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Abstract— In adversarial interactions, one is often required
to make strategic decisions over multiple periods of time,
wherein decisions made earlier impact a player’s competitive
standing as well as how choices are made in later stages. In this
paper, we study such scenarios in the context of General Lotto
games, which models the competitive allocation of resources
over multiple battlefields between two players. We propose a
two-stage formulation where one of the players has reserved
resources that can be strategically pre-allocated across the
battlefields in the first stage. The pre-allocation then becomes
binding and is revealed to the other player. In the second
stage, the players engage by simultaneously allocating their
real-time resources against each other. The main contribution
in this paper provides complete characterizations of equilibrium
payoffs in the two-stage game, revealing the interplay between
performance and the amount of resources expended in each
stage of the game. We find that real-time resources are at least
twice as effective as pre-allocated resources. We then determine
the player’s optimal investment when there are linear costs
associated with purchasing each type of resource before play
begins, and there is a limited monetary budget.

I. INTRODUCTION

In resource allocation problems, system planners must
make investment decisions to mitigate the risks posed by
disturbances or strategic interference. In many practical set-
tings, these investments are made over several stages leading
up to the actual time of allocation. For example, security
measures in cyber-physical systems are deployed over long
periods of time. As such, attackers can use knowledge of pre-
deployed elements to identify vulnerabilities and exploits in
the defender’s strategy [1], [2]. As another example, power
grid operators must bid on forward-capacity (i.e., day-ahead,
hour-ahead and real-time) markets to fulfill future demand.
Although grid operators can significantly reduce energy
prices and carbon emissions by procuring capacity in day-
and hour-ahead markets, they still rely on real-time markets
to account for uncertainty in the demand signal [3], [4].
Further examples include R&D contests, team management
in competitive sports, and political lobbying [5].

Indeed, there are numerous real-world examples of sys-
tems in which both early and late investments contribute to
the system performance. Notably, many of these scenarios
consist of strategic interactions between competitors, and
exhibit trade-offs when investing in pre-allocated and real-
time resources (e.g., resource costs vs. flexibility in deploy-
ment, long-term vs. short-term gains). In such scenarios,
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system planners must choose their dynamic investments
while accounting for their competitors’ decision making, and
balancing the trade-offs in early and late investment.

In this manuscript, we seek to characterize the interplay
between early and late investment in competitive resource
allocation settings. We pursue this research agenda in the
context of General Lotto games, a game-theoretic frame-
work that explicitly describes the competitive allocation of
resources between opponents. The General Lotto game is a
popular variant of the classic Colonel Blotto game, wherein
two budget-constrained players, A and B, compete over a
set of valuable battlefields. The player that deploys more
resources to a battlefield wins its associated value, and the
objective for each player is to win as much value as possible.
Outcomes in the standard formulations are determined by
a single, simultaneous allocation of resources. In the novel
formulation introduced in this paper, one of the players can
strategically decide how to deploy resources before the actual
engagement takes place. The placement of the pre-allocated
resources thus has an effect on how the allocation decisions
are made at the time of competition.

Specifically, we consider the following two-stage sce-
nario. Player A is endowed with P ≥ 0 resources to be
pre-allocated, and both players possess real-time resources
RA, RB ≥ 0 to be allocated at the time of competition. In the
first stage, player A decides how to deterministically deploy
the pre-allocated resources P over the battlefields. Player
A’s endowments and pre-allocation decision then become
known to player B. In the second stage, both players engage
in a General Lotto game where they simultaneously decide
how to deploy their real-time resources, and payoffs are
subsequently derived. We assume player B does not have
any pre-allocated resources at its disposal, and only has real-
time resources to compete with. Each player can randomize
the deployment of her real-time resources. Here, player B
must overcome both the pre-allocated and real-time resources
deployed by player A to secure a battlefield. A full summary
of our contributions is provided below:

Our Contributions: Our main contribution in this paper is
a full characterization of equilibrium payoffs to both players
in our two-stage General Lotto game, given player A has P
pre-allocated resources, RA real-time resources, and player
B has RB real-time resources (Theorem 3.1). This result
also specifies how player A should optimally deploy its pre-
allocated resources to the battlefields, each of which has
an arbitrary associated value. Our characterization explicitly
reveals the relative effectiveness of pre-allocated and real-
time resources – for any desired performance level Π ≥ 0
against RB , we provide the set of all pairs (P,RA) that
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achieve the payoff Π for player A (Theorem 3.2). As a
consequence, we show that, to achieve the same performance
Π > 0 using only one type of resource, player A needs at
least double the amount of pre-allocated resources than the
amount of real-time resources (Corollary 3.1).

Leveraging the main results, we then derive the optimal
investment pair (P,RA) for player A when there are linear
per-unit costs to invest in both types of resources and a
limited monetary budget is available. We note that it is
optimal to invest in both resources only if the per-unit cost
of pre-allocated resources is lower than real-time resources.
Indeed, pre-allocated resources are less effective than real-
time resources, since their deployment is not randomized and
player B has knowledge of their placement.

Related works: This manuscript takes preliminary steps
towards developing analytical insights about competitive
resource allocation in multi-stage scenarios. There is
widespread interest in this research objective, where the
focus ranges from zero-sum games [6], [7], [8], and dy-
namic games [9], [10], to Colonel Blotto games [11], [12],
[13], [14]. The goal of many of these works is to develop
computational tools to compute decision-making policies for
agents in adversarial and uncertain environments. In compar-
ison, our work provides explicit, analytical characterizations
of equilibrium strategies, allowing for insights relating the
players’ performance with various elements of adversarial
interaction to be drawn. As such, our work is related to
a recent research thread studying Colonel Blotto games in
which allocation decisions are made over multiple stages
[15], [16], [17], [18], [19].

Our work also draws significantly from the primary liter-
ature on Colonel Blotto and General Lotto games [20], [21],
[22], [23]. In particular, the simultaneous-move subgame
played in the second stage of our model was first proposed
by Vu and Loiseau [23], and is known as the General Lotto
game with favoritism (GL-F). Favoritism refers to the fact
that pre-allocated resources provide an inherent advantage
to one player’s competitive chances. Their work establishes
existence of equilibria and develops computational methods
to calculate them to arbitrary precision. However, this prior
work considers pre-allocated resources as exogenous param-
eters of the game. In contrast, we model the deployment of
pre-allocated resources as a strategic element of the compet-
itive interaction. Furthermore, we provide the first analytical
characterization of equilibria and the corresponding payoffs
in GL-F games.

II. PROBLEM FORMULATION

The General Lotto game with pre-allocations (GL-P) is a
two-stage game with players A and B, who compete over a
set of n battlefields, denoted as B. Each battlefield b ∈ B is
associated with a known valuation wb > 0, which is common
to both players. Player A is endowed with a pre-allocated
resource budget P > 0 and a real-time resource budget
RA > 0. Player B is endowed with a real-time resource

budget RB > 0, but no pre-allocated resources.1 The two
stages are played as follows:

– Stage 1: Player A decides how to allocate her P pre-
allocated resources to the battlefields, i.e., it selects a vector
p = (p1, . . . , pn) ∈ ∆n(P ) := {p′ ∈ Rn

+ : ‖p′‖1 = P}. We
term the vector p as player A’s pre-allocation profile. No
payoffs are derived in Stage 1, and A’s choice p becomes
binding and common knowledge.

– Stage 2: Players A and B compete in a simultaneous-move
sub-game G over B with their real-time resource budgets RA,
RB . Here, both players can randomly allocate these resources
as long as their expenditure does not exceed their budgets
in expectation. Specifically, a strategy for player i ∈ {A,B}
is an n-variate (cumulative) distribution Fi over allocations
xi ∈ Rn

+ that satisfies

Exi∼Fi

[∑
b∈B

xi,b

]
≤ Ri. (1)

We use L(Ri) to denote the set of all strategies Fi that satisfy
(1). Given that player A chose p in Stage 1, the expected
payoff to player A is given by

uA(p, FA, FB) := ExA∼FA,
xB∼FB

[∑
b∈B

wb · I(xA,b + pb, qxB,b)

]
(2)

where I(a, b) = 1 if a > b, and I(a, b) = 0 otherwise
for any two numbers a, b ∈ R+.2 In words, player B must
overcome player A’s pre-allocated resources pb as well as
player A’s allocation of real-time resources xA,b in order
to win battlefield b. The parameter q > 0 is the relative
quality of player B’s real-time resources against player A’s
resources. When q < 1 (resp. q > 1), they are less (resp.
more) effective than player A’s resources. The payoff to
player B is uB(p, FA, FB) = W − uA(p, FA, FB), where
we denote W =

∑
b∈B wb.

Stages 1 and 2 of GL-P are illustrated in Figure 1a. We
denote an instance of GL-P as GL-P(P,RA, RB ,w), and
note that the Stage 2 sub-game (i.e., the game with fixed pre-
allocation profile) is an instance of the General Lotto game
with favoritism [23]. For a given GL-P instance G, we define
an equilibrium as any joint strategy profile (p∗, F ∗A, F

∗
B) ∈

∆n(P )× L(RA)× L(RB) that satisfies

uA(p∗, F ∗A, F
∗
B) ≥ uA(p, FA, F

∗
B) and

uB(p∗, F ∗A, F
∗
B) ≥ uB(p∗, F ∗A, FB)

(3)

for any p ∈ ∆n(P ), FA ∈ L(RA) and FB ∈ L(RB).
Notably, player A’s strategy consists of her deterministic pre-
allocation profile p in Stage 1, as well as her randomized
allocation of real-time resources FA in Stage 2. It follows

1Recent computational advances (see, e.g., [23]) permit the study of the
scenario where both players are endowed with pre-allocated resources. In
this work, we seek to provide analytical characterizations of equilibrium
payoffs, and, thus, consider the simpler, unilateral pre-allocation setting.

2The tie-breaking rule (i.e., deciding who wins if xA,b + pb = xB,b)
can be assumed to be arbitrary, without affecting any of our results. This
property is common in the General Lotto literature, see, e.g., [22], [23].
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Π = 0.750

Π = 0.875
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w1 w2 … wn w1 w2 … wn

A

B
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Stage 1 (Pre-allocate) Stage 2 (Real-time)

(a) (b)

RA

RB

P = ∑pb

p1 p2 pnp1 p2 pn

(c)

Perform-
ance (Π)

(0, RA) (Peq, 0) Peq/RA

0.250 (0, 0.500) (1.333, 0) 2.667

0.500 (0, 1.000) (2.000, 0) 2.000

0.625 (0, 1.333) (2.667, 0) 2.000

0.750 (0, 2.000) (4.000, 0) 2.000

0.875 (0, 4.000) (8.000, 0) 2.000

Fig. 1: (a) The two-stage General Lotto game under consideration. Players A and B compete over n battlefields, whose valuations are given
by {wb}nb=1. In Stage 1, player A decides how to deploy P pre-allocated resources to the battlefields. Player B observes the deployment.
In Stage 2, the players simultaneously decide how to deploy their real-time resources RA and RB , thus engaging in a General Lotto
game with favoritism. (b) A contour map of player A’s equilibrium payoff in the Stage 2 game under the optimal deployment of her
pre-allocated resources S in Stage 1. The dashed lines indicate level curves, i.e. the set of resource pairs (P,RA) ∈ R2

+ that achieve a
given desired performance level Π > 0 (Theorem 3.2). Here, we have normalized the battlefield values and player B’s budget such that∑n

b=1 wb = 1 and qRB = 1. (c) This table shows the relative effectiveness of pre-allocated to real-time resources, P eq/RA. Here, P eq is
defined as the endowment (P eq, 0) (i.e. without real-time resources) that achieves the same performance Π as the endowment (0, RA) (i.e.
without pre-allocated resources) for a given RA. We find that real-time resources are at least twice as effective as pre-allocated resources,
and can be arbitrarily more effective in certain settings (Corollary 3.1).

from the results in [23] that an equilibrium exists in any
GL-P instance G, and that the equilibrium payoffs π∗i (G) =
ui(p

∗, F ∗A, F
∗
B), i ∈ {A,B}, are unique. For ease of no-

tation, we will use π∗i (P,RA, RB), i ∈ {A,B}, to denote
players’ equilibrium payoffs in G when the dependence on
the vector w is clear.

III. MAIN RESULTS

In this section, we present our main result: the character-
ization of players’ equilibrium payoffs in the GL-P game.
We then use this result to derive an expression for the level
sets of the function π∗A(P,RA, RB) in (P,RA) ∈ R≥0×R≥0,
and to compare the relative effectiveness of pre-allocated and
real-time resources.

The result below provides an explicit characterization of
player A’s equilibrium payoff π∗A(P,RA, RB). Note that
player B’s equilibrium payoff is simply π∗B(P,RA, RB) =
W − π∗A(P,RA, RB).

Theorem 3.1. Consider a GL-P game instance with
P,RA, RB > 0, and w ∈ Rn

++. The following conditions
characterize player A’s equilibrium payoff π∗A(P,RA, RB):

1) If qRB < P , or qRB ≥ P and RA ≥ 2(qRB−P )2

P+2(qRB−P ) ,
then π∗A(P,RA, RB) is

W ·

1− qRB

2RA

(
RA +

√
RA(RA + 2P )

P +RA +
√
RA(RA + 2P )

)2
 .

(4)
2) Otherwise, π∗A(P,RA, RB) is

W · RA

2(qRB − P )
. (5)

The derivation of the above result is challenging because
explicit expressions for the players’ payoffs in the Stage
2 sub-game are generally not attainable for arbitrary p ∈

∆n(P ). Moreover, these payoffs are not generally concave.
Our approach is to show that for any p 6= p∗, the payoff is
nondecreasing in the direction pointing to p∗. The full proof
is given in Appendix B, and relies on methods developed in
[23]. These details are given in Appendix A.

As a consequence of our main result, we are able to
characterize expressions for the level curves of the function
π∗A(P,RA, RB). That is, for a desired performance level
Π ≥ 0 and fixed RB , we provide the set of all pairs (P,RA)
such that π∗A(P,RA, RB) = Π.

Theorem 3.2. Given any RB > 0 and w ∈ Rn
++, fix a

desired performance level Π ∈ [0,W ]. The set of all pairs
(P,RA) ∈ R2

+ that satisfy π∗A(P,RA, RB) = Π is given by
the following conditions:
If 0 ≤ Π < W

2 , then

RA =


2Π
W (qRB − P ) if P ∈

[
0, (W−2Π)qRB

W−Π

)
(qRBW−(W−Π)P )2

2qRB(W−Π)W if P ∈
[

(W−2Π)qRB

W−Π , WqRB

W−Π

]
(6)

If W
2 ≤ Π ≤W , then

RA =
(qRBW − (W −Π)P )2

2qRB(W −Π)W
, if P ∈

[
0,
WqRB

W −Π

]
(7)

If P > WqRB

W−Π , then π∗A(P,RA, RB) > Π for any RA ≥ 0.

We plot the surface π∗A(P,RA, RB) for (P,RA) ∈ R2
+

as well as the level curves corresponding to Π ∈
{0.250, 0.500, 0.625, 0.750, 0.875} in Figure 1b. Notably, for
any Π ∈ (0,W ), the level curve RΠ

A(P ) is strictly decreasing
and convex in P ∈ [0, qRBW

W−Π ], where we use RΠ
A(P ) to

explicitly note the dependence on Π. Hence, the function
πA(P,RA, RB) is quasi-concave in (P,RA).

We can use the result in Theorem 3.2 to obtain an expres-
sion for the relative effectiveness of pre-allocated and real-



time resources when these are deployed in isolation. In the
following corollary, we provide this expression, and observe
that real-time resources are at least twice as valuable as pre-
allocated resources, and can be arbitrarily more valuable in
specific settings:

Corollary 3.1. For given RA, RB > 0, the unique value
P eq > 0 such that π∗A(P eq, 0, RB) = π∗A(0, RA, RB) is
characterized by the following expression:

P eq =

{
2RA if RA > qRB ,

2(qRB)2

2qRB−RA
if RA ≤ qRB .

(8)

Notably, the ratio P eq/RA is lower-bounded by 2, and
P eq/RA →∞ as RA → 0+.

The table in Figure 1c compares the relative effectiveness of
pre-allocated and real-time resources corresponding with the
performance levels considered in Figure 1b.

IV. OPTIMAL INVESTMENT DECISIONS

In this section, we consider a scenario where player A
has an opportunity to make an investment decision regard-
ing its resource endowments. That is, the pair (P,RA) ∈
R2

+ is a strategic choice made by A before the game
GL-P(P,RA, RB ,w) is played. Given a monetary budget
XA > 0 for player A, any pair (P,RA) must belong to the
following set of feasible investments:

I(XA) := {(P,RA) : RA + cP ≤ XA} (9)

where c ≥ 0 is the per-unit cost for purchasing pre-allocated
resources, and we assume the per-unit cost for purchasing
real-time resources is 1 without loss of generality. We are
interested in characterizing player A’s optimal investment
subject to the above cost constraint, and given player B’s
resource endowment RB > 0. This is formulated as the
following optimization problem:

πopt
A := max

(P,RA)∈I(XA)
π∗A(P,RA, RB). (10)

In the result below, we derive the complete solution to the
optimal investment problem (10).

Corollary 4.1. Fix a monetary budget XA > 0, relative per-
unit cost c > 0, and RB > 0 real-time resources for player
B. Then, player A’s optimal investment in pre-allocated
resources for the optimization problem in (10) under the
linear cost constraint in (9) is

P ∗ =


(1− c

2−c )XA

c , if c < t

∈ [0, (1− c
2−c )XA

c ], if c = t

0, if c > t

. (11)

where t := min{1, XA

qRB
}. The optimal investment in real-

time resources is R∗A = XA − cP ∗. The resulting payoff
πopt
A to player A is given by

W ·


1− qRB

2XA
c(2− c), if c < t

1− qRB

2XA
, if c ≥ t and XA

qRB
≥ 1

XA

2qRB
, if c ≥ t and XA

qRB
< 1

. (12)

Pre-allocated Resources (P)

R
ea

l-
ti
m

e 
R

es
ou

rc
es

 (
R

A
)

Π = 0.625

Π = 0.750

c = 0.423

c = 1.333

Fig. 2: The optimal investment (P ∗, R∗
A) ∈ R2

+ subject to the
linear cost constraint in (9). Here, we consider the optimal in-
vestment problem when XA = 4/3, qRB = W = 1, and
c ∈ {0.423, 1.333}. Observe that the set of feasible investments
I(XA) is the line segment connecting (0, XA) and (XA/c, 0).
The optimal investment lies on the level curve tangent to this line
segment. For example, when c = 0.423, the optimal investment
is (2.309, 0.357) (unfilled circle), as I(XA) (dotted, black line) is
tangent to the level curve with Π = 0.750 (solid, orange line). For
sufficiently high cost c, I(XA) will not be tangent to any level
curve, and the optimal investment is (0, XA). For example, when
c = 1.333, observe that I(XA) (dashed, black line) is not tangent
even to the level curve with Π = 0.625 (solid, blue line), and the
optimal investment is (0, 4/3) (filled square).

The above solution is obtained by leveraging the level set
characterization from Theorem 3.2, and the fact that the level
sets are strictly decreasing and convex for Π ∈ (0,W ). We
omit details of the proof for space considerations. A visual
illustration of how the optimal investments are determined
is shown in Figure 2. The budget constraint I(XA) is a
line segment in R2

+, and we thus seek the level curve that
lies tangent to the segment. In cases where the cost c is
sufficiently high, no level curve lies tangent to I(XA), and,
thus, player A invests all of her budget in real-time resources.

V. CONCLUSION

In this manuscript, we studied the strategic role of pre-
allocations in competitive interactions under a two-stage
General Lotto game model. We identified an explicit expres-
sion for the set of pre-allocated and real-time budget pairs
that correspond with a given desired performance. We then
used this explicit expression to derive the optimal dynamic
investment strategy under a given linear cost constraint, and
to compare the relative effectiveness of pre-allocated and
real-time resources when deployed in isolation. Exciting
directions for future work include studying the strategic
outcomes (i.e., equilibria) when both players can make
pre-allocations, and introducing heterogeneities in players’
battlefield valuations and resource effectiveness to the model.
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APPENDIX

A. Method to derive equilibria of second-stage subgame

The recent work of Vu and Loiseau [23] provides a general
method to derive an equilibrium of the second stage subgame
from the GL-P game, which is termed a General Lotto game
with favoritism (GL-F). In a GL-F game, the pre-allocation
vector p is an exogenous parameter. We denote an instance of
as GL-F(p, RA, RB). The method to calculate an equilibrium

involves solving the following system3 of two equations for
two unknowns (κA, κB) ∈ R2

++:

RA =

n∑
b=1

[hb(κA, κB)− pb]2

2qwbκB
, RB =

n∑
b=1

h2
b(κA, κB)− p2

b

2qwbκA
(13)

where hb(κA, κB) := min{qwbκB , wbκA + pb} for b ∈ B.
The above equations correspond to the budget constraint (1)
for both players. There always exists a solution (κ∗A, κ

∗
B) ∈

R2
++ to this system [23], and corresponds to the following

equilibrium payoffs.

Lemma A.1 (Adapted from [23]). Suppose (κ∗A, κ
∗
B) ∈ R2

++

solves (13). Let B1 := {b ∈ B : hb(κ
∗
A, κ

∗
B) = qwbκB}

and B2 = B\B1. Then there is a corresponding equilibrium
(F ∗A, F

∗
B) of the game GL-F(p, RA, RB) where player A’s

equilibrium payoff is given by

πA(p, RA, RB) :=
∑
b∈B1

wb

[
1− qκ∗B

2κ∗A

(
1− p2

i

(qwbκB)2

)]
+
∑
b∈B2

wb
κ∗A

2qκ∗B
(14)

and the equilibrium payoff to player B is πB(p, RA, RB) =
W − πA(p, RA, RB).

The equilibrium strategies are characterized by marginal
distributions detailed in [23].

B. Proof of Theorem 3.1

The proof follows two parts: In Part 1, we establish that,
for given P,RA, RB > 0 and w ∈ Rn

++, p∗ = P
W w

is player A’s optimal pre-allocation profile in Stage 1 of
GL-P. Then, in Part 2, we derive an explicit expression for
player A’s payoff in Stage 2 under the optimal pre-allocation
profile p∗ derived in Part 1. Throughout the proof, we use
πi(p, RA, RB), i ∈ {A,B}, to denote the players’ payoffs
in the Stage 2 sub-game for fixed pre-allocation profile
p ∈ ∆n(P ). Recall that the Stage 2 sub-game amounts to a
General Lotto game with favoritism GL-F(p, RA, RB).

– Part 1: The proof amounts to showing that p∗ = P
W w

is a global maximizer of player A’s equilibrium payoff
π∗A(p, RA, RB) for p ∈ ∆n(P ). For the following analysis,
we define Tn := {z ∈ Rn :

∑n
b=1 zb = 0 as the tangent

space of ∆n(P ). The lemma below first establishes that p∗

is a local maximizer when either B1 = B or B2 = B.

Lemma B.1. The pre-allocation p∗ = P
W w is a local

maximizer of πA(p, RA, RB) over p ∈ ∆n(P ), for any
P,RA, RB > 0.

Proof. From Lemma A.1 and the definition of hb(κA, κB)
in Appendix A, we observe that the solution to (13) under

3The problem setting considered in their method is more general, ad-
mitting possibly negative pre-allocations pb < 0 (i.e. favoring player B),
asymmetries in players’ battlefield valuations wb > 0, and different resource
effectiveness parameters qb for each battlefield. However, exact closed-form
solutions under heterogeneous values w, arbitrary pre-allocations p, and
effectiveness parameters qb are generally unattainable.



the pre-allocation s∗ is always in one of two completely
symmetric cases: 1) B1 = B; or 2) B2 = B. Thus, we need
to show s∗ is a local maximizer in both cases.
Case 1 (B1 = B): For p ∈ ∆n(P ), the system (13) is
written

RA =

n∑
b=1

(qwbκB − pb)2

2qwbκB
and RB =

n∑
b=1

(qwbκB)2 − p2
b

2qwbκA

where 0 < qwbκB − pb ≤ κA holds ∀b ∈ B.
(15)

It yields an algebraic solution

qκ∗B =
1

W

[
P +RA +

√
(P +RA)2 −W‖p‖2w

]
κ∗A =

(P +RA)qκ∗B − ‖p‖2w
qRB

.
(16)

where ‖p‖2w =
∑n

b=1
p2
b

wb
. This solution needs to satisfy the

set of conditions 0 < qwbκB − pb ≤ κA ∀b ∈ B, but the
explicit characterization of these conditions is not needed to
show that s∗ is a local maximum. Indeed, first observe that
the expression for qκ∗B is required to be real-valued, which
we can write as the condition

p ∈ R(1n) :=

{
p ∈ ∆n(P ) : ‖p‖2w <

(P +RA)2

W

}
. (17)

We thus have a region R(1n) for which the expression of
player A’s equilibrium payoff (derived using Lemma A.1) is
well-defined:

π
(1n)
A (p) := W

(
1− qRB

f(‖p‖w)

(
1− W‖p‖2w

(P+RA+f(‖p‖w))2

))
(18)

where f(‖p‖w) :=
√

(P +RA)2 −W‖p‖2w. The partial
derivatives are calculated to be

∂π
(1n)
A

∂pb
(p) =

pb
wb
· 2W 2qRB

f(‖p‖w)(P +RA + f(‖p‖w))2
(19)

A critical point of π(1n)
A must satisfy z>∇π(1n)

A (p) = 0 for
any z ∈ Tn. Indeed for any p ∈ R(1n), we calculate

(p− P

W
w)>∇π(1n)

A (p) = g(‖p‖w) ·
(
‖p‖2w −

P 2

W

)
≥ 0

(20)
where g(‖p‖w) := 2W 2qRB

f(‖p‖w)(P+RA+f(‖p‖w))2 > 0 for any
p ∈ R(1n). The inequality above is met with equality
if and only if p = p∗. This is due to the fact that
minp∈∆n(P ) ‖p‖2w = ‖p∗‖2w = P 2

W . Thus, p∗ is the unique
maximizer of π(1n)

A (p) on R(1n).
Case 2 (B2 = B): For p ∈ ∆n(P ), the system is written as

RA =

n∑
b=1

(wbκA)2

2qwbκB
and RB =

n∑
b=1

(wbκA − pb)2 − (pb)
2

2qwbκA
,

where qwbκB−pb > wbκA holds for all b ∈ B. This readily
yields the algebraic solution:

qκ∗B =
2

W

(qRB − P )2

RA
and κ∗A =

2

W
(qRB − P ). (21)

For this solution to be valid, the following conditions are
required:
• κ∗A, qκ∗B ∈ R++: This requires that qRB − P > 0.
• qwbκ

∗
B − pb > wbκ

∗
A for all b ∈ B: This requires that

2

W

(qRB − P )2

RA
− 2

W
(qRB − P )−max

b
{ pb
wb
} > 0.

The left-hand side is quadratic in qRB − P , and, thus,
requires either

qRB − P <
2/W −

√
4

W 2 + 4 maxb{ pb

wb
} 2
WRA

4/(WRA)
, or

qRB − P >
2/W +

√
4

W 2 + 4 maxb{ pb

wb
} 2
WRA

4/(WRA)
.

The former cannot hold since the numerator on the right-
hand side is strictly negative, but κ∗A, qκ

∗
B ∈ R++ requires

qRB − P > 0. Thus, the latter must hold, which simplifies
to the condition

qRB − P >
RA

2

[
1 +

√
1 +

2W

RA
max

b
{ pb
wb
}

]
. (22)

Clearly, (22) is more restrictive than qRB − P > 0, and,
thus, dictates the boundary of Case 2.

For any p ∈ ∆n(P ) such that all battlefields are in Case
2, the expression for player A’s payoff in (14) simplifies to

πA(p, RA, RB) =

n∑
b=1

wb
κ∗A

2qκ∗B
=
W

2

RA

qRB − P
,

where we use the expression for qκ∗B and κ∗A in (21). Observe
that player A’s payoff is constant in the quantity p. Thus, for
any p that satisfies (22), it holds that all battlefields are in
Case 2, and that player A’s payoff is the above. We conclude
the proof noting that, for given quantities RA and P , if there
exists any p ∈ ∆n(P ) such that (22) is satisfied, then p∗ =
w · (P/W ) must also satisfy (22), since ||p||∞ ≥ ||p∗||∞
and the right-hand side in (22) is increasing in ||p||∞. �

Next, we prove that the function πA(p, RA, RB) is max-
imized by p∗ = P

W w. We showed in Lemma B.1 that p∗ is
a local maximizer over p ∈ ∆n(P ) when either B1 = B or
B2 = B. It remains to be shown that player A cannot achieve
a higher payoff for p ∈ ∆n(P ) that results in both sets B1

and B2 being nonempty. Throughout the proof, we will use
the short-hand notation Wj =

∑
b∈Bj

wb, Pj =
∑

b∈Bj
pb

and pj = (pb)b∈Bj
, j = 1, 2, for conciseness.

For p ∈ ∆n(P ), we have that

XA =
∑
b∈B1

(qwbκB − pb)2

2qwbκB
+
∑
b∈B2

(wbκA)2

2qwbκB
,

XB =
∑
b∈B1

(qwbκB)2 − (pb)
2

2qwbκA
+
∑
b∈B2

(wbκA + pb)
2 − (pb)

2

2qwbκA
,

where 0 < qwbκB − pb ≤ wbκA holds for all b ∈ B1, and
qwbκB − pb > wbκA holds for all b ∈ B2. The system of



equations readily gives the expression:

W1(qκB)2 +W2(κA)2 = 2qκB(XA + P2)− ||p1||2w
= 2κA(qXB − P2) + ||p1||2w,

(23)

where recall that ||p1||2w =
∑

b∈B2
[(pb)

2/wb]. The solution
to the above system of equations is

qκ∗B =
C1H2 ±

√
(C2)2H1H2

W1(C2)2 +W2(C1)2
,

κ∗A =
C2H1 ±

√
(C1)2H1H2

W1(C2)2 +W2(C1)2
,

(24)

where we introduce the short-hand notation C1 = RA +
P1, C2 = qRB − P2, H1 = (C1)2 −W1||p1||2w and H2 =
(C2)2 + W2||p1||2w, for conciseness. We consider only the
scenario where ± = + in (24), since the expression for κ∗A is
strictly negative when ± = −. Simply observe that C1 > 0,
(C1)2 > H1, 0 < (C2)2 < H2 and, thus, that either (i)
H1 > 0, C2 > 0 and 0 < C2H1 < C1

√
H1H2, (ii) H1 < 0,

C2 < 0 and 0 < C2H1 = |C2||H1| < C1

√
|H1||H2|, or (iii)

only one of H1 or C2 is negative, in which case C2H1 < 0.
Substituting (24) into (14) and simplifying, we obtain

πA(p, RA, RB) = W1 +

√
H1H2 − C1C2

||p1||2w
, (25)

and the partial derivatives of πA(p, RA, RB) with respect to
pb for b ∈ B1 and b ∈ B2, respectively, are:

∂

∂pb
πA

∣∣∣∣
b∈B1

=
−pb/wb

(||p1||2w)2
√
H1H2

(C1

√
H2 − C2

√
H1)2

+
1

||p1||2w
√
H1

(C1

√
H2 − C2

√
H1)

∂

∂pb
πA

∣∣∣∣
b∈B2

=
1

||p1||2w
√
H2

(C1

√
H2 − C2

√
H1).

(26)
We first consider critical points p strictly in the interior of

∆n(P ), and resolve the points on the boundary later. One
necessary condition for a critical point is that ∂πA/(∂pb)−
∂πA/(∂pc) = 0 for all b ∈ B1 and c ∈ B2. Firstly,
observe that C1 >

√
H1 and

√
H2 > C2, and, thus, it

must be that C1

√
H2 − C2

√
H1 > 0. We can thus divide

the expression ∂πA/(∂pb) = ∂πA/(∂pc) on both sides by
C1

√
H2 − C2

√
H1 and rearrange to obtain

(pb/wb)(C1

√
H2−C2

√
H1) = ||p1||2w(

√
H2−

√
H1) > 0.

Observe that the left-hand side is strictly greater than zero,
and, thus, the right-hand side must be as well. This imme-
diately requires

√
H2 −

√
H1 > 0, since ||p1||2w > 0. Re-

arranging the above expression, note that we also require√
H1[C2(pb/wb)− ||p1||2w] =

√
H2[C1(pb/wb)− ||p1||2w].

Since we have just shown that
√
H2 >

√
H1 must

hold, it follows that each b ∈ B1 satisfies either (i)
C2(pb/wb) − ||p1||2w < C1(pb/wb) − ||p1||2w < 0; or
(ii) C2(pb/wb) − ||p1||2w > C1(pb/wb) − ||p1||2w > 0.
Observe that C1(pb/wb) > ||p1||21 must hold for b′ ∈
arg maxb∈B1

pb/wb, and thus b′ must satisfy scenario (ii)

and C2 > C1 (or, equivalently, qRB − P > RA). This last
inequality then implies that scenario (ii) must be satisfied for
all b ∈ B1.

We have shown that, in order for ∂πA/(∂pb) −
∂πA/(∂pc) = 0 to hold for all b ∈ B1 and c ∈ B2, a critical
point p must satisfy

pb
wb

= p̄ :=

√
H2 −

√
H1

C1

√
H2 − C2

√
H1

||p1||2w,

for each b ∈ B1. Expanding this expression, and solving
for p̄ explicitly, we obtain the following two possible (real)
solutions for p̄:

p̄ = 0 or p̄ =
2(qRB − P )(qRB −RA − P )

WRA
,

where we use P1 = W1p̄, P2 = P − P1, and ||p1||2w =
W1(p̄)2. As p̄ = 0 is inadmissible, we consider the latter
expression for p̄. After inserting this expression for p̄ into
the right-hand side of (22), where maxb{pb/wb} = p̄, we
obtain

RA

2

[
1 +

√
1 +

2W

RA
p̄

]
=
RA

2
+ qRB − P −

RA

2
= qRB − P,

which follows since we showed above that qRB − P > RA

must hold. Thus, the only critical point sits at the boundary
of the region where all battlefields are in Case 2, since
decreasing p̄ even slightly will satisfy the condition in (22).
We can further verify that the payoff at this critical point
is equal to the constant payoff in the region where all
battlefields are in Case 2, but omit this for conciseness.

We conclude the proof by resolving the scenario where p
lies on the boundaries of ∆n(P ). Observe that the conditions
on qκ∗B and κ∗A immediately imply that pb/wb > pc/wc

for any b ∈ B1 and c ∈ B2. Thus, on the boundaries of
∆n(P ), it must either be that all battlefields with pb = 0
(and possibly more) are in Case 2, or that all battlefields
in B are in Case 1 (which is covered by Lemma B.1). In
the scenario where all battlefields with pb = 0 are in Case 2,
note that the necessary condition (∂/(∂pi)−∂/(∂pj))πA ≥ 0
for i ∈ arg minb∈B1{pb/wb} and j ∈ arg maxb∈B1{pb/wb}
only holds with equality if pb/wb = P1/W1 for all b ∈ B1. If
P1/W1 < p̄, then the inequality in (22) is satisfied implying
that all battlefields are in Case 2, and Lemma B.1 shows
that p∗ = w(P/W ) must correspond with the same payoff
to player A. Otherwise, if P1/W1 = p̄, then we showed
above that the global maximum sits at the boundary where
all battlefields are in Case 2 and p∗ = w(P/W ) achieves
the same payoff. Finally, if P1/W1 > p̄, then, from (26), we
know that ∂πA/(∂pb) − ∂πA/(∂pc) < 0 must hold for all
b ∈ B1 and c ∈ B2, since the choice pb/wb = p̄ satisfies
∂πA/(∂pb)− ∂πA/(∂pc) = 0, and ∂πA/(∂pb) is decreasing
with respect to pb/wb while ∂πA/(∂pc) is constant. This
violates a necessary condition for a critical point, and implies
that A’s payoff is increasing in the direction of decreasing
pb and increasing pc, as expected. �



– Part 2: In the proof of Lemma B.1, we provide the
closed-form solutions to the system of equations (13) for
the symmetric case B1 = B (resp. B2 = B) in (16) (resp.
(21)). In the following analysis, we derive conditions on the
underlying parameters for which these closed-form solutions
of (13) exist and satisfy the corresponding constraints on
κ∗A, qκ

∗
B > 0, and find that these two cases encompass all

possible game instances GL-P(P,RA, RB ,w).
Case 1 (B1 = B): Substituting p = (P/W )·w into (16) and
simplifying, we obtain

qκ∗B =
1

W

[
P +RA +

√
RA(RA + 2P )

]
κ∗A =

(P +RA)qκ∗B − P 2/W

qRB
.

(27)

Next, we verify that this solution satisfies the conditions 0 <
qκ∗B − P/W ≤ κ∗A.
• qκ∗B − P/W > 0: This holds by inspection.
• qκ∗B − P/W ≤ κA: We can write this condition as

qRB − P ≤ RA +
PRA

RA +
√
RA(RA + 2P )

(28)

We note that whenever qRB − P < 0, this condition is
always satisfied. When qRB − P ≥ 0, this condition does
not automatically hold, and an equivalent expression of (28)
is given by

RA ≥
2(qRB − P )2

P + 2(qRB − P )
. (29)

Observe that RA = 2(qRB−P )2

P+(qRB−P ) satisfies (28) with equality,
and is in fact the only real solution (one can reduce it to a
cubic polynomial in RA).

When these conditions hold, the equilibrium payoff
πA(P,RA, RB) (computed from Lemma A.1) is given by
the expression (4).
Case 2 (B2 = B): Substituting p = (P/W )·w into (21) and
simplifying, we obtain

κ∗A =
2(qRB − P )

W
and qκ∗B =

2(qRB − P )2

WRA
. (30)

The solution satisfies the condition 0 < κ∗A < qκ∗B − P/W
if and only if qRB − P > 0 and RA > 2(qRB−P )2

P+(qRB−P ) .
When this holds, the equilibrium payoff (from Lemma A.1)
is πA(P,RA, RB) = W · RA

2(qRB−P ) . �
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