sj , {k ∈ {1, . . . , N}|∃ι ∈ {1, . . . , N}.JSjKι,k = 1} is said
to be the selector set of Sj .

A multi-output TLL NN with range space Rm is defined
using m equally sized scalar TLL NNs. That is we denote
such a network by Ξ

(m)
N,M , with each output component

denoted by ΞiN,M , i = 1, . . . ,m.

III. PROBLEM FORMULATION

The main problem we consider in this paper is one of
TLL NN repair. In brief, we take as a starting point a
TLL NN controller that is “mostly” correct in the sense
that is provably safe under a specific set of circumstances
(states); here we assume that safety entails avoiding a
particular, fixed subset of the state space. However, we
further suppose that this TLL NN controller induces some
additional, unsafe behavior of (1) that is explicitly observed,
such as from a more expansive application of a model
checker; of course this unsafe behavior necessarily occurs
in states not covered by the original safety guarantee. The
repair problem, then, is to “repair” the given TLL controller
so that this additional unsafe behavior is made safe, while



simultaneously preserving the original safety guarantees
associated with the network.

The basis for the problem in this paper is thus a TLL NN
controller that has been designed (or trained) to control (1)
in a safe way. In particular, we use the following definition
to fix our notion of “unsafe” behavior for (1).

Definition 7 (Unsafe Operation of (1)). Let Gu be an (Ku×
n) real-valued matrix, and let hu be an (Ku×1) real vector,
which together define a set of unsafe states Xunsafe , {x ∈
Rn|Gux ≥ hu}.

Then, we mean that a TLL NN controller is safe with respect
to (1) and Xunsafe in the following sense.

Definition 8 (Safe TLL NN Controller). Let Xsafe ⊂ Rn be
a set of states such that Xsafe ∩ Xunsafe = ∅. Then a TLL
NN controller u , NN⦗Ξ

(m)
N,M⦘ : Rn → Rm is safe for (1)

on horizon T (with respect to Xsafe and Xunsafe) if:

∀x0∈Xsafe, i∈{1, ..., T}.
(
ζx0
i (NN⦗Ξ

(m)
N,M⦘) 6∈Xunsafe

)
. (4)

That is NN⦗Ξ
(m)
N,M⦘ is safe (w.r.t. Xsafe) if all of its length-T

trajectories starting in Xsafe avoid the unsafe states Xunsafe.

The design of safe controllers in the sense of Definition 8
has been considered in a number of contexts; see e.g. [7].
Often this design procedure involves training the NN using
data collected from an expert, and verifying the result using
one of many available NN verifiers [7].

However, as noted above, we further suppose that a
given TLL NN which is safe in the sense of Definition 8
nevertheless has some unsafe behavior for states that lie
outside Xsafe. In particular, we suppose that a model checker
(for example) provides to us a counterexample (or witness)
to unsafe operation of (1).

Definition 9 (Counterexample to Safe Operation of (1)). Let
Xsafe ⊂ Rn, and let u , NN⦗Ξ

(m)
N,M⦘ be a TLL controller

that is safe for (1) on horizon T w.r.t Xsafe and Xunsafe.
A counter example to the safe operation of (1) is a state
xc.e. 6∈ Xsafe such that

f(xc.e.) + g(xc.e.) · u(xc.e.) = ζxc.e.
1 (u) ∈ Xunsafe. (5)

That is starting (1) in xc.e. results in an unsafe state in the
next time step.

We can now state the main problem of this paper.

Problem 1. Let dynamics (1) be given, and assume its
trajectories are confined to compact subset of states, Xws
(see Definition 2). Also, let Xunsafe ⊂ Xws be a specified set
of unsafe states for (1), as in Definition 7. Furthermore, let
u = NN⦗Ξ

(m)
N,M⦘ be a TLL NN controller for (1) that is safe

on horizon T with respect to a set of states Xsafe ⊂ Xws
(see Definition 8), and let xc.e. be a counterexample to safety
in the sense of Definition 9.

Then the TLL repair problem is to obtain a new TLL
controller u = NN⦗Ξ

(m)
N,M⦘ with the following properties:

(i) u is also safe on horizon T with respect to Xsafe;
(ii) the trajectory ζxc.e.

1 (u) is safe – i.e. the counterexample
xc.e. is “repaired”;

(iii) Ξ
(m)
N,M and Ξ

(m)
N,M share a common architecture (as

implied by their identical architectural parameters); and

(iv) the selector matrices of Ξ
(m)
N,M and Ξ

(m)
N,M are identical

– i.e. Sk = Sk for k = 1, . . . ,M ; and
(v) ‖W ` −W`‖2 + ‖b` − b`‖2 is minimized.

In particular, iii), iv) and v) justify the designation of this
problem as one of “repair”. That is the repair problem is to
fix the counterexample while keeping the network as close as
possible to the original network under consideration. Note:
the formulation of Problem 1 only allows repair by means
of altering the linear layers of Ξ

(m)
N,M ; c.f. (iii) and (iv).

IV. FRAMEWORK

The TLL NN repair problem described in Problem 1
is challenging because it has two main objectives, which
are at odds with each other. In particular, repairing a
counterexample requires altering the NN’s response in a local
region of the state space, but changing even a few neurons
generally affects the global response of the NN – which
could undo the initial safety guarantee supplied with the
network. This tension is especially relevant for general deep
NNs, and repairs realized on neurons in their latter layers.
It is for this reason that we posed Problem 1 in terms of
TLL NNs: our approach will be to use the unique semantics
of TLL NNs to balance the trade-offs between local NN
alteration to repair the defective controller and global NN
alteration to ensure that the repaired controller activates
at the counterexample. Moreover, locally repairing the
defective controller at xc.e. entails a further trade off between
two competing objectives of its own: actually repairing the
counterexample – Problem 1(ii) – without causing a violation
of the original safety guarantee for Xsafe – i.e. Problem
1(i). Likewise, global alteration of the TLL to ensure correct
activation of our repairs will entail its own trade-off: the
alterations necessary to achieve the correct activation will
also have to be made without sacrificing the safety guarantee
for Xsafe – i.e. Problem 1(i).

We devote the remainder of this section to two crucial
subsections, one for each side of this local/global dichotomy.
Our goal in these two subsections is to describe constraints
on a TLL controller that are sufficient to ensure that
it accomplishes the repair described in Problem 1. Thus,
the results in this section should be seen as optimization
constraints around which we can build our algorithm to
solve Problem 1. The algorithmic details and formalism are
presented in Section V.

A. Local TLL Repair
We first consider in isolation the problem of repairing

the TLL controller in the vicinity of the counterexample
xc.e., but under the assumption that the altered controller will
remain the active there. The problem of actually guaranteeing
that this is the case will be considered in the subsequent
section. Thus, we proceed with the repair by establishing
constraints on the alterations of those parameters in the TLL
controller associated with the affine controller instantiated at
and around the state xc.e.. To be consistent with the literature,
we will refer to any individual affine function instantiated by
a NN as one of its local linear functions.

Definition 10 (Local Linear Function). Let f : Rn → R
be CPWA. Then a local linear function of f is a linear
function ` : Rn → R if there exists an open set O such that
`(x) = f(x) for all x ∈ O.



The unique semantics of TLL NNs makes them especially
well suited to this local repair task because in a TLL NN, its
local linear functions appear directly as neuronal parameters.
In particular, all of the local linear functions of a TLL NN
are described directly by parameters in its linear layer; i.e.
Θ` = (W`, b`) for scalar TLL NNs or Θκ

` = (Wκ
` , b

κ
` )

for the κth output of a multi-output TLL (see Definition
6). This follows as a corollary of the following relatively
straightforward proposition, borrowed from [8]:

Proposition 1 ([8, Proposition 3]). Let ΞN,M be a scalar
TLL NN with linear function matrices Θ` = (W`, b`). Then
every local linear function of NN⦗ΞN,M⦘ is exactly equal to
`i : x 7→ JW`x+ b`Ki,· for some i ∈ {1, . . . , N}.

Similarly, let Ξ
(m)
N,M be a multi-output TLL, and let ` be

any local linear function of NN⦗Ξ
(m)
N,M⦘. Then for each κ ∈

{1, . . . ,m}, the κth component of ` satisfies J`Kκ,· = x 7→
JWκ

` x+ bκ` Kiκ,· for some iκ ∈ {1, . . . , N}.

Corollary 1. Let Ξ
(m)
N,M be a TLL over domain Rn, and let

xc.e. ∈ Rn. Then there exist m integers actk ∈ {1, . . . , N}
for k = 1, . . . ,m and a closed, connected set with non-empty
interior, Ra ⊂ Rn such that

• xc.e. ∈ Ra; and
• JNN⦗Ξ

(m)
N,M⦘Kk = x 7→ JW k

` x+ bkKactk on the set Ra.

Corollary 1 is actually a strong statement: it indicates that in
a TLL, each local linear function is described directly by its
own linear-function-layer parameters and those parameters
describe only that local linear function.

Thus, as a consequence of Corollary 1, “repairing” the
problematic local controller (local linear function) of the TLL
controller in Problem 1 involves the following steps:

1) identify which of the local linear functions is realized by
the TLL controller at xc.e. – i.e. identifying the indices
of the active local linear function at xc.e. viz. indices
actκ ∈ {1, . . . , N} for each output κ as in Corollary 1;

2) establish constraints on the parameters of that local
linear function so as to ensure repair of the
counterexample; i.e. altering the elements of the rows
JWκ

` Kactκ,· and Jbκ` Kactκ for each output κ such that the
resulting linear controller repairs the counterexample as
in Problem 1(ii); and

3) establish constraints to ensure the repaired parameters
do not induce a violation of the safety constraint for the
guaranteed set of safe states, Xsafe, as in Problem 1(i).

We consider these three steps in sequence as follows.
1) Identifying the Active Controller at xc.e.: From

Corollary 1, all of the possible linear controllers that a TLL
controller realizes are exposed directly in the parameters of
its linear layer matrices, Θκ

` . Crucially for the repair problem,
once the active controller at xc.e. has been identified, the
TLL parameters responsible for that controller immediately
evident. This is the starting point for our repair process.

Since a TLL consists of two levels of lattice operations, it
is straightforward to identify which of these affine functions
is in fact active at xc.e.; for a given output, κ, this is can
be done by evaluating Wκ

` xc.e. + bκ` and comparing the
components thereof according to the selector sets associated
with the TLL controller. That is the index of the active
controller for output κ, denoted by actκ, is determined by

the following two expressions:

µκk , arg min
i∈Sκk

JWκ
` xc.e. + bκ` Ki (6)

actκ , arg max
j∈{µκk |k=1,...,M}

JWκ
` xc.e. + bκ` Kj (7)

These expressions mirror the computations that define a TLL
network, as described in Definition 6; the only difference is
that max and min are replaced by arg max and arg min,
respectively, so as to retrieve the index of interest instead of
the network’s output.

2) Repairing the Affine Controller at xc.e.: Given the
result of Corollary 1, the parameters of the network that
result in a problematic controller at xc.e. are readily apparent.
Moreover, since these parameters are obviously in the linear
layer of the original TLL, they are alterable under the
requirement in Problem 1 that only linear-layer parameters
are permitted to be used for repair. Thus, in the current
context, local repair entails simply correcting the elements
of the matrices JW k

` Kactk and Jbk` Kactk . It is thus clear that a
“repaired” controller should satisfy

f(xc.e.) + g(xc.e.)

 JW 1
` xc.e.+b

1
`Kact1

...
JWm

` xc.e.+b
m
` Kactm

 6∈ Xunsafe. (8)

Then (8) represents a linear constraint in the local
controller to be repaired, and this constraint imposes the
repair property in Problem 1(ii). That is provided that the
repaired controller described by {actκ} remains active at the
counterexample; as noted, we consider this problem in the
global stasis condition subsequently.

3) Preserving the Initial Safety Condition with the
Repaired Controller: One unique aspect of the TLL NN
architecture is that affine functions defined in its linear layer
can be reused across regions of its input space. In particular,
the controller associated with the parameters we repaired in
the previous step – i.e. the indices {actκ} of the linear layer
matrices – may likewise be activated in or around Xsafe. The
fact that we altered these controller parameters thus means
that trajectories emanating from Xsafe may be affected in
turn by our repair efforts: that is the repairs we made to
the controller to address Problem 1(ii) may simultaneously
alter the TLL in a way that undoes the requirement in
Problem 1(i) – i.e. the initial safety guarantee on Xsafe and
NN⦗Ξ

(m)
N,M⦘. Thus, local repair of the problematic controller

must account for this safety property, too.
We accomplish this by bounding the reach set of (1)

for initial conditions in Xsafe, and for this we employ the
usual strategy of bounding the relevant Lipschitz constants.
Naturally, since the TLL controller is a CPWA controller
operated in closed loop, these bounds will also incorporate
the size of the TLL controller parameters ‖JWκ

` Ki‖ and
‖Jbκ` Ki‖ for κ ∈ {1, . . . ,m} and i ∈ {1, . . . , N}.

In general, however, we have the following proposition.

Proposition 2. Consider system dynamics (1), and suppose
that the state x is confined to known compact workspace,
Xws (see Definition 2). Also, let T be the integer time horizon
from Definition 8. Finally, assume that a closed-loop CPWA
Ψ : Rn → Rm is applied to (1), and that Ψ has local linear
functions LΨ = {x 7→ wkx+ bk|k = 1, . . . , N}.



Moreover, define the function β as

β(‖w‖, ‖b‖) , sup
x0∈Xsafe

(
‖f(x0)− x0‖+

‖g(x0)‖ · ‖w‖ · ext(Xws) + ‖g(x0)‖ · ‖b‖
)

(9)

and in turn define

βmax(Ψ) , β
(

max
w∈{wk|k=1,...,N}

‖w‖, max
b∈{bk|k=1,...,N}

‖b‖
)
.

(10)
Finally, define the function L as in (11), and in turn define

Lmax(Ψ) , L
(

max
w∈{wk|k=1,...,N}

‖w‖, max
b∈{bk|k=1,...,N}

‖b‖
)
.

(12)
Then for all x0 ∈ Xsafe, i ∈ {1, . . . , T}, we have:

‖ζx0

T (Ψ)− x0‖≤ βmax(Ψ) ·
T∑
k=0

Lmax(Ψ)
k
. (13)

The proof of Proposition 2 is in Appendix VII of [9].
Proposition 2 bounds the size of the reach set for (1) in

terms of an arbitrary CPWA controller, Ψ, when the system
is started from Xsafe. This proposition is naturally applied
in order to find bounds for safety with respect to the unsafe
region Xunsafe as follows.

Proposition 3. Let T , Xws, Ψ and LΨ be as in Proposition
2, and let βmax and Lmax be two constants s.t. for all δx ∈ Rn

‖δx‖ ≤ βmax ·
T∑
k=0

Lmax
k

=⇒ ∀x0 ∈ Xsafe.
(
x0 + δx 6∈ Xunsafe

)
(14)

If βmax(Ψ) ≤ βmax and Lmax(Ψ) ≤ Lmax, then trajectories
of (1) under closed loop controller Ψ are safe in the sense
that

∀x0 ∈ Xsafe∀i ∈ {1, . . . , T} . ζx0
t (Ψ) 6∈ Xunsafe. (15)

The proof of is a more or less straightforward application of
Proposition 2, and so can be found in Appendix VII of [9].

In particular, Proposition 3 states that if we find constants
βmax and Lmax that satisfy (14), then we have a way to bound
the parameters of any CPWA controller (via β and L) so
that that controller is safe in closed loop. This translates to
conditions that our repaired controller must satisfy in order
to preserve the safety property required in Problem 1(i).

Formally, this entails particularizing Proposition 2 and 3
to the TLL controllers associated with the repair problem.

Corollary 2. Again consider system (1) confined to
workspace Xws as before. Also, let βmax and Lmax be such
that they satisfy the assumptions of Proposition 3, viz. (14).

Now, let Ξ
(m)
N,M be the TLL controller as given in Problem

1, and let Θκ
` = (Wκ

` , b
κ
` ) be its linear layer matrices for

outputs κ = 1, . . . ,m as usual. For this controller, define the
following two quantities:

ΩW , max
w∈∪mκ=1{JWκ

` Kj |j=1,...,N}
‖w‖ (16)

Ωb , max
b∈∪mκ=1{Jbκ` Kj |j=1,...,N}

‖b‖ (17)

so that βmax(Ξ
(m)
N,M ) = β(ΩW ,Ωb) and Lmax(Ξ

(m)
N,M ) =

L(ΩW ,Ωb). Finally, let indices {actκ}mκ=1 specify the active
local linear functions of Ξ

(m)
N,M that are to be repaired,

as described in Subsection IV-A.1 and IV-A.2. Let wκactκ
and bκactκ be any repaired values of JWκ

` Kactκ,· and Jbκ` Kactκ ,
respectively.

If the following four conditions are satisfied

β(‖wκactκ‖, ‖b
κ
actκ‖) ≤ βmax (18)

βmax(Ξ
(m)
N,M ) ≤ βmax (19)

L(‖wκactκ‖, ‖b
κ
actκ‖) ≤ Lmax (20)

Lmax(Ξ
(m)
N,M ) ≤ Lmax (21)

then the following hold for all x0 ∈ Xsafe:

‖ζx0

T (Ξ
(m)
N,M )− x0‖≤ βmax ·

T∑
k=0

Lmax
k (22)

and hence

∀i ∈ {1, . . . , T} . ζx0
i (Ξ

(m)
N,M ) 6∈ Xunsafe. (23)

The proof of Corollary 2 is in Appendix VII of [9].
The conclusion (22) of Corollary 2 should be interpreted as

follows: the bound on the reach set of the repaired controller,
Ξ

(m)
N,M , is no worse than the bound on the reach set of the

original TLL controller given in Problem 1. Hence, by the
assumptions borrowed from Proposition 3, conclusion (23)
of Corollary 2 indicates that the repaired controller Ξ

(m)
N,M

remains safe in the sense of Problem 1(i) – i.e. closed-loop
trajectories emanating from Xsafe remain safe on horizon T .

For the subsequent development of our algorithm, (18) and
(20) will play the crucial role of ensuring that the repaired
controller respects the guarantee of Problem 1(i).

B. Global TLL Alteration for Repaired Controller Activation
In the context of local repair, we identified the local linear

function instantiated by the TLL controller, and repaired the
parameters associated with that particular function – i.e. the
repairs were affected on a particular, indexed row of Wκ

`
and bκ` . We then proceeded under the assumption that the
affine function at that index would remain active in the
output of the TLL network at the counterexample, even after
altering its parameters. Unfortunately, this is not case in a
TLL network per se, since the value of each local linear
function at a point interacts with the selector matrices (see
Definition 6) to determine whether it is active or not. In other
words, changing the parameters of a particular indexed local
linear function in a TLL will change its output value at any

L(‖w‖, ‖b‖) , Lf + Lg · sup
x0∈Xsafe

‖w‖ · ‖x0‖+ sup
x0∈Xsafe

‖w‖ · ‖g(x0)‖+ Lg · ‖b‖ (11)



given point (in general), and hence also the region on which
said indexed local linear function is active. Analogous to
the local alteration consider before, we thus need to devise
global constraints sufficient to enforce the activation of
the repaired controller at xc.e..

This observation is manifest in the computation structure
that defines a TLL NN: a particular affine function is active
in the output of the TLL if and only if it is active in the output
of one of the min networks (see Definition 6), and the output
of that same min network exceeds the output of all others,
thereby being active at the output of the final max network
(again, see Definition 6). Thus, ensuring that a particular,
indexed local linear function is active at the output of a TLL
entails ensuring that that function
(a) appears at the output of one of the min networks; and
(b) appears at the output of the max network, by exceeding

the outputs of all the other min networks.
Notably, this sequence also suggests a mechanism for
meeting the task at hand: ensuring that the repaired controller
remains active at the counter example.

Formally, we have the following proposition.

Proposition 4. Let Ξ
(m)
N,M be a TLL NN over Rn with

output-component linear function matrices Θκ
` = (Wκ

` , b
κ
` )

as usual, and let xc.e. ∈ Rn.
Then the index actκ ∈ {1, . . . , N} denote the local linear

function that is active at xc.e. for output κ, as described
in Corollary 1, if and only if there exists index selκ ∈
{1, . . . ,M} such that

(i) for all i ∈ Sκselκ and any x ∈ Ra,

JWκ
` x+ bκ` Kactκ,· ≤ JWκ

` x+ bκ` Ki,· (24)

i.e. the active local linear function “survives” the min
network associated with selector set Sκselκ ; and

(ii) for all j ∈ {1, . . . ,M}\{selκ} there exists an index
ικj ∈ {1, . . . , N} s.t. for all x ∈ Ra

JWκ
` x+ bκ` Kικj ,· ≤ JWκ

` x+ bκ` Kactκ,· (25)

i.e. the active local linear function “survives” the max
network of output κ by exceeding the output of all of
the other min networks.

This proposition follows calculations similar to those
mentioned before; the proof is in Appendix VII of [9].

The “only if” portion of Proposition 4 thus directly
suggests constraints to impose such that the desired local
linear function actκ is active on its respective output. In
particular, among the non-active local linear functions
at xc.e., at least one must be altered from each of the
selector sets sj : j ∈ {1, . . . ,M}\{selκ}. The fact that these
alterations must be made to local linear functions which are
not active at the counterexample warrants the description of
this procedure as “global alteration”.

Finally, however, we note that altering these un-repaired
local linear functions – i.e. those not indexed by actκ – may
create the same issue described in Section IV-A.3. Thus, for
any of these global alterations additional safety constraints
like (18) and (20) must be imposed on the altered parameters.

V. MAIN ALGORITHM

Problem 1 permits the alteration of linear-layer parameters
in the original TLL controller to perform repair. In Section
IV, we developed constraints on these parameters to perform

• first, local alteration to ensure repair of the defective
controller at xc.e.; and

• subsequently, global alteration to ensure that the
repaired local controller is activated at and around xc.e..

The derivations of both sets of constraints implies that
they are merely sufficient conditions for their respective
purposes, so there is no guarantee that any subset of them are
jointly feasible. Moreover, as a “repair” problem, any repairs
conducted must involve minimal alteration – Problem 1(v).

Thus, the core of our algorithm is to employ a convex
solver to find the minimally altered TLL parameters that also
satisfy the local and global constraints we have outlined for
successful repair with respect to the other aspects of Problem
1. The fact that the local repair constraints are prerequisite to
the global activation constraints means that we will employ
a convex solver on two optimization problems in sequence:
first, to determine the feasibility of local repair and effectuate
that repair in a minimal way; and then subsequently to
determine the feasibility of activating said repaired controller
as required and effectuating that activation in a minimal way.

A. Optimization Problem for Local Alteration (Repair)

Local alteration for repair starts by identifying the active
controller at the counterexample, as denoted by the index
actκ for each output of the controller, κ. The local controller
for each output is thus the starting point for repair in our
algorithm, as described in the prequel. From this knowledge,
an explicit constraint sufficient to repair the local controller
at xc.e. is specified directly by the dynamics: see (8).

Our formulation of a safety constraint for the locally
repaired controller requires additional input, though. In
particular, we need to identify constants βmax and Lmax such
that the non-local controllers satisfy (19) and (21). Then
Corollary 2 implies that (18) and (20) are constraints that
ensure the repaired controller satisfies Problem 1(i). For this
we take the naive approach of setting βmax = β(Ξ

(m)
N,M ), and

then solving for the smallest Lmax that ensures safety for that
particular βmax. In particular, we set

Lmax = inf{L′ > 0 | βmax ·
T∑
k=0

L′
k

= inf
xs∈Xsafe
xu∈Xunsafe

‖xs−xu‖}. (26)

Given this information the local repair optimization
problem can be formulated for a multi-output TLL as:

Local : min
wκactκ ,b

κ
actκ

m∑
κ=1

‖JWκ
` Kactκ− wκactκ‖+‖Jb

κ
` Kactκ− bκactκ‖

s.t. f(xc.e.) + g(xc.e.)

 w1
act1
xc.e.+b

1
act1

...
wmactmxc.e.+b

m
actm

 6∈ Xunsafe

∀κ = 1, . . . ,m . L(‖wκactκ‖, ‖b
κ
actκ‖) ≤ Lmax

∀κ = 1, . . . ,m . β(‖wκactκ‖, ‖b
κ
actκ‖) ≤ βmax

∀κ = 1, . . . ,m . L(Ξ
(m)
N,M ) ≤ Lmax

Note: the final collection of constraints on L(Ξ
(m)
N,M ) is

necessary to ensure that (21) is satisfied and Corollary 2 is
applicable (equation (19) is satisfied by definition of βmax).



B. Optimization Problem for Global Alteration (Activation)
If the optimization problem Local is feasible, then the

local controller at xc.e. can successfully be repaired, and
the global activation of said controller can be considered.
Since we are starting with a local linear function we want
to be active at and around xc.e., we can retain the definition
of actκ from the initialization of Local. Moreover, since
Problem 1 preserves the selector matrices of the original TLL
controller, we will define the selector indices, selκ, in terms
of the activation pattern of the original, defective local linear
controller (although this is not required by the repair choices
we have made: other choices are possible).

Thus, in order to formulate an optimization problem for
global alteration, we need to define constraints compatible
with Proposition 4 based on the activation/selector indices
described above. Part (i) of the conditions in Proposition 4
is unambiguous at this point: it says that the desired active
local linear function, actκ, must have the minimum output
from among those functions selected by selector set sselκ .
Part (ii) of the conditions in Proposition 4 is ambiguous
however: we only need to specify one local linear function
from each of the other min groups to be “forced” lower
than the desired active local linear function. In the face
of this ambiguity, we select these functions using indices
ικj : j ∈ {1, . . . ,M}\{actκ} that are defined as follows:

ικj , arg min
i∈sκj

JWκ
` xc.e. + bκ` Ki. (27)

That is we form our global alteration constraint out of the
non-active controllers which are have the lowest outputs
among their respective min groups. We reason that these
local linear functions will in some sense require the least
alteration in order to satisfy Part (ii) of Proposition 4, which
requires their outputs to be less than the local linear function
that we have just repaired.

Thus, we can formulate the global alteration optimization
problem as follows:

Global : min
Wκ
` ,b

κ
`

m∑
κ=1

‖Wκ
` −W `‖+‖bκ` − b`‖

s.t. ∀κ = {1, . . . ,m} . JWκ
` Kactκ,· = wκactκ

∀κ = {1, . . . ,m} . Jbκ` Kactκ,· = bκactκ

∀κ = {1, . . . ,m} ∀i ∈ sselκ . w
κ
actκxc.e. + bκactκ

≤ JWκ
` xc.e. + bκ` Ki

∀κ = {1, . . . ,m}
∀j ∈ {1, . . . ,M}\{selκ} . JWκ

` xc.e. + bκ` Kικj
≤ wκactκxc.e. + bκactκ

where of course wκactκ and bκactκ are the repaired local
controller parameters obtained from the optimal solution of
Local. Note that the first two sets of equality constraints
merely ensure that Global does not alter these parameters.

C. Main Algorithm
A pseudo-code description of our main algorithm is

shown in Algorithm 1, as repairTLL. It collects all
of the initializations from Section IV, Subsection V-A
and Subsection V-B. Only the functions FindActCntrl
and FindActSlctr encapsulate procedures defined in
this paper; their implementation is nevertheless adequately

input : f, g system dynamics (1)
Xws workspace set
Ξ

(m)
N,M TLL controller to repair

T safety time horizon
Xsafe set of safe states under Ξ

(m)
N,M

xc.e. counterexample state
output: Ξ

(m)
N,M repaired TLL controller

1 function
repairTLL(f, g,Xws,Ξ(m)

N,M ,T ,Xsafe,xc.e.)
2 gMaxSafe ← supx0∈Xsafe

‖g(x0)‖
3 beta (w,b) := supx0∈Xsafe

‖f(x0)− x0‖
4 + gMaxSafe * w * ext(Xws) + gMaxSafe * b
5 L (w,b) := Lf + Lg * w * supx0∈Xsafe

‖x0‖
6 + w * gMaxSafe + Lg * b
7 ΩW ← maxw∈∪mκ=1{JWκ

` Kj |j=1,...,N}‖w‖
8 Ωb ← maxb∈∪mκ=1{Jbκ` Kj |j=1,...,N}‖b‖
9 betaMax ← beta( ΩW , Ωb)

10 dSafe ← inf xs∈Xsafe
xu∈Xunsafe

‖xs − xu‖

11 Lmax ← inf
{
L′| betaMax *

∑T
k=0 L

′k =dSafe
}

12 {actκ}mκ=1 ← FindActCntrl(Ξ
(m)
N,M , xc.e.)

13 {selκ}mκ=1 ← FindActSlctr(Ξ
(m)
N,M , xc.e.)

14 Initialize(Local,{f, g,Ξ(m)
N,M , xc.e.,L,Lmax,

beta,betaMax,{actκ}mκ=1, Xunsafe})
15 sol ← Solve(Local)
16 if not sol.feasible() then
17 return False
18 else
19 {(wκ, bκ)}mκ=1 ← sol.optimalValue()
20 end
21 for κ in 1, . . . ,m do
22 for j in {1, . . . ,M}\{selκ} do
23 ικj ← arg mini∈sj‖JWκ

` xc.e. + bκ` Ki‖
24 end
25 end
26 Initialize(Global,{f, g,Ξ(m)

N,M , xc.e.,L,Lmax,
beta,betaMax,{actκ}mκ=1, {ικj }κ,j , {(wκ, bκ)}})

27 sol ← Solve(Global)
28 if not sol.feasible() then
29 return False
30 else
31 {(Wκ,Bκ)}mκ=1 ← sol.optimalValue()
32 end

33 return Ξ
(m)
N,M .setLinLayer({(Wκ,Bκ)}mκ=1)

34 end
Algorithm 1: repairTLL.

described in Subsection IV-A.1 and Proposition 4,
respectively. The correctness of repairTLL follows from
the results in those sections.



VI. NUMERICAL EXAMPLES

We illustrate the results in this paper on a four-wheel car
described by the following model:

x(t+ 1) =

[
x1(t) + V cos(x3(t)) · ts
x2(t) + V sin(x3(t)) · ts

x3(t)

]
+

[
0
0
ts

]
v(t) (28)

where the state x(t) = [px(t) py(t) Ψ(t)]T for vehicle
position (px py) and yaw angle Ψ , the and control input v
is the vehicle yaw rate. The parameters are the translational
speed of the vehicle, V (meters/sec); and the sampling
period, ts (sec). For the purposes of our experiments, we
consider a compact workspace Xws = [−3, 3] × [−4, 4] ×
[−π, π]; a safe set of states Xsafe = [−0.25, 0.25] ×
[−0.75,−0.25]×[−π8 ,

π
8 ], which was verified using NNV [7]

over 100 iterations; and an unsafe region Xunsafe specified by
[0 1 0] · x > 3. Furthermore, we consider model parameters:
V = 0.3 m/s and ts = 0.01 seconds.

All experiments were executed on an Intel Core i5
2.5-GHz processor with 8 GB of memory. We collected 1850
data points of state-action pairs from a PI Controller used
to steer the car over Xws while avoiding Xunsafe. Then, to
exhibit a NN controller with a counterexample, a TLL NN
with N = 50 and M = 10 was trained from a corrupted
version of this data-set: we manually changed the control on
25 data points close to Xunsafe so that the car would steer
into it. We simulated the trajectories of the car using this
TLL NN controller for different x0 and identified xc.e. =
[0 2.999 0.2] as a valid counterexample for safety after
two time steps. Finally, to repair this faulty NN, we found
all the required bounds for both system dynamics and NN
parameters and a horizon of T = 7. We found the required
safety constraints βmax = 0.0865 and Lmax = 1.4243. Then,
from xc.e. we obtained the controller K = [Kw Kb] where
Kw = [−0.1442, −0.5424, −0.425] and Kb = [2.223].

Next, we ran our algorithm to repair the counterexample
using CVX (convex solver). The result of the first
optimization problem, Local, was the linear controller:
K̄w = [−0.0027 − 0.0487 − 0.0105] and K̄b = [−9.7845];
this optimization required a total execution time of 1.89 sec.
The result of the second optimization problem, Global
successfully activated the repaired controller, and had an
optimal cost of 8.97; this optimization required a total
execution time of 6.53 sec. We also compare the original
TLL Norms ||W || = 6.54 and ||b|| = 5.6876 with the
repaired: ||W || = 11.029 and ||b|| = 5.687.

Finally, we simulated the motion of the car using the
repaired TLL NN controller for 50 steps. Shown in Fig. 1 are
the state trajectories of both original faulty TLL controller
and repaired TLL Controller starting from the xc.e. In the
latter the TLL controller met the safety specifications.
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VII. APPENDIX

A. Proof of Corollary 1
Proof. It is straightforward to see that every point x in the
domain of NN⦗Ξ

(m)
N,M⦘ belongs to the closure of some open

set D, on which NN⦗Ξ
(m)
N,M⦘ is affine (i.e. equal to one of

its local linear functions). For if this weren’t the case, then
there would be an open subset of the domain of NN⦗Ξ

(m)
N,M⦘,

where it wasn’t affine, thus contradicting the CPWA property
of a ReLU NN.

Thus, let Dxc.e. be such an open set that includes xc.e. in
its closure, and let ` : Rn → Rm be the local linear function
of NN⦗Ξ

(m)
N,M⦘ on Dxc.e. . We can further assume that Dxc.e.

is connected without loss of generality, so set Ra = Dxc.e. .
By Proposition 1, there exists indices {actκ}mκ=1 such that

J`Kactκ = x 7→ JWκ
` x+ bκ` Kactκ . (29)

But by the definition of ` and the above, we also have that

∀x ∈ Dc.e. . JWκ
` x+ bκ` Kactκ = JNN⦗Ξ

(m)
N,M⦘(x)Kactκ . (30)

Thus, the conclusion of the corollary holds on Dxc.e. ; it holds
on Ra = Dxc.e. by continuity of NN⦗Ξ

(m)
N,M⦘.

B. Proof of Proposition 2
Lemma 1. Let F : x 7→ g(x) ·u(x) for Lipschitz continuous
functions g : Rn → R(n · m) (with output an (n × m)
real-valued matrix) and u : Rn → Rm with Lipschitz
constants Lg and Lu, respectively.

Then on compact subset X ⊂ Rn, F is
Lipschitz continuous with Lipschitz constant LF =
Lg · supx∈X‖u(x)‖+ Lu · supx∈X‖g(x)‖.
Proof. This follows by straightforward manipulations as
follows. Let x, x′ ∈ X and note that:

‖g(x)u(x)− g(x′)u(x′)‖
= ‖g(x)u(x) + (−g(x′) + g(x′))u(x)− g(x′)u(x′)‖
= ‖(g(x)− g(x′))u(x) + g(x′)(u(x)− u(x′))‖
≤ ‖g(x)− g(x′)‖ · ‖u(x)‖+ ‖u(x)− u(x′)‖ · ‖g(x′)‖
≤
(
Lg · ‖u(x)‖+ Lu · ‖g(x′)‖

)
· ‖x− x′‖

≤
(
Lg · sup

x∈X
‖u(x)‖+ Lu · sup

x′∈X
‖g(x′)‖

)
· ‖x− x′‖.

Proof. (Proposition 2) We will expand and bound the
quantity on the left-hand side of the conclusion, (13).

‖ζx0

T (Ψ)− x0‖
= ‖ζx0

T (Ψ)− ζx0

T−1(Ψ) + ζx0

T−1(Ψ)− x0‖
≤ ‖ζx0

T (Ψ)− ζx0

T−1(Ψ)‖+ ‖ζx0

T−1(Ψ)− x0‖ (31)

We then bound the first term as follows:

‖ζx0

T (Ψ)− ζx0

T−1(Ψ)‖
≤ ‖f(ζx0

T−1(Ψ))− f(ζx0

T−2(Ψ))‖

+
∥∥∥g(ζx0

T−1(Ψ)) ·
[
w(ζx0

T−1(Ψ)) · ζx0

T−1(Ψ) + b(ζx0

T−1(Ψ))
]

− g(ζx0

T−2(Ψ)) ·
[
w(ζx0

T−2(Ψ)) · ζx0

T−2(Ψ) + b(ζx0

T−2(Ψ))
] ∥∥∥

(32)

where the functions w : Rn → Rn and b : Rn → R return
a (unique) choice of the linear (weights) and affine (bias) of
the local linear function of Ψ that is active at their argument.

Now, we collect the w(·) and b(·) terms in right-hand side
of (32). That is:

‖ζx0

T (Ψ)− ζx0

T−1(Ψ)‖
≤ ‖f(ζx0

T−1(Ψ))− f(ζx0

T−2(Ψ))‖

+
∥∥∥g(ζx0

T−1(Ψ))w(ζx0

T−1(Ψ))ζx0

T−1(Ψ)

− g(ζx0

T−2(Ψ)w(ζx0

T−2(Ψ))ζx0

T−2(Ψ)
∥∥

+
∥∥∥g(ζx0

T−1(Ψ))b(ζx0

T−1(Ψ))− g(ζx0

T−2(Ψ)b(ζx0

T−2(Ψ))
∥∥

The first term in the above can be directly bounded using the
Lipschitz constant of f . Also, since there are only finitely
many local linear function of Ψ, b(·) takes one of finitely
many values across the entire state space, and we may bound
the associated term using this observation. Finally, we can
Lemma 1 to the second term, noting that the linear function
defined by w(·) has Lipschitz constant ‖w(·)‖ and there are
only finitely many possible values for this quantity (one for
each local linear function). This yields the following bound:

‖ζx0

T (Ψ)− ζx0

T−1(Ψ)‖
≤ Lf · ‖ζx0

T−1(Ψ)− ζx0

T−2(Ψ)‖
+
(
Lg · sup

x∈Xws

‖w(x) · x‖+ max
k
‖wk‖ sup

x∈Xws

‖g(x)‖
)

· ‖ζx0

T−1(Ψ)− ζx0

T−2(Ψ)‖
+ max

k
‖bk‖ · Lg · ‖ζx0

T−1(Ψ)− ζx0

T−2(Ψ)‖

If we simplify, then we see that we have

‖ζx0

T (Ψ)− ζx0

T−1(Ψ)‖
≤ Lmax(Ψ) · ‖ζx0

T−1(Ψ)− ζx0

T−2(Ψ)‖ (33)

with Lmax(Ψ) as defined in the statement of the Proposition.
Now, we expand the final term of (31) as

‖ζx0

T−1(Ψ)− x0‖
≤ ‖ζx0

T−1(Ψ)− ζx0

T−2(Ψ)‖+ ‖ζx0

T−2(Ψ)− x0‖ (34)

so that (31) can be rewritten as:

‖ζx0

T (Ψ)− x0‖ ≤ (Lmax(Ψ) + 1) · ‖ζx0

T−1(Ψ)− ζx0

T−2(Ψ)‖
+ ‖ζx0

T−2(Ψ)− x0‖. (35)

But now we can proceed inductively, applying the
bound (33) mutatis mutandis to the expression ‖ζx0

T−1(Ψ)−
ζx0

T−2(Ψ)‖ in (35). This induction can proceed until the factor
to be expanded using (33) has the form ‖ζx0

T−(T−1)(Ψ) −
ζx0

T−(T )(Ψ)‖, which will yield the bound:

‖ζx0

T (Ψ)− x0‖ ≤ ‖ζx0
1 (Ψ)− x0‖ ·

T∑
k=0

Lmax(Ψ)
k
. (36)

Thus it remains to bound the quantity ‖ζx0
1 (Ψ)−x0‖. We

proceed to do this in a relatively straightforward way:

‖ζx0
1 (Ψ)− x0‖

= ‖f(x0) + g(x0) [w(x0)x0 + b(x0)]− x0‖
≤ ‖f(x0)− x0‖+ ‖g(x0)‖ · ‖w(x0)‖ · ‖x0‖

+ ‖g(x0)‖ · ‖b(x0)‖. (37)



Finally, since we’re interested in bounding the original
quantity, ‖ζx0

T (Ψ) − x0‖, over all x0 ∈ Xsafe, we can
upper-bound the above by taking a supremum over all x0 ∈
Xsafe. Thus,

sup
x∈Xsafe

‖ζx0

T (Ψ)− x0‖

≤ sup
x∈Xsafe

‖ζx0
1 (Ψ)− x0‖ ·

T∑
k=0

Lmax(Ψ)
k (38)

where the sup on the right-hand side does not interact with
the summation, since Lmax(Ψ) is constant with respect to x0.
The final conclusion is obtained by observing that that

sup
x∈Xsafe

‖ζx0
1 (Ψ)− x0‖ ≤ βmax(Ψ) (39)

with βmax(Ψ) as defined in the statement of the proposition.

C. Proof of Proposition 3
Proof. This is more or less a straightforward application of
Proposition 2.

Indeed, by Proposition 2 and the assumption of this
proposition, we conclude that

‖ζx0

T (Ψ)− x0‖ ≤ βmax(Ψ) ·
T∑
k=0

Lmax(Ψ)
k

≤ βmax ·
T∑
k=0

Lmax
k.

Hence, δx = ζx0

T (Ψ) − x0 triggers the implication in (14),
and we conclude that

∀x0 ∈ Xsafe . x0 + δx = ζx0

T (Ψ) 6∈ Xunsafe (40)

as required.

D. Proof of Corollary 2
Proof. Corollary 2 is simply a particularization of
Proposition 3 to the repaired TLL network, Ξ

(m)
N,M . It

is only necessary to note that we have separate conditions
to ensure that conclusion of Proposition 3 applied both to
the original TLL network (i.e. (19) and (21)), as well as the
repaired TLL parameters (i.e. (18) and (20)).

E. Proof of Proposition 4
Proof. The “if” portion of this proof is suggested by the
computations in Section IV-A.1, so we focus on the “only
if” portion.

Thus, let {actκ}mκ=1 ∈ {1, . . . , N}m be a set of
indices, and assume that there exists an index {selκ}mκ=1 ∈
{1, . . . ,M}m for which the “only if” assumptions of the
proposition are satisfied. We will show that the local linear
function with indices {actκ}mκ=1 is in fact active on Ra.

This will follow more or less directly by simply carrying
out the computations of the TLL NN on Ra. In particular, by
condition (i), we have that NN⦗ΘminN◦ΘSκselκ

◦Θκ
` ⦘ = x 7→

JWκ
` x + bκ` Kactκ for all x ∈ Ra, κ = 1, . . . ,m. Then, by

condition (ii) we have that for all j ∈ {1, . . . ,M}\{selκ}
and x ∈ Ra
NN⦗ΘminN◦ΘSκselκ

◦Θκ
` ⦘(x) ≤ NN⦗ΘminN◦ΘSκselκ

◦Θκ
` ⦘(x).

(41)

The conclusion thus follows immediately from (41) and the
fact that the min groups for the input to the final layer of
the output’s TLL, ΘmaxM .
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