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Second order sliding mode twisting controller tuning based on two-level
optimization process

Dominique Monnet1, Alexandre Goldsztejn2, Franck Plestan3 and Charles Audet1

Abstract— State-of-the-art finite time convergence conditions
for the sliding mode controllers rely on bounds on perturbation
terms. These bounds are often over-approximated, leading to
conservative designs, i.e., high gains that amplify undesired
behaviors such as chattering. This paper proposes to evaluate
precisely the bounds on the perturbation terms to avoid conser-
vative designs by using branch-and-bound algorithms dedicated
to nonlinear programming. This leads to non-linear, a priori
non-convex, non-differentiable constraints on the controller’s
gains, which is shown to be solvable using a modern black-
box optimization algorithm. We propose a new methodology
employing branch-and-bound and blackbox solvers to generate
gains as small as possible ensuring finite time convergence for
the twisting algorithm. It is investigated using both a classical
and a recently proposed sufficient conditions for finite time
convergence. The applicability of the approach is illustrated
over a numerical example.

I. INTRODUCTION

One motivation to the development of second order sliding
mode (2-SM) techniques has been the reduction of the
chattering effect [2], [8], [5] inherent to the classical first
order techniques [16]. Several 2-SM techniques have been
proposed [7]. The convergence proofs to the sliding surface
rely on bounds on the perturbation terms appearing in the
second time derivative of the sliding variable, whether these
proofs rely on the majorant curve [15] or Lyapunov the-
ory [10], [11]. These bounds are generally difficult to obtain,
and over-approximating them leads to conservative designs,
i.e., large magnitude of the control input that amplifies the
chattering effect. As a consequence, the control law is often
tuned by simulation rather than derived from the convergence
conditions. Although adaptive gain strategies allow to reduce
the chattering, investigating sharper theoretical bounds and
their usage through numerical optimization is of central
importance.

In this paper, the classical 2-SM twisting controller is
considered. The aim is to focus on the existing convergence
conditions, and to use optimization tools to precisely evaluate
the bounds they involve. Using the conditions to tune the
twisting controller’s gains, the convergence is guaranteed
(contrary to a simulation-based tuning), and the convergence
conditions are as less conservative as they can be.
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This approach follows previous works that studied
optimization-based tuning for first order sliding mode [12],
where SIP solvers were used to solve simple instances of
first order sliding mode. Such solvers turn out to be unable
to solve larger instances of second order SM. We propose a
mixed local/global approach in this paper, where a branch-
and-bound algorithm dedicated to nonlinear optimization is
used to solve globally the finite time convergence conditions,
and a local blackbox algorithm [1] is used to optimize gains
subject to the blackbox constraints.

The paper is organized as follow. Section II states the state-
of-the-art convergence conditions of the twisting controller,
as well as new less conservative conditions. Section III
provides notions on global optimization tools, and how
to employ them to compute the bounds involved in the
convergence conditions. Section IV illustrates the proposed
optimization-based approach on an example, and Section V
concludes the paper and proposes directions for future work.

II. TWISTING CONVERGENCE CONDITIONS

Let us consider a dynamical system given by

ẋ = f(p(t), x, u) (1)

where t ≥ 0 is the time variable, p is a perturbation input,
x ∈ Rn the state, u ∈ R the control input. We assume that the
sliding variable σ(p(t), x) depends on perturbations and state
variables, as well as its first and second time derivative. We
further assume that σ̈(p(t), x) is affine in the control input
and is assumed to be linear in the control input,

σ̈ = h(p(t), x) + g(p(t), x)u. (2)

p is therefore a vector that includes external input signals
such as the reference signal, perturbations, etc. and their time
derivatives. It is assumed that σ, σ̇, h and g have known
explicit expressions depending on p and x. This assumption
is needed to employ optimization tools. Several algorithms
have been proposed to ensure the convergence of the system
on the sliding surface [7]. This paper focuses on the twisting
algorithm, whose control structure is given by ([15])

u = −r1 sign(σ)− r2 sign(σ̇). (3)

We assume in the following that finite bounds P are known
on p(t),

p(t) ∈ P, ∀t ≥ 0. (4)

This realistic assumption is required to allow to employ
numerical solvers to compute bounds on the right-hand side
of Equation (2). These bounds are also needed to compute



the gains (r1, r2) using the convergence conditions stated in
Subsection II-A.

Since the control signal is discontinuous and not defined
for σ = 0 and σ̇ = 0, the solution of (1) is understood in
the Filippov sense [4].

The following two subsections present conditions that
guarantee the convergence of both σ and σ̇ to zero in finite
time, hence ensuring the expected sliding motion. The first
conditions are classical, the second ones have been recently
proposed by the authors in [9], where the conservatism
is thoroughly discussed and illustrated. All convergence
conditions assume the state is maintained in a given compact
X ⊆ Rn. This is another condition to employ optimization
tools. Note that in the literature, this condition is implicit
whenever bounds on g and h are assumed and they are not
bounded over the state space.

A. State-of-the-art convergence conditions
The classical convergence conditions for the twisting

controller rely on bounds C, k,K ≥ 0 on h(p(t), x) and
g(p(t), x) that hold for all t ≥ 0 and x ∈ X . These bounds
are defined such that

h(p(t), x) ∈ [−C,C], ∀t ≥ 0, ∀x ∈ X,
g(p(t), x) ∈ [k,K], ∀t ≥ 0, ∀x ∈ X.

(5)

The convergence conditions based on the bounds (5) are
given by Theorem 1 [15, pp.148]

Theorem 1: Consider System (2) with u defined by (3).
If r1 > r2 > 0,

C < k(r1 − r2), (6)

and
(r1 − r2)K + C < (r1 + r2)k − C, (7)

then σ and σ̇ converge to 0 in finite time.

The convergence conditions of Theorem 1 present the ad-
vantage to be easy to use in order to tune the gains r1 and
r2, since these conditions are expressed as linear inequalities
on r1 and r2.

B. Less conservative convergence conditions
Recent work [9] has proposed new convergence conditions

for the twisting algorithm that are less conservative than the
conditions of Theorem 1. That is, these new conditions define
larger sets for the gains (r1, r2) ensuring the finite time
convergence. Therefore, one is allowed to choose smaller
gains limiting chattering effect while ensuring finite time
convergence. The new conditions depend on the bounds on
σ̈ in the four quadrants Σi in the space (σ, σ̇) defined as,

Σ1 = {(σ, σ̇) |σ > 0 and σ̇ > 0},
Σ2 = {(σ, σ̇) |σ > 0 and σ̇ < 0},
Σ3 = {(σ, σ̇) |σ < 0 and σ̇ < 0},
Σ4 = {(σ, σ̇) |σ < 0 and σ̇ > 0}.

(8)

The sub-spaces in X corresponding to these quadrants are
denoted Xi, for i ∈ 1, 2, 3, 4,

Xi(p(t)) = {x ∈ X | (σ(p(t), x), σ̇(p(t), x)) ∈ Σi}. (9)

Notice that, since σ and σ̇ depends on p(t), the sub-spaces Xi

also depend on p(t). The bounds on σ̈ in the four quadrants
thus satisfy,

σ̈(p(t), x) ∈ [mi,Mi], ∀t ≥ 0, ∀x ∈ Xi(p(t)). (10)

Theorem 2 [9] states the finite time convergence based on
the bounds (10).

Theorem 2: Consider System (2) with u defined by (3).
If the bounds (10) hold,

M1, M2 < 0, (11)

m3, m4 > 0, (12)

and
M1m3 < m2M4, (13)

then σ and σ̇ converge to zero in finite time.
Remark 1: The proof of Theorem 1 relies on the study of

the majorant curve that is obtained from the bounds on σ̈
[15, pp. 148]. With the bounds C, k, K on h and g, and the
twisting controller (3), one derives the differential inclusion,

σ̈ ∈ [−C +K(−r1 − r2), C + k(−r1 − r2)] in Σ1,
σ̈ ∈ [−C +K(−r1 + r2), C + k(−r1 + r2)] in Σ2,
σ̈ ∈ [−C + k(r1 + r2), C +K(r1 + r2)] in Σ3,
σ̈ ∈ [−C + k(r1 − r2), C +K(r1 − r2)] in Σ4.

(14)
The conditions of Theorem 2 can be retrieved by following
the same reasoning than the proof of Theorem 1 by replac-
ing the bounds (14) by the generic bounds (10). One can
remark that under the condition r1 > r2 > 0 necessary in
Theorem 1, injecting the bounds (14) in Conditions (11) and
(12) of Theorem 2 leads to Condition (6) of Theorem 1, with
the additional constraint C < K(r1 + r2) which is ignored
since it is necessarily satisfied if (6) holds. Condition (13)
becomes Condition (7) in Theorem 1.

Remark 2: It is proved in [9] that the conditions of Theo-
rem 2 are less conservative than the conditions of Theorem 1
provided that the same bounding process is used in both
cases. This conservatism is illustrated in Section IV.

In the general case, it is not possible to obtain explicitly the
dependancy with respect to r1 and r2 for the bounds (10).
However, since σ̈ has an explicit expression, it is possible
to employ numerical solvers to compute such bounds in a
guaranteed way.

III. NUMERICAL OPTIMIZATION FOR GAINS
COMPUTATION

This section proposes a two-level optimization process to
compute the optimal gains r1, r2 with respect to a given
performance criterion, for example minimizing r1 + r2. The
lower level of the process consists in computing the bounds
(10) in a guaranteed way. Tightest bounds are aimed to be
computed, and since h, g and σ̈ are continuous nonlinear



non-convex functions of the states and the perturbations,
global solvers must be employed to obtain numerical guar-
anteed bounds. The upper level of the optimization process
consists in exploring the space (r1, r2) to find the best gains,
that is, the gains that minimize a given performance criterion
such that the bounds computed at the lower level respect the
convergence conditions. In [13], a similar two-level approach
for 1-SM tuning is proposed, the upper level being solve
with a global solver. However, the underlying optimization
problem of the upper level for tuning the twisting controller
is more difficult since it involves a greater number of
constraints to ensure the convergence, more complex expres-
sions, and more variables. This makes a global approach
intractable because of the high complexity of the global
optimization (GO) algorithms. That is why we chose here
a novel approach by employing an algorithm that converges
locally and not globally, but has lower complexity and can
be employed for tuning the twisting controller’s gains, i.e.,
solving the upper problem.

With

A. Overall optimal gain design

The gains r1 and r2 are chosen by optimizing a per-
formance index f(r1, r2) subject to the requirement that
σ(p(t)) and σ̇(p(t)) converge to 0 in finite time. Having
small gains is a typical requirement, e.g., f(r) = r1 + r2.
The finite time convergence requirement is enforced using
the sufficient conditions presented in the previous section.
Although Theorem 2 is less conservative than Theorem 1,
its bounds do not depend linearly on the gains and require
additional work1: on the one hand, once the bounds C, k,K
are computed, Theorem 1 provides linear inequalities on the
values of r1 and r2 that enforce finite time convergence.
The performance index can be optimized inside these linear
inequalities. On the other hand, the bounds mi and Mi

used in Theorem 2 depend non-linearly in r1 and r2, and
cannot be expressed explicitly as functions of r1 and r2. It
follows that the conditions of Theorem 2 cannot be expressed
explicitly, and checking that a pair (r1, r2) enforces finite-
time convergence requires to employ a global solver to
compute mi and Mi. Then, it is possible to check if the
convergence conditions of Theorem 2 are ensured. This
corresponds to solving the lower problem mentioned above.

If one can solve the lower problem, it is possible to
discretize the search for r1 and r2, and for each sample
check if the conditions of Theorem 2 are satisfied. This is
done in Section IV but only to characterize the set of gains
satisfying the conditions of Theorem 2 and to illustrate the
conservatism of the conditions of Theorem 1 (see Figure 2).

In order to generate gains that are optimal with respect
to f(r1, r2), we propose to employ a Derivative Free Opti-
mization (DFO) algorithm. The most common optimization
algorithms relies on the derivative of f and the constraints
given by the convergence conditions to compute (r1, r2)
that minimizes f . However, in our case, we do not know

1This additional work is worthwhile in an optimal design process.

explicit expressions for mi and Mi, as they are the result
of the lower level optimization process, and therefore are
not differentiable. That is why we need to employ a DFO
algorithm that can solve this class of problems. The DFO
algorithm chooses iteratively potential candidates in the
space (r1, r2), provides it to the lower level which computes
the bounds mi, Mi and returns them to the upper level as
illustrated in Figure 1. From the values of f and mi, Mi

at the provided candidate, the DFO chooses a new potential
best candidate at the next iteration and eventually converges
to a locally optimal pair of gains.

The two-level approach we propose generates a pair
(r1, r2) which is guaranteed to ensure finite time convergence
of σ and σ̇ to zero. The pair is locally optimal with respect
to f in the set of gains ensuring finite time convergence.

B. Lower level: computing optimal bounds with global op-
timization

The bounds (5) and (10) have the form b(t, x) ∈ [l, u],
where b is alternatively g, h, or σ̈. The bounds l and u are
to be computed so that b(p(t), x) ∈ [l, u] holds for all t ≥ 0
and all x ∈ X(p(t)). When b is either g or h in (5) then
the set X(p(t)) does not depend on t, but we discuss here
this more general case only. One can remark that, the tighter
are the computed bounds the larger is set of gains proved to
enforce finite time convergence by theorem. Therefore, we
aim at computing the optimal bounds

l∗ = min
t≥0

x∈X(p(t))

b(p(t), x), u∗ = max
t≥0

x∈X(p(t))

b(p(t), x).

(15)
Local minima or maxima cannot be used because inequalities
would not be guaranteed to hold. Therefore, deterministic
global optimization such as branch-and-bound algorithms are
required to maintain a global lower bound (respectively an
upper bound) that converges to the minimum (respectively
to the maximum).

The dependency with respect to time in the optimization
problems (15) causes difficulties. The first one is that explicit
expressions with respect to time of perturbations are unavail-
able, but only bounds on perturbations are known. The sec-
ond one is that t ∈ [0,∞) is unbounded while branch-and-
bound algorithms require bounded feasible search spaces. As
explained in Section I, we assume that all time dependencies
arise through some unknown function p(t) bounded in P
holds for all t ≥ 0. Theorem 3 allows solving problems
involving a variable p ∈ P instead of t ≥ 0.

Theorem 3: Define

l+ = min
p∈P

x∈X(p)

b(p, x), u+ = max
p∈P

x∈X(p)

b(p, x).
(16)

Then [l+, u+] ⊇ [l∗, u∗].
Proof: Let t∗ ≥ 0 x∗ ∈ X(t∗) be minimizers of (15),

i.e., b(p(t∗), x∗) ≤ 0. Then p∗ ∈ P , and x∗ ∈ X(p(t∗)) =
X(p∗) therefore p∗ and x∗ are feasible for the problem (16),
which implies l+ ≤ l∗. A symmetric reasoning shows that
u+ ≥ u∗.



Note that the bounds [l+, u+] are conservative with respect
to [l∗, u∗] because the impact of time correlation on b(p(t))
is lost when only considering the information p(t) ∈ P . One
cannot expect better if no accurate knowledge on p(t) is
known.

Off-the-shelf global solvers are available [14], [3], and
discussing in detail how they are implemented is beyond the
scope of this paper.

In the end, global solvers enable to compute guaranteed
lower (resp. upper) bounds on l+ (resp. u+) as defined in
Theorem 3 within a given relative precision, and by extension
guaranteed bounds on the optimal bounds l∗ and u∗ as stated
by Theorem 3. One can obtain the bounds C, k, K, and from
the conditions of Theorem 1 define a set of gains (r1,r2)
by linear inequalities. Furthermore, provided numerical value
for (r1, r2), one can compute guaranteed bounds mi, Mi on
σ̈, and thus concluding if the conditions of Theorem 2 are
satisfied.

C. Upper level: optimizing the gains

The upper problem consist in finding r1, r2 that minimize
a performance criterion f(r1, r2), such that (r1, r2) satisfies
the convergence constraints of Theorem 2. We recall that
the convergence constraints are nonlinear, non convex, and
non-differentiable and do not have explicit expressions. Such
problems can be solved by DFO algorithms, that do not need
to have access to the derivative of f or the constraints to
converge to a local solution. In this paper, we propose to
use the NOMAD solver [6] to solve the upper level prob-
lem. NOMAD has been developed to solve blackbox (BB)
problems, meaning that the evaluation of the performance
criterion f and the constraints is the result of some BB
time-consuming process, for example simulations [?]. In our
case, the BB process is the lower problem, which takes as
input a pair (r1, r2) and returns the value of the bounds
by employing a GO solver as explained in the previous
subsection. From an initial pair (r01, r

0
2), NOMAD explore

the space of gains by repeatedly choosing points in that space
and calling the GO solver to ensure that this points respect
the convergence constraint, and eventually converges to a
local optimum (r∗1 , r

∗
2). Figure 1 schematizes the two-levels

optimization process.
NOMAD implements a Mesh Adaptive Direct Search

(MADS) algorithm. Devising on the principle of this kind of
algorithm is beyond the scope of this paper, but the interested
reader can refer to [?] for the latest development in MADS.

IV. NUMERICAL EXAMPLE

Consider the pendulum example adapted from [7]. The
system is a rigid pendulum loaded with a mass m tracking
a reference signal θc(t), with a varying arm length R(t)
to model a perturbation. The states of the pendulum are
x = (θ, θ̇), the angle of the arm and its angular velocity.
The state θ = 0 corresponds to the vertical position (down).
We suppose that an actuator provides a torque u considered
as the control input. The system dynamic is given by the

Input:
(r01, r

0
2)

Output:
(r∗1 , r

∗
2)

Upper Level
solver: NOMAD

min
r1,r2

f(r1, r2)

M1(r1, r2) < 0
M2(r1, r2) < 0
m3(r1, r2) > 0
m4(r1, r2) > 0
M1m3 −M4m2 < 0

Lower Level (Black Box)
slover: Branch-and-Bound

mi = min
p∈P

x∈Xi(p)

σ̈(r1, r2, p, x)

Mi = max
p∈P

x∈Xi(p)

σ̈(r1, r2, p, x)

(r1, r2)
f(r1, r2)
Mi, mi

Fig. 1. Two-levels optimization process for optimizing the twisting
controller gains.

differential equation

θ̈ = −2
Ṙ

R
θ̇ − g

1

R
sin(θ) +

1

mR2
u. (17)

We take the mass m = 1 and g = 9.81.
The reference signal is given by

θc(t) = 0.5 sin(0.5t) + 0.5 cos(0.5t), (18)

and the perturbation is modeled by

R(t) = 0.8 + 0.1 sin(2t) + 0.2 cos(t). (19)

The sliding variable is

σ = θ − θc. (20)

It follows that
σ̇ = θ̇ − θ̇c (21)

and
σ̈ = h(t, x) + g(t, x)u (22)

with

g(p, x) =
1

mR2
, h(p, x) = −2

Ṙ

R
θ̇ − 9.81

1

R
sin(θ)− θ̈c.

(23)
The vector of perturbations is

p(t) = (R(t), Ṙ(t), θc(t), θ̇c(t), θ̈c(t)). (24)

From the expressions of R(t) and θc(t), we derive the bounds

p(t) ∈ P = [0.5, 1.1]× [−0.4, 0.4]× [−1, 1]
×[−0.5, 0.5]× [−0.25, 0.25].

(25)

We propose now to generate the set of controllers satis-
fying the convergence conditions of Theorem 1 and 2. We
limit the study to x ∈ [−π, π]× [−4, 4].

In the following, all the problems are solved with the
global solver implemented in the C++ library IBEX [3]
with a relative precision ϵ = 0.01. We obtain the bounds
C = 26.65, k = 0.82 and K = 4.04. The resulting



set of feasible values of (r1, r2) with respect to the linear
constraints of Theorem 1 is displayed by the gray set in
Figure 2.

We propose to generate a set of feasible gains from the
conditions of Theorem 2 for illustrative comparison with the
conditions of Theorem 1. To do so, we discretize the search
space (r1, r2), and for every point we compute the optimal
bounds mi, Mi, as explained in Subsection III-B and verify if
the conditions of Theorem 2 are satisfied. The discretization
points are r1 = {1, 3, 5, ...199}, r2 = {1, 3, 5, ...199}
and generate a total number of 10,000 points. The points
that satisfy the convergence conditions of Theorem 2 are
represented by the dots in Figure 2. Processing these 10,000
points takes approximately 70 minutes on a standard laptop.

Fig. 2. Sets of gains (r1, r2) satisfying the convergence conditions
of Theorem 1 (classical conditions) and the ones of Theorem 2 (less
conservative) tested over a grid of 10,000 points. The star represents the
solution obtained with the proposed Black-Box optimization process.

In Figure 2, the set of feasible gains described by the
conditions of Theorem 2 is larger than the one described by
the conditions of the classical conditions provided by Theo-
rem 1. However, a grid search procedure is very inefficient
to locate the point that minimizes r1 + r2.

We now focus on reducing the chattering effect by em-
ploying the two-level optimization process described in Sec-
tion III to compute a pair of gains (r1, r2) that minimizes the
function f(r1, r2) = r1+r2, corresponding to the maximum
amplitude of the control input. We select as initial point
(r01, r

0
2) for the NOMAD solver the point that minimizes

f and enforces the convergence condition of Theorem 1.
This point (r01, r

0
2) = (129, 96.5) corresponds to the leftmost

point of the gray triangle in Figure 2. We run NOMAD
with the default parameters and set the maximum number of
blackbox evaluations, i.e., solving the lower level problem, to
500. In 8 minutes, NOMAD produces the point (47.1, 36.6)
represented by the star in Figure 2.

The simulations of (17) with (3) tuned with these pairs
of gains are performed using an explicit Euler method with
10−5s time step. The control input is updated every 10−2s to
simulate the sampling time of a real system. The simulation
results are displayed in Figure 3. The simulations show

that tuning the controller’s gains using the new conditions
decrease the chattering effect. Between 2 and 10 seconds
(sliding motion set), the L2 norm of the error (xc − x) is
decreases 59.99 % using the gains obtained with Theorem 2.

To conclude, using the new conditions, although compu-
tationally expensive, provides a larger set of gains than the
classical conditions. Having a larger set provides more free-
dom in choosing the controller’s gains, that can help reducing
the chattering effect while guaranteeing the convergence to
the sliding surface.

V. CONCLUSION

This paper showed how numerical optimization can be
employed for tuning the twisting controller’s gains. Using
a global solver enabled to compute tight bounds on which
are based the convergence conditions, and therefore helped
in reducing the conservatism due to over-approximations of
the bounds. Employing global optimization was necessary
since the bounds are found by solving programs involving
non-linear functions. Blackbox optimization has been used to
solve the higher optimization problem consisting in finding
optimal gains subject to finite time convergence. The study
of a numerical example showed that using such optimization-
based methods with the new convergence conditions of
Theorem 2, despite being computationally expensive, enables
more freedom in choosing controller’s gain while preserving
the finite-time convergence.

Future works include finding even less conservative condi-
tions than the ones of Theorem 2 for the twisting algorithm,
and extending this approach to other 2-SM controllers.
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