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Abstract— Performing highly agile dynamic motions, such as
jumping or running on uneven stepping stones has remained
a challenging problem in legged robot locomotion. This paper
presents a framework that combines trajectory optimization
and model predictive control to perform robust and consecutive
jumping on stepping stones. In our approach, we first utilize
trajectory optimization based on full-nonlinear dynamics of
the robot to generate periodic jumping trajectories for various
jumping distances. A jumping controller based on a model
predictive control is then designed for realizing smooth jumping
transitions, enabling the robot to achieve continuous jumps on
stepping stones. Thanks to the incorporation of MPC as a
real-time feedback controller, the proposed framework is also
validated to be robust to uneven platforms with unknown height
perturbations and model uncertainty on the robot dynamics.

I. INTRODUCTION

The capability of navigating uneven terrain with discrete
footholds such as stepping stones or stairs is a remarkable
advantage of legged robots over their wheeled counterparts.
This advantage has recently attracted much attention, re-
sulting in considerable studies on walking legged robots on
stepping stones using either control ([1],[2],[3]) or learn-
ing ([4],[5],[6],[7]) frameworks. However, the realization
of highly dynamic locomotion on stepping stones, such as
jumping, has not been well explored.

Related works on jumping for legged robots [8],[9],[10]
including our prior works [11],[12],[13] only consider a sin-
gle jump. Our work [11] introduces a trajectory optimization
framework based on full-body dynamics to allow MIT Chee-
tah 3 to perform a single jump on a high platform. However,
no feedback control on the body motion is considered to
compensate for errors of the jumping trajectory. Therefore,
the framework is not robust to jumping from an uneven
platform. Another offline trajectory optimization approach is
proposed in [14] to find feasible motions over discrete terrain
in simulation. Nevertheless, this method relies on simplified
dynamics which does not consider leg dynamics and robot
actuator constraints. In addition, there is also no feedback
control embedded in this work. These simplifications may
limit the accuracy as well as the success rate of transferring
dynamic jumping motions to the robot hardware. Recently,
combinations of a single jump with multiple bounding are
also designed to enable a robot to jump over obstacles on
flat terrain in [9], and jump over gaps along discrete terrain
in [15]. Departing from prior works, we are interested in
consecutive jumping on stepping stones. Our framework
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Fig. 1: Continuous jumping of quadruped robots over stepping stones with
random distance and unknown height perturbation. Supplemental video:
https://youtu.be/jBGY1K1UbhM.

utilizes the combination of nonlinear trajectory optimization
and model predictive control to realize robust and continuous
jumping of legged robots on stepping stones.

Unlike walking ([1]-[6]), the jumping motions on step-
ping stones come with additional challenges including (1)
high efficient jumping transitions, (2) hard impact on the
environment, and (3) long aerial time. In particular, jumping
transitions occur in a very short contact time and on a limited
terrain surface. The hard impact requires efficient real-time
feedback controllers to control the ground reaction force
(GRF) to mitigate its perturbation on the whole body motion.
In addition, because the robot motion has little impact on
the body trajectory during a flight phase, a small error in
the body motion during the jumping phase could result in
a significant error in the landing phase as well as in the
subsequent jumps. These problems thus make continuous
jumping highly challenging.

Continuous jumping on stepping stones requires whole-
body coordination while respecting all constraints of robots’
actuators. Therefore, designing an approach to optimize for
the whole-body motion is crucial. The optimization is also
essential to maximize the jumping performance to enable
the robot to traverse significant gaps. Thus, we design a
trajectory optimization (TO) framework to generate optimal
periodic gait references, which will then be used for continu-
ous jumps. The optimization framework adopts the full-body
dynamics of the robot to leverage the whole-body motion for
jumping while satisfying all physical constraints.

Model Predictive Control (MPC) has recently been widely
used in legged robots’ locomotion thanks to its capability
to realize robust locomotion over a wide variety of gaits or
contact modes ([16],[17],[18]). However, in these works, the
MPC formulation is designed for stabilizing gaits with short
flight time and based on the assumption of small variations
of the body orientation. Alternatively, we design a jumping
controller based on MPC to achieve continuous jumping
transitions and to tackle a wide range of body orientation
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Fig. 2: Block diagram for the proposed framework.

and long flight phases. In this paper, we combine MPC
and joint PD controller to track the reference motion from
the trajectory optimization module. This combination allows
the robot to jump consecutively on challenging stepping
stones at high accuracy. In addition, it shows the robustness
to unknown height perturbation of the platform and model
uncertainty (e.g., carrying an unknown load).

The contribution of our work is summarized as follows:
• We propose a framework that allows quadruped robots

to perform online consecutive jumping on stepping
stones. A trajectory optimization based on full-body dy-
namics is formulated to generate a set of references for
periodic jumping. The gait library is then designed to
achieve an online gait generation for different jumping
distances.

• A MPC-based jumping controller is designed to ef-
ficiently handle jumping transitions between different
jumps and guarantee accurate jumps on stepping stones.

• Our framework is validated on the A1 robot model
jumping on a variety of terrains: randomly-placed step-
ping stones, unknown perturbation of terrain height,
unknown load carrying, and their combinations.

• Our experiments in hardware validate the robustness
of the jumping controller for a single jump on uneven
terrain with unknown height perturbation.

The rest of the paper is organized as follow. An overview
of the proposed framework is presented in Section II. The
trajectory optimization framework and a gait library are
described in Section III. Section IV presents a proposed
controller for jumping. Results from hardware experiments
and simulation are shown in Section V. Finally, Section VI
provides concluding remarks.

II. OVERVIEW OF THE FRAMEWORK

In this section, we introduce the overview of our proposed
approach. A block diagram of our framework is illustrated in
Figure. 2. Firstly, trajectory optimization is used to generate
reference trajectories for different periodic jumps. It is then
combined with a gait library to generate online references
for jumping of different distances. Secondly, a feedback

controller based on MPC and joint PD is designed to robustly
track the reference model and to realize smooth transitions
between different jumps.

The trajectory optimization is formulated and solved off-
line for a small number of gait references. The gait inter-
polation policy [3] computes a new reference for the next
jump prior to landing on the next stone based on the actual
measured distance of Dstep. This reference is updated to the
jumping controller: {τd,pd, ṗd, θd,ωd,fd} for MPC, and
{qJ,d, q̇J,d} for joint PD controller. The MPC and joint PD
controller are updated at 30 Hz and 1 kHz respectively.

During a transition to a next jump, it is important to
enforce precise footstep placement on stepping stones in
order to keep the robot on the terrain and avoid accumulated
errors. Therefore, we utilize a Cartesian PD controller to
drive each swing foot to the predefined targets on stepping
stones. The controller executes τCartPD at 1 kHz.

III. TRAJECTORY OPTIMIZATION AND GAIT LIBRARY

A. Periodic Jumping Gait Optimization

Due to the limitation of the robot’s actuators, it’s critical
to leverage the whole body motion to maximize the jumping
capability of the robot. Moreover, due to periodic patterns in
continuous jumps, the motions can be formulated as connec-
tions of periodic jumping gaits. In this section, we propose
an optimization framework to generate a certain number
of periodic gaits, which will be extended to consecutive
jumps with different jumping distances. We also utilize full-
body dynamics to generate high accuracy jumping references
and optimal whole-body coordination, while respecting all
physical constraints of the robot.

1) Dynamical Model for Jumping: For quadrupedal ani-
mals, high jumping is normally restricted to a sagittal plane.
Therefore, this paper will also focus on 2D motion of the
robot. The robot model thus can be considered as a rigid-
body system consisting of 5 links in the 2D plane, and the
equation of motion is formulated as follows [11]:

[
M −JTc
−JTc 0

] [
q̈
fc

]
=

[
−Cq̇ − g + Sτ + Sfτf

J̇c(q)q̇

]
(1)
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Fig. 3: Periodic jumping phases. Each periodic jumping motion consists
of four phases

where q := [x; z; qpitch; qJ ] is a vector of generalized
coordinates, in which x, z, qpitch are the CoM position and
body’s pitch angles respectively, and qJ is a vector of joint
angles. M is the mass matrix, C is represented for Coriolis
and centrifugal terms, g denotes gravity vector, Jc is the
spatial Jacobian expressed at the contact foot, S and Sfric
are distribution matrices of actuator torques τ and the joint
friction torques τfric, fc is the spatial force at the contact
feet. The dimension of Jc and fc depend on the phase of
gait, and the number of legs in contact with the ground. In
addition, we also denote positions of front feet as pF =
[pxF ; pzF ], and positions of rear feet as pR = [pxR; pzR].

2) Contact Schedule: Inspired by nature, we formulate
each jump consisting of four sequential phases: front-leg
contact, double contact, rear leg contact, and flight phase.
All phases are solved via off-line optimization. To establish
a periodic jump, the initial pose of the first phase is identical
to the final pose of the last phase (see Fig. 3).

3) Cost function and Constraints: The periodic trajectory
optimization is formulated as follows:

minJ =

N∑
k=1

wq‖qJ,k − qJ,ref‖22 + wτ‖τk‖22

s.t. Periodic constraints:
xN = x1 +Ddes, zN = z1, qpitch,N = qpitch,1,

qJ,N = qJ,1, q̇N = q̇1 (2a)
Foot position:

pF,k = 0, in front-leg and all-leg contact (2b)
pR,k = [−d; 0], in all-leg and rear-leg contact (2c)

pzF,k ≥ 0, pzR,k ≥ 0 (2d)

Full-body dynamics constraints (1) (2e)
Pre-landing configuration:
q̇J,k = 0 (k ∈ [(N − 10) : N ]) (2f)

Joint angle limits: qJ,min ≤ qJ,k ≤ qJ,max (2g)
Joint angular velocity limits: |q̇J,k| ≤ q̇J,max (2h)

Torque limits:|τk| ≤ τmax (2i)
GRF limits:fzmin ≤ fzk ≤ fzmax (2j)
Friction cone limits:|F xk /F zk | ≤ µ (2k)

Geometric constraints (2l)

where qJ,k is a joint angle, and τk is a joint torque
at the iteration kth; wq, wτ are corresponding weights of
these optimization variables. Note that since the primary goal
of the optimization is to maximize the performance of the
robots to jump over a large gap between stepping stones, we
do not over-regulate the use of joint torques. Therefore, we
use a dominant weight for the joint positions in comparison
with a weight for torque (e.g. wτ = 0.005 wq = 1). For foot
position constraints in (2b)&(2c), d is pre-defined distance
between the front and rear feet. Geometric constraints are
imposed to guarantee: (a) the robot body and legs have a
good clearance with terrain, and (b) each robot part does
not collide with others.

Having presented an optimization approach to generate
individual periodic jumping gait, we will next design a gait
library to generate online jumping references.

B. Jumping Gait Library

In order to adapt to the change of terrain structure quickly,
it is important to have a policy to update the reference for
full-body motion quickly. However, since solving the TO
for full-body dynamics in real-time is not applicable due to
the complexity of the problem, we design a gait library and
gait interpolation policy [1],[3] to update the reference at the
beginning of each jump quickly.

The optimization framework in the previous section is
used to generate a gait library consisting of four peri-
odic jumping gaits with jumping distances of D∗step =
{0.6, 0.7, 0.8, 0.9} m. Having this gait library, we then
do gait interpolation to get the desired jumping gait with
an arbitrary step length between these discrete values,
D∗step,i, 1 ≤ i ≤ 4.

In particular, for each nominal step length D∗step,i, 1 ≤
i ≤ 4, the reference trajectory Q∗i = [q; q̇; τ ;f ] is utilized
for linear interpolation. The result trajectory Q for each
random value of step length Dstep ∈ [D∗step,i, D

∗
step,i+1],

is computed as

γ(Dstep) =
Dstep −D∗step,i

D∗step,i+1 −D∗step,i
, (3a)

Q(Dstep) = (1− γ(Dstep))Q
∗
i + γ(Dstep)Q

∗
i+1. (3b)

IV. JUMPING CONTROLLER

In this section, we design a jumping controller to realize
continuous jumps. Our proposed controller combines MPC
and joint PD controller to track the reference trajectory
from the optimization. This combination allows the robot
to achieve smooth jumping transitions and accurate jumping
trajectories on uneven stepping stones.

1) Jumping Controller: Firstly, we revisit a simplified
rigid body dynamics model of quadruped robots in the
vertical plane as follows:

p̈ =

∑2
i=1 fi
m

− g, (4a)

d

dt
(Iω) =

2∑
i=1

ri × fi, (4b)



(a) Case I - Random distance. The stepping stone are randomly placed with step length in the large range from 60cm to 90cm

(b) Case II - Random distance and random height perturbations. The stepping stone are randomly placed with step length in (60 : 90)cm.
The gap heights vary randomly between −6cm to +5cm, which are unknown to the robot

(c) Case III - Random distance and unknown mass. The stepping stones are randomly placed with step length in the range of 60 : 90(cm).
The robot carries a load of 2kg, up to 17% of robot weight, which is unknown to the controller

Fig. 4: Simulation: The robot performs continuous jumps on uneven stepping stones. Video: https://www.youtube.com/watch?v=jBGY1K1UbhM

where p is the CoM position in the world frame; ri =
[rix; riz] and fi = [fix; fiz] denotes the position of contact
point relatively to CoM, and contact force of foot ith respec-
tively in the world frame; ω = θ̇k is angular velocity of the
body; θ is a pitch angle. Then by define x = [p; θ; ṗ; θ̇, g],
g is gravity, f = [f1;f2], the dynamics is rewritten as:

ẋ(t) = Acx(t) +Bc (r1, . . . , rn)f(t), (5)

where Ac =

03×3 I3×3 03×1
03×3 03×3 eg
01×3 01×3 0

, eg =
[
0 −1 0

]>
,

Bc =


03×2 03×2
I2×2/m I2×2/m
I−1[r1]× I−1[r2]×
01×2 01×2

, [ri]× = [−riz, rix].

which will then be formulated in discrete time:

xk+1 = Akxk +Bkfk. (6)

The works in [16] and [18] initially propose a MPC to
keep the robot balanced while performing locomotion with
the short flight time. This paper, on the other hand, designs
a controller specifically for jumping to control a wide range
of the body orientation and to achieve long flight phases.

Highly agile jumping motions on stepping stones require
accurate tracking of the jumping reference with a wide range
of body motion. An error in body position or orientation
before taking off usually ends up with a significant deviation
from reference upon landing. In order to ensure a high

tracking performance for the jumping motion in real time, we
combine MPC and a joint PD control to follow the reference
trajectory generated from Section III.

In particular, the MPC problem is formulated as a
quadratic programming (QP) with moving horizons to solve
for optimal GRFs, which minimizes the weighted tracking
errors of the body’s trajectory reference and the GRF refer-
ence obtained from Section III:

min
t+N−1∑
k=t

‖xk − xd,k‖Pk
+ ‖fk − fd,k‖Qk

, (7a)

s.t. xk+1 = Akxk +Bkfk,∀k = t, ..., t+N − 1 (7b)

cmink ≤ Ckxk ≤ cmaxk ,∀k = t, ..., t+N − 1 (7c)
Dkxk = 0,∀k = t, ..., t+N − 1 (7d)

where a contact force reference fd is obtained from trajec-
tory optimization in Section III; Pk and Qk are the weighted
diagonal matrices at step k; N is a number of predicted
horizon. The equation (7c) captures constraints related to
friction cone and force limits, while the equation (7d) is rep-
resented for the shifting contact schedule. For the reference
in moving horizons, when a predicted horizon exceeds the
take off time (at the end of rear-leg contact), the reference
of states and contact forces at this horizon takes the values
at the take-off time. To improve the tracking performance,
in the cost function (7), we also enforce dominant weights
regarding to states and contact force components at the last
horizon compared to other horizons. This allows us to put

https://www.youtube.com/watch?v=jBGY1K1UbhM


more weights on minimizing the errors before taking off.
The above problem (7) can be reformulated as a dense

form of constrained QP as follows:

min
1

2
F Tt HtFt + F Tt bt, (8a)

s.t. cmint ≤ CtFt ≤ cmaxt , (8b)

where

Ht = 2BT
qp,tSBqp,t + 2α (9a)

bt = 2BT
qp,tS(Aqp,txt −Xt,d)− 2αTFt,d (9b)

Here, Aqp,t and Bqp,t are constructed from Ak and Bk

(∀k = t, ..., t+N−1), xt is a current state at time step t, and
{cmint , cmaxt } represents inequality constraints on the GRF.
Xt,d and Ft,d are the reference of states and GRF, which
concatenate references in the considered moving horizons
from t to t + N − 1. These references are obtained from
trajectory optimization in Section III. The readers can refer
[19] for more details on how to formulate the MPC as the
constrained QP in general.

The solution f∗MPC that takes the value at the first horizon
of solution Ft in (8) will be utilized to compensate for the
errors between actual and reference jumping:

∆τMPC = J(qj)
>R>[f∗MPC − fd], (10)

where J(qj) is the foot Jacobian at the configuration qj ;
R is the rotation matrix which transforms from body to
world frame. The compensation ∆τMPC will be combined
with the joint PD controller, leveraging the reference of the
torque τd and joint profiles {qJ,d, q̇J,d} obtained from the
trajectory optimization in Section III. This results in a feed
forward torque applying to the robot actuators:

τff = ∆τMPC + τd + τ jointPD , (11)

τ jointPD = Kp,j(qJ,d − qJ) +Kd,J(q̇J,d − q̇J) (12)

This combination allows us to achieve accurate tracking
performance and robust to uncertainties, which will be
validated in Section V.

2) Jumping Transitions: Jumping transitions play a cru-
cial role in guaranteeing successful continuous jumps on
stepping stones. To achieve high efficiency jumping transi-
tions, we combine the MPC-based jumping controller with
a Cartesian PD controller for foot placement, which is
illustrated in Fig. 2. The jumping controller applies the feed
forward torque to the contact legs, and the torque value
is computed as (11). For the swing legs, we utilize the
Cartesian PD controller for accurate foot placement on the
next stepping stones as follows

τCartPD = J(qj)
>R>[Kp(pf,d − pd) +Kd(vf,d − vf )],

where Kp and Kd are diagonal matrices of proportional
and derivative gains; pf and vf,d are actual foot position
and velocity measured in the world frame; and the target
foot position pf,d on the next stepping stone in world frame
is set at the beginning of a pre-landing configuration.

TABLE I: A1 Robot Parameters

Parameter Symbol Value Units
Max Torque τmax 33.5 Nm

Max Joint Speed q̇max 21 rad/s

Total robot mass m 12 kg

Trunk dimension l, w, h 0.361, 0.194, 0.114 m

Trunk Inertia Ixx, Iyy , Izz 0.017, 0.056, 0.065 kg.m2

Leg Link Lengths l1, l2 0.2 m

We reapply MPC for the stance legs when that legs impact
the ground (end of the flight phase). Note that the time when
the other leg touches the ground is usually earlier or later
than expected, causing a mismatch between the predicted
contact schedule and actual contact states. For jumping on
stepping stones with a very limited contact time, this issue
accumulates errors along with the motions, affecting the
accuracy of the next jumping. To improve the accuracy, we
enforce the availability of actual contact states in the MPC.
In particular, at the time all legs have impact with the ground,
we recompute the MPC started with double contact.

V. RESULTS

A. Numerical Simulation

We validate the effectiveness of our framework on the A1
robot model with parameters and its actuation capabilities
summarized in Table I. We use the open-source optimization
toolbox Casadi to set up and solve the trajectory optimization
for periodic jumps, then design simulation platforms based
on Matlab-Simscape. Three different simulation cases are
considered for jumping on stepping stones as follows:
• Case I- Random distance (Fig.4a): The distance be-

tween two adjacent stepping stones is selected as:

Ld = [67, 78, 71, 79, 63, 77, 70, 86, 67, 80](cm)

• Case II- Random distance and random height pertur-
bations (Fig.4b):

Ld = [67, 78, 71, 79, 63, 77, 70, 86, 67, 80](cm),

hd = [−4, 0, 5, 3, 0,−6, 4, 0,−5, 0](cm).

The difference of the height of the stones hd is mea-
sured relatively to the original height of the first stone.
Note that the height perturbation is unknown to the
robot. We also use the same distances between stepping
stones as in the Case I to validate the robustness of our
framework on the unknown structure of the terrain.

• Case III- Carrying unknown load (Fig.4c). The robot
carries a load of 2kg, about 17% of the robot’s weight,
which is unknown to the controllers. The stepping stone
distances are also set up similarly to the Case I to show
the efficiency of our controllers in compensating for the
unknown disturbance introduced to the robot model.

Fig. 5 shows the tracking performance of our design
controllers for Case I. Our controllers ensure the high
accuracy tracking of body orientation and position during
contact phases, as well as enable the robot to traverse over
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Fig. 5: Case I- Tracking performance of the jumping controller The A1
robot successively jumps on stepping stones with a stochastic gap distance.
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Fig. 6: Case II- Tracking performance of the jumping controller. The
robot jumps on the stepping stones with random distance and unknown
random height perturbations.

stepping stones at high accuracy. We believe that our work is
the first that successfully demonstrates continuous jumping
on stepping stones for the quadruped robots.

For Case II, Fig.6 shows that even with unknown fluctua-
tion in the height of stepping stone, our controller is still able
to track the orientation reference and guarantee successful
jumps. Fig.7 and Fig.8 show that the torques satisfy the
actuation limits, and the outputs of the MPC are within
friction cone limits.

Note that for Case II & III, we utilize the same controller
parameters as case I to validate the robustness of our frame-
work to unknown disturbance. Fig.9 shows our controller
is capable of tracking the references, ensuring continuous
jumping on stepping stones with unknown carrying mass.

B. Experimental Verification

We demonstrate experiments to verify the robustness of
our jumping controller for a single jump. The following
experiments aim to show the robustness of our controller
to jumping from an uneven platform with unknown height
perturbation.
• Baseline experiment (see Fig.10a): The robot stands

up and jumps forward 60cm from a predefined initial
configuration.

• Experimental comparisons (see Fig.10b, 10c): We con-
sider a perturbation to the initial configuration (e.g.
a box under the front feet), which is unknown to
controllers.
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Fig. 7: Case II- Torque profile. The actuators’ torques are within the limits
during consecutively jumping motions.
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Fig. 9: Case III- Tracking performance of our controllers with unknown
mass. The robot continuously jumps on the stepping stones while carrying
a mass of 2(kg), which is unknown to the controllers

For the baseline experiment, the reference for jumping is
computed from trajectory optimization, then tracked by the
joint PD controller in [11],[12].

For the experimental comparisons, we put a box of 5cm
in height under the front feet. The height of the box is
about 33% of the initial height of the robot. We compare
the performance of our proposed controller with the joint
PD controller based on actual jumping distances to see if
the rear legs traverse over the box and reach the target.

As we can see in Fig. 10b, simply utilizing the same joint
PD controller as the baseline experiment causes the jumping
to fail. This is due to the fact that the joint PD controller
works only in the joint space, and there is no control
feedback for body orientation and positions. Therefore, it can
not compensate for the errors of the jumping trajectory when
adding the unknown disturbance. As a result, it accumulates
significant errors before taking off, and can only jump a very



(a) Baseline experiment (b) Joint PD controller (c) Our controller

Fig. 10: Experiments: Motion snapshots from jumping forward with (a) baseline experiment: flat ground + joint PD controller , (b) uneven platform +
joint PD controller, and (c) uneven platform + our controller. Video available: https://www.youtube.com/watch?v=jBGY1K1UbhM

short distance. On the other hand, our controller combines
MPC and a high frequency PD controller at the joint level,
considering real time feedback from body orientation and
body position, as well as jumping references from optimiza-
tion. This combination guarantees high tracking performance
while compensating for the unknown disturbance, as illus-
trated in Fig. 10c.

VI. CONCLUSION AND FUTURE WORK

We have presented a framework that combines full-
body trajectory optimization and model predictive control
to achieve robust and continuous jumping on uneven step-
ping stones. Our proposed framework is validated under
various conditions: random distance of stepping stones, and
its combination with unknown height perturbations of the
platform and unknown mass that the robot is carrying. In
addition, we also conduct hardware experiments to illustrate
the robustness of our controller for a single jump. Our future
work will realize the continuous jumping on stepping stones
on the robot hardware.
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