

Delft University of Technology

Embedding Adaptive Features in the ArduPilot Control Architecture for Unmanned Aerial
Vehicles

Li, Peng; Liu, Di; Xia, Xin; Baldi, S.

DOI
10.1109/CDC51059.2022.9993292
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the IEEE 61st Conference on Decision and Control (CDC 2022)

Citation (APA)
Li, P., Liu, D., Xia, X., & Baldi, S. (2022). Embedding Adaptive Features in the ArduPilot Control Architecture
for Unmanned Aerial Vehicles. In Proceedings of the IEEE 61st Conference on Decision and Control (CDC
2022) (pp. 3773-3780). IEEE. https://doi.org/10.1109/CDC51059.2022.9993292

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/CDC51059.2022.9993292
https://doi.org/10.1109/CDC51059.2022.9993292

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Embedding Adaptive Features in the ArduPilot Control
Architecture for Unmanned Aerial Vehicles

Peng Li, Di Liu, Xin Xia, and Simone Baldi

Abstract— The operation of Unmanned Aerial Vehicles
(UAVs) is often subject to state-dependent alterations and
unstructured uncertainty factors, such as unmodelled dynamics,
environmental weather disturbances, aerodynamics gradients,
or changes in inertia and mass due to payloads. While a large
number of autopilot solutions have been proposed to operate
UAVs, none of these solutions is able to counteract the effects
of state-dependent and unstructured uncertainties online by
parameter estimation and adaptive control techniques. This
work presents a systematic integration of adaptive control into
ArduPilot, a popular open-source autopilot suite maintained
by a large community of UAV developers. Adaptation features
are embedded in the ArduPilot control structure without
altering the original architecture, to allow users to use the
autopilot suite as usual. Tests show that the proposed adaptive
ArduPilot provides consistent improved performance in several
uncertain flight conditions. The source code of the proposed
adaptive ArduPilot is released at https://github.com/
Friend-Peng/Adaptive-ArduPilot-Autopilot.

I. INTRODUCTION

The possible applications of Unmanned Aerial Vehicles
(UAVs) have been increasing steadily, so that several com-
panies and research centers are experimenting the use of
UAVs in daily-life tasks, e.g. for last-mile delivery of goods,
monitoring of traffic systems, inspection of infrastructures,
and so on. At the same time, realizing these tasks is not
trivial, as the existence of gaps in guidance, navigation, and
control of UAVs is recognized even in simpler tasks [1].
Nowadays, a large number of off-the-shelf autopilots propose
guidance, navigation, and control solutions for UAVs: exam-
ples include PX4, ArduPilot, AscTec, Navio2, among others
[2]–[4]. Despite these autopilots being maintained by large
communities, their capabilities of dealing with uncertainties
in the UAV or in its environment are still limited [5]. These
limits become more substantial as the tasks become more
complex and unstructured.

This project has received funding from European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie
grant agreement No 899987. It was also supported by Natural Science
Foundation of China grant 62073074, by Special Funding for Overseas
grant 6207011901, and by Double Innovation Plan grant 4207012004.
(corresponding authors: S. Baldi and D. Liu).
P. Li is with the School of Cyber Science and Engineering, Southeast
University, Nanjing, China (email: lpeng_2013@163.com)
D. Liu is with School of Computation, Information and Technology, Techni-
cal University of Munich, Germany, and also with School of Cyber Science
and Engineering, Southeast University, China (email: di.liu@tum.de)
X. Xia is with the School of Mathematics, Southeast University, Nanjing,
China (email: xiaxin0209@gmail.com)
S. Baldi is with the School of Cyber Science and Engineering, Southeast
University, Nanjing, China, and also with the Delft Center for Systems and
Control, TU Delft, the Netherlands (email: s.baldi@tudelft.nl)

A typical example of uncertainty is the presence of pay-
loads suspended or attached to the UAV. The operational
parameters of these payloads (payload mass and geometry,
cable length, etc.) are typically unknown in advance. As these
parameters alter the flight dynamics considerably, the autopi-
lot controllers need to minimize the alteration effects. How-
ever, users repeatedly experience that the controllers of off-
the-shelf autopilots are unable to deal with such alterations
and require continuous tuning to perform satisfactorily for
different payloads. In fact, off-the-shelf autopilots presently
rely on linear control techniques that can only cope with
specific nominal flight conditions: changing such conditions
requires to change the gains of the controllers to avoid loss of
performance or even instability [6], [7]. The recent survey on
guidance, navigation, and control for UAVs [1] confirms that
currently there is no autopilot explicitly designed towards
adaptive operation, e.g. capable to elaborate the informa-
tion of the current UAV dynamics and to autonomously
reconfigure the control action by adaptive control techniques
[8], [9]. A systematic use of these techniques would make
the autopilot able to cope with uncertainty and unmodelled
dynamics in the UAV or in its environment. This work
presents a systematic integration of adaptive control into
ArduPilot, a popular off-the-shelf autopilot. The main reason
for considering ArduPilot is its open-source nature: arguably,
ArduPilot and PX4 are the autopilot systems maintained by
the largest communities of UAV developers. ArduPilot and
PX4 autopilots can be interfaced with several open-source
tools, such as the Robot Operating System (ROS) or the
Micro Air Vehicle Link (MAVLink) protocol [10], [11].

Guaranteeing stability and robustness in unstructured flight
scenarios are challenges in adaptive control of UAVs [12],
[13]: even though some proofs exist to show stability against
the adverse effects from parametric uncertainties and external
perturbations, crucial structural assumptions are made on
such uncertainties and perturbations. Most often, uncertain-
ties and perturbations are assumed to be bounded a priori.
However, the authors have shown in previous work that
unmodelled dynamics of UAVs are state-dependent (i.e.
cannot be bounded a priori) and require appropriate adaptive
control designs [14], [15]. The main contribution of the
present work is to show that provably stable adaptive control
tools for state-dependent unstructured uncertainties can be
seamlessly integrated in ArduPilot without modifying its
basic architecture. The integration is presented for fixed-
wing UAVs (i.e. the ArduPlane module of ArduPilot), but
we expect that a similar integration is possible for any aerial
or non-aerial vehicles for which ArduPilot or PX4 have been

2022 IEEE 61st Conference on Decision and Control (CDC)
December 6-9, 2022. Cancún, Mexico

978-1-6654-6761-2/22/$31.00 ©2022 IEEE 3773

20
22

 IE
EE

 6
1s

t C
on

fe
re

nc
e

on
 D

ec
is

io
n

an
d

C
on

tro
l (

C
D

C
) |

 9
78

-1
-6

65
4-

67
61

-2
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

D
C

51
05

9.
20

22
.9

99
32

92

Authorized licensed use limited to: TU Delft Library. Downloaded on January 24,2023 at 12:05:38 UTC from IEEE Xplore. Restrictions apply.

thought, such as spherical robots and hybrid rolling/flying
systems [16], [17]. In fact, all these modules rely on a similar
cascaded linear control architecture, which is amenable to the
proposed adaptive solution. Hence, we argue that the solution
proposed in this work can impact several types of unmanned
vehicles and autonomous systems.

The work is organized as follows: Section II presents
related works on adaptive autopilots; Section III gives infor-
mation about the original open-source ArduPilot architecture;
Section IV shows how adaptation is embedded without
modifying the original architecture. Section V shows with
comparative experiments that the proposed adaptive autopilot
outperforms the original one. Conclusions are in Section VI.

II. RELATED WORK

The importance of adaptation in UAVs is well known in
the literature. Adaptation to unknown payloads was studied
in [18] and implemented in PX4 via a model reference
adaptive control technique. The possibility of using non-
recursive and recursive parameter estimation on-board of
UAVs was examined in [19]. Adaptation of UAVs to different
wind conditions has also been the subject of several studies,
usually relying on compensating for the offset position error
induced by the wind disturbance [20]–[22]. Adaptation in
formations of UAVs was studied in [23], [24]. These and
other works show the importance of overcoming the linear
control implementation of off-the-shelf autopilots.

Software-in-the-loop or hardware-in-the-loop UAV plat-
forms have been proposed based on open-source firmware,
such as ANT-X [25] or RflySim [26], based on PX4 and
MATLAB. These platforms are customizable by the user
for education and research, e.g. the users can directly use
MATLAB to design low-level controllers (attitude, position
control) and high-level applications (decision-making, au-
tonomous flight), with no need to access the C/C++ underly-
ing autopilot code. However, these customizable platforms do
not provide adaptive control features, which require indeed
to access the C/C++ underlying autopilot code.

At the same time, researchers proposed their own autopi-
lot architectures, either based on model predictive control
[27], underactuated Euler-Lagrange dynamics [28] or deep
reinforcement learning [29], among others. These autopilots
require completely different architectures, which cannot op-
erate along with the original off-the-shelf architecture. Adap-
tation methods based on these architectures, such as adaptive
predictive control [30], disturbance observer control based
on Euler-Lagrange dynamics [31], or deep learning based
on neural networks [32], require to substantially modify or
completely replace the original open-source autopilot.

The approach we adopt departs from these philosophies.
We aim to keep the same open-source ArduPilot control
architecture, while making it adaptive. The approaches we
are aware of that are most in line with our philosophy are
[33], [34]. The authors of [33] proposed a two-step procedure
consisting of UAV system identification and Proportional-
Integral-Derivative (PID) gain optimization. The objective is
to find the optimal PID gains for the same original control

TABLE I
MAIN VARIABLES IN ARDUPILOT CONTROL ARCHITECTURE

Name Description
_SPE_est Estimate of specific potential energy
_SKE_est Estimate of specific kinetic energy

_STE Specific total energy
_SEB Specific energy balance

_SPE_dem Demanded specific potential energy
_SKE_dem Demanded specific kinetic energy
_STE_dem Demanded specific total energy
_SEB_dem Demanded specific energy balance

desired_rate_r Desired roll angle rate
achieved_rate_r Measured roll angle rate
desired_rate_p Desired pitch angle rate
achieved_rate_p Measured pitch angle rate

accel_y Measured lateral acceleration
omega_z Measured yaw angle rate

structure of the PX4 flight stack. The authors of [34] imple-
ment a retrospective cost adaptive controller on PX4, paying
attention that the designed controller integrates well with
the existing PX4 firmware. Despite the progress presented
in these works, the uncertainty is a standard parametric
uncertainty and the crucial point of state-dependent unstruc-
tured uncertainty is overlooked there. Indeed, the stability of
adaptive autopilot systems in the presence of complex state-
dependent uncertainties is missing in the current literature.

III. BACKGROUND

Fixed-wing UAVs are complex underactuated systems,
with six degrees-of-freedom (three positions and three ori-
entation angles) controlled via four inputs (aileron, elevator,
rudder, throttle). Complexity arises from the fact that lon-
gitudinal and lateral dynamics are coupled, and that many
parameters and aerodynamics coefficients related to the flight
dynamics are difficult to obtain. To deal with such com-
plexity, virtually all off-the-shelf autopilots use PID control
because of its simplicity and low computational features. The
fixed-wing UAV control architectures in ArduPilot and PX4
(as well in other autopilots) are organized according to two
layers: the Total Energy Control System (TECS) to control
the throttle and pitch demand, and the attitude layer to control
roll, pitch and yaw (cf. Fig. 1). Both layers utilize control
loops closed with PID gains. In the following, we describe
such control architecture. When possible, we use the variable
names as they are found in the ArduPilot source code [2]:
the most important variables are reported in Table I.

A. Total Energy Control System (TECS)

The Total Energy Control System comprises 2 PID loops:
• One PID loop aims to control the throttle demand
_throttle_dem by regulating the total energy of the
UAV (potential energy plus kinetic energy);

• Another PID loop aims to control the pitch demand
_pitch_dem by regulating the energy balance of the
UAV (potential energy minus kinetic energy).

The rationale of the TECS architecture is that the throttle
increases the rate of the total energy of the UAV, whereas
pitching allows the UAV to exchange potential energy into

3774

Authorized licensed use limited to: TU Delft Library. Downloaded on January 24,2023 at 12:05:38 UTC from IEEE Xplore. Restrictions apply.

kinetic energy (and vice versa). By convention, in ArduPilot
the energies are defined as

_SPE_est = _height ∗ GRAVITY_MSS,
_SKE_est = 0.5 ∗ _TAS_state ∗ _TAS_state,

(1)

where _SPE_est and _SKE_est stand for estimates
of specific potential energy and specific kinetic energy,
respectively, being _height the altitude of the UAV,
GRAVITY_MSS the gravity coefficient, and _TAS_state
the UAV true air speed. The UAV mass is not included in the
energy, hence the term "specific energy". The specific total
energy and specific energy balance are defined as

_STE = _SPE_est+ _SKE_est,

_SEB = _SPE_est− _SKE_est,
(2)

Accordingly, one can define a specific total energy de-
mand and specific energy balance demand based on the
demanded altitude _hgt_dem_adj and demanded true air
speed _TAS_dem_adj, which are called like this because
ArduPilot "adjusts" online the demanded altitude and air
speed to respect some safety bounds. We have

_SPE_dem = _hgt_dem_adj ∗ GRAVITY_MSS,
_SKE_dem = 0.5 ∗ _TAS_dem_adj ∗ _TAS_dem_adj,
_STE_dem = _SPE_dem+ _SKE_dem,

_SEB_dem = _SPE_dem− _SKE_dem.
(3)

Algorithms 1 and 2 illustrate the ArduPilot TECS
pseudocode. The complete TECS code can be found
in AP_TECS.cpp in the ArduPilot code. The main
functions to obtain the throttle and pitch demand
are _update_throttle_with_airspeed() and
_update_pitch(). Let us mention that the TECS loops
are not "pure" PID loops: ad-hoc modifications have been
implemented by the ArduPilot developers for improved
performance, such as integrator anti wind-up and output
constraints. For better readability, such modifications are
mentioned in Algorithms 1 and 2 without the full details.

B. Attitude Control

The attitude control aims to control roll, pitch and yaw
dynamics by acting on the corresponding deflection surfaces:
aileron (for roll), elevator (for pitch) and rudder (for yaw).
The three loops are composed of a cascaded PID control
of angular velocity and angle control. All three loops are
affected by the same scaling factor scaler, dependent on
the air speed and representing the fact that the deflection
effect is different at different air speeds.

• The roll controller is a cascaded PID where the inner
loop uses a scaled version of the roll rate error

rate_error_r = (desired_rate_r

− achieved_rate_r) ∗ scaler,
(4)

to control the aileron deflection angle delta_a. Here,

Algorithm 1: ArduPilot architecture for throttle
demand in TECS

Input: Target altitude _hgt_dem_adj and
target airspeed _TAS_dem_adj

Output: Throttle demand _throttle_dem
1 Update energies: Given _STE as in (2),

_STE_demand as in (3) (and their corresponding
rates), calculate the total energy errors:

_STE_error=_STE_demand−_STE,
STEdot_error=STEdot_demand−_STEdot.

2 Feedforward throttle: Calculate

ff_throttle = nomThr

+ STEdot_demand ∗ Scale,

where nomThr is a nominal throttle at cruising
speed and Scale is a parameter to compensate the
drag increase when increasing STEdot_demand.

3 Proportional-Derivative action: Calculate

_throttle_dem = K_p ∗ _STE_error
+ throttle_damp ∗ STEdot_error,

where K_p and throttle_damp are the
proportional and derivative gains.

4 Constrain throttle demand: Calculate

_throttle_dem = _throttle_dem

+ ff_throttle,

then constrain _throttle_dem into the interval
[THRmin,THRmax].

5 Integral action: Calculate the integrator state

_integTHR_state = _integTHR_state

+ _STE_error ∗ K_i ∗ _DT,

where K_i is the integral gain and _DT is the
sampling time. Constrain the integrator state
between appropriate upper and lower limits.

6 Output throttle demand: Calculate

_throttle_dem = _throttle_dem

+ _integTHR_state,

and constrain it again between appropriate upper
and lower limits.

desired_rate_r is defined by the outer loop, via

desired_rate_r =Fr(angle_err_r), (5)

where the function Fr comprises a scaling and a satu-
ration action of the roll angle error angle_err_r.

• The pitch controller is a cascaded PID where the inner
loop uses a scaled version of the pitch rate error

rate_error_p = (desired_rate_p

− achieved_rate_p) ∗ scaler,
(6)

3775

Authorized licensed use limited to: TU Delft Library. Downloaded on January 24,2023 at 12:05:38 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: ArduPilot architecture for pitch
demand in TECS

Input: Target altitude _hgt_dem_adj and
target airspeed _TAS_dem_adj

Output: Pitch demand _pitch_dem
1 Update energies: Given _SEB as in (2),

_SEB_demand as in (3) (and their corresponding
rates), calculate the energy balance errors:

_SEB_error=_SEB_demand−_SEB,
SEBdot_error=SEBdot_demand−_SEBdot.

2 Proportional-Derivative action: Calculate

temp = _SEB_error+ 0.5 ∗ SEBdot_demand
+ SEBdot_error ∗ pitch_damp,

where pitch_damp is the derivative gain.
3 Integral action: Calculate the integrator state

_integSEB_state = _integSEB_state

+ _SEB_error ∗ K_I ∗ _DT,

where K_I is the integral gain and _DT the
sampling time. Then, constrain
_integSEB_state so that the total PID action is
within the saturation range of the pitch demand.

4 Output pitch demand: The final pitch demand is

_pitch_dem = (temp

+ _integSEB_state)/gainInv,

where gainInv is a flare gain. Then constrain
_pitch_dem in the operating range of the pitch.

to control the elevator angle delta_e. Here,
desired_rate_p is defined by the outer loop, via

desired_rate_p =Fp(angle_err_p)

+ rate_offset_p,
(7)

where the function Fp comprises a scaling and a satu-
ration action of the pitch angle error angle_err_p,
while rate_offset_p is a roll compensation term.

• The yaw controller is a cascaded PID where the inner
loop uses the lateral acceleration accel_y to control
the rudder angle delta_r, and the outer loop defines
a desired lateral acceleration by compensating the yaw
angle rate omega_z with a turn coordination calcula-
tion, and by applying a high-pass filter.

Algorithm 3 illustrates the ArduPilot pseudocode for
pitch control (roll control is similar and not repeated).
Algorithm 4 illustrates the ArduPilot pseudocode
for yaw control. The complete attitude control code
can be found in AP_RollController.cpp,
(roll), AP_PitchController.cpp (pitch) and
AP_YawController.cpp (yaw), in the ArduPilot
code. Again, ad-hoc modifications such as integrator anti
wind-up and output constraints are mentioned in Algorithms

Algorithm 3: ArduPilot architecture for pitch control
Input: Pitch demand _pitch_dem from TECS
Output: Elevator deflection angle delta_e

1 Update pitch data error: Calculate the desired pitch
rate desired_rate_p from the pitch angle error
angle_err_p as in (7). Then calculate the pitch
rate error rate_error_p as in (6).

2 Integral action: Calculate:

I_p = I_p+ rate_error_p ∗ ki_p ∗ _DT,

where ki_p is the integral gain and _DT is the
sampling time. Then, apply integrator anti wind-up
when the elevator deflection angle delta_e
reaches its upper or lower limits.

3 Proportional-Derivative action: Calculate:

P_p = desired_rate_p ∗ kp_p,
FF_p = desired_rate_p ∗ kff_p,
D_p = rate_error_p ∗ kd_p,

where kp_p, kff_p and kd_p are proportional,
feedforward and derivative gains, respectively.

4 Elevator deflection: Calculate:

delta_e = P_p+ I_p+ D_p+ FF_p,

then constrain delta_e within the operating range
of the elevator deflection angle.

3 and 4 without the full details. To account for couplings
between roll, pitch and yaw during turning maneuvers, some
compensation terms are designed in terms of feedforward
action in the desired pitch angle (called roll compensation)
in the yaw rate (called turn coordination).

IV. PROPOSED APPROACH

We are now in the position to show the integration of the
original ArduPilot architecture with adaptation features. The
integration relies on four steps (cf. Algorithm 5):

• Select the essential PID terms of each control loop and
collect such terms in a vector xi;

• Define, for each loop, a sliding variable s based on the
aforementioned PID terms;

• Design the control law by augmenting the original PID
action with an adaptive-robust action;

• Design the adaptive law for the adaptive-robust term.
Let e represent an error variable of interest in the UAV (e.g.
total energy error, energy balance error, roll, pitch or yaw
rate error). The first step is to collect the PID terms in

xi = [K_p ∗ e, K_d ∗ e_dot, K_i ∗ e_int]T ,

where e_int denotes the integral error. The sliding variable
s can be defined as

s(t)=K_d∗e_dot(t)+K_p ∗ e(t)+K_i∗e_int(t). (8)

3776

Authorized licensed use limited to: TU Delft Library. Downloaded on January 24,2023 at 12:05:38 UTC from IEEE Xplore. Restrictions apply.

AP_TECS.cpp
_update_throttle_with_airspeed()

_update_throttle_adaptive_robust_rule()

_update_pitch()

_update_pitch_adaptive_robust_rule()

AP_RollController.cpp
_get_rate_out()

_update_roll_adaptive_robust_rule()

AP_PitchController.cpp
_get_rate_out()

_update_pitch_adaptive_robust_rule()

AP_YawController.cpp
get_servo_out()

_update_yaw_adaptive_robust_rule()

_TAS_dem_adj

_hgt_dem_adj UAV

roll_demand

(from L1 controller)

_roll_angle

pitch_demand

_pitch_angle

_yaw_angle

_TAS_state

_height

_throttle_dem

delta_a

delta_e

delta_r

IMU data

Fig. 1. Control architecture in ArduPilot, with proposed modules reported in red color: TECS and attitude (roll, pitch and yaw) control receive feedback
from the UAV via the Inertial Measurement Unit (IMU). TECS and roll controller receive commands (demanded air speed, demanded height and demanded
roll) from the higher navigation layers. TECS provides the demanded pitch to the pitch controller and the demanded throttle to the throttle servo motor.
The attitude controllers provide the demanded deflection angles to the corresponding servo motors.

Algorithm 4: ArduPilot architecture for yaw control
Input: Acceleration accel_y and bank angle

bank_angle from inertial sensors
Output: Rudder deflection angle delta_r

1 Compensation and filtering: Calculate the turn
coordination term rate_offset_y from
bank_angle, then calculate the high-pass filter
input

rate_hp_in = ToDeg(omega_z

− rate_offset_y),

where ToDeg(·) converts radians to degrees. Then,
pass rate_hp_in through the high-pass filter
function to obtain rate_hp_out.

2 Integral action: Calculate the integrator input

integ_in = −_K_I ∗ (_K_A ∗ accel_y
+ rate_hp_out),

where _K_I is the integral gain and _K_A the
acceleration gain. Then, calculate the integrator state

_integrator = _integrator

+ integ_in ∗ delta_time,

where delta_time is the sampling time. Then,
apply integrator anti wind-up when the rudder
deflection angle delta_r reaches its upper or
lower limits.

3 Rudder deflection: Calculate

I_y = _K_D ∗ _integrator ∗ scaler2,

D_y = _K_D ∗ (-rate_hp_out) ∗ scaler2,

_last_out = I_y+ D_y,

delta_r = _last_out,

where _K_D is the derivative gain. Then, constrain
delta_r in the operating range of the rudder.

Accordingly, the augmented control action can be written as

u_aug(t) =

PID action︷ ︸︸ ︷
s(t)+ff(t)+

Adaptive gain︷︸︸︷
ρ(t) ∗

Robust action︷ ︸︸ ︷
sat(s(t)/eps)︸ ︷︷ ︸

Proposed augmentation

, (9)

where we have highlighted the different terms of the control
law. Here, ff represents the feedforward term not included
in s; eps > 0 is a design constant for the saturation function
sat(·), and ρ is an adaptive gain designed as

ρ(t) = κ̂0(t) + κ̂1(t) ∗ ||xi(t)||+ κ̂2(t) ∗ ||xi(t)||2, (10)
˙̂κi(t) = |s(t)| ∗ ||xi(t)||i − alpha ∗ κ̂i(t), (11)

with κ̂i(0) > 0,alpha > 0, i = 0, 1, 2. The stability is
based on adaptive sliding mode theory for the dynamics

ṡ(t) + ks(t) = −u_aug(t) + δ(t), (12)

∥δ(t)∥ ≤ κ∗
0 + κ∗

1∥xi(t)∥+ κ∗
2∥xi(t)∥2, (13)

where δ is an aggregate uncertainty with state dependent
upper bound. Then, κ̂i is interpreted as an estimate of
κ∗
i . Due to space limits, we refer to the previous work of

the authors [15] for stability analysis. The adaptive-robust
action in (9) does not modify the original architecture.
The users can use the autopilot as usual and tune few
additional gains alpha and eps. The approach is easily
encapsulated as few extra lines to the original code (refer to
the overall control architecture sketched in Fig. 1, or to our
released code https://github.com/Friend-Peng/
Adaptive-ArduPilot-Autopilot).

Remark 1: A few modifications in the proposed adaptive
ArduPilot are needed to align it with the ad-hoc modifications
of the original ArduPilot. Most notably, to align the integral
action of the adaptive law (11) with the anti wind-up action
of ArduPilot, we freeze the integration of κi whenever
ArduPilot does so for the integrator state.

Remark 2: The proposed adaptive approach applies also
to PX4. In fact, the PX4 function control_bodyrate()
in ecl_roll_controller.cpp (roll),
ecl_pitch_controller.cpp (pitch) and

3777

Authorized licensed use limited to: TU Delft Library. Downloaded on January 24,2023 at 12:05:38 UTC from IEEE Xplore. Restrictions apply.

Algorithm 5: Integration of proposed adaptation
in ArduPilot

Input: Errors e, e_dot, e_int (for each loop)
Output: Augmented control u_aug (for each loop)

1 Select PID terms: For TECS throttle demand:
xi = [K_p ∗ _STE_error,

throttle_damp ∗ STEdot_error,
_integTHR_state].

For TECS pitch demand:
xi = [_SEB_error/gainInv,

SEBdot_error ∗ pitch_damp/gainInv,
_integSEB_state/gainInv].

For roll control:
xi = [desired_rate_r ∗ kp_r,

rate_error_r ∗ kd_r,
I_r].

For pitch control:
xi = [desired_rate_p ∗ kp_p,

rate_error_p ∗ kd_p,
I_p].

For yaw control:
xi = [_K_D ∗ _integrator ∗ scaler2,

_K_D ∗ (-rate_hp_out) ∗ scaler2].

2 Sliding surface: For each loop, calculate s as in (8)
based on the aforementioned PID terms.

3 Adaptive-robust action: For each loop, update the
adaptive gains in discrete time

kappa_i = kappa_i+ _DT ∗ kappa_i_dot,

where kappa_i_dot is ˙̂κi(t), i = 0, 1, 2 in (11).
Then, calculate the adaptive gain ρ(t) as in (10).

4 Augmented input: For each loop, the feedfoward
terms are as follows. For TECS throttle demand:

ff = ff_throttle.

For TECS pitch demand:

ff = 0.5 ∗ SEBdot_demand/gainInv.

For roll control: ff = FF_r.
For pitch control: ff = FF_p.
For yaw control: ff = 0.
Then, calculate u_aug, the sum of PID and
adaptive-robust action as in (9).

ecl_yaw_controller.cpp (yaw) is analogous
to the attitude control in ArduPilot. Also, the PX4
functions _update_throttle_setpoint() and
_update_pitch_setpoint() in TECS.cpp are
analogous to the total energy control system in Ardupilot.

ArduPlane

MAVProxy

(terminal,

console and map

windows)

UAV Simulator

(SIM_Plane.cpp)
UDP

5502

UDP

5502

UDP

5501

TCP

5760

TCP

5760

scheduler_tasks[]: threads scheduling in

ArduPlane.cpp

Thread: stabilize Thread: update_alt

Attitude control TECS

UDP

5501

Fig. 2. ArduPilot SITL set up: the SITL environment includes ArduPlane,
the flight simulator and MAVProxy. ArduPlane communicates with simula-
tor by UDP protocol (port 5501 and 5502), and by TCP protocol (port 5760)
with MAVProxy. ArduPlane has a scheduler table scheduler_tasks[]
listing all tasks. For compactness, we only show attitude control and TECS
threads: other threads, e.g. for navigation, are not shown.

V. SOFTWARE-IN-THE-LOOP VALIDATION

The performances of the original (non-adaptive) and the
proposed (adaptive) ArduPilot are compared for a full flight
scenario consisting of a take-off phase, waypoint following
and landing. The flight scenario is implemented in the
software-in-the-loop (SITL) environment of ArduPilot [35].
The ArduPilot SITL set up is illustrated in Fig. 2. The SITL
environment allows to interface ArduPlane (responsible for
autopilot and simulator of UAV dynamics) with MAVProxy
(responsible for ground control station, GUI and command
console). With this interfacing step, ArduPlane can receive
the flight mode commands from MAVProxy and send flight
data to MAVProxy. ArduPlane version 4.0.6 was used.
MAVProxy is a popular open-source Ground Control Station
(GCS) suite, where the user can set the flight mode via
command console and set waypoints. During the flight tests,
the UAV takes off and follows an orbit at constant altitude.
We use the commands mode takeoff, arm throttle
and mode rtl (or mode circle) to make the fixed-wing
UAV take off and fly around the orbit. The original ArduPilot
code is used for comparison, with the original PID gains as
set in ArduPilot code [2]. The parameters for the proposed
augmented ArduPilot are listed in Table II.

To evaluate the robustness of the autopilot to uncertainty,
we simulate a change in the mass of the UAV in the
simulator: accordingly, the ArduPlane simulator will change
the inertia corresponding to this mass change. The autopilot
is not aware of the mass change in advance, so that it should
compensate for the resulting alteration effects (e.g. alteration
in altitude and airspeed due to the mass change). The initial
mass of the UAV is 2kg, and the mass can drop to 1kg
(this can represent the UAV dropping or losing the load),

TABLE II
PARAMETER SELECTION FOR THE PROPOSED ADAPTATION

Loop κ̂i(0) alpha eps
pitch 10−5 10 420
roll 10−5 150 1000
yaw 10−5 0.001 0.001
TECS throttle 10−5 0.001 10
TECS pitch 10−5 4 45

3778

Authorized licensed use limited to: TU Delft Library. Downloaded on January 24,2023 at 12:05:38 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100 120
0

10

20

30

A
ir
s
p

e
e

d
 (

m
/s

)

Standard PID autopilot

Proposed adaptive autopilot

Target airspeed

0 20 40 60 80 100 120

time (s)

0

50

100

A
lt
it
u

d
e

 (
m

)

Standard PID autopilot

Proposed adaptive autopilot

Target altitude
25 30 35

96
98

100 70 80 90 100

98

100

Mass change

Mass change

Converge faster

Fig. 3. Mass change 2.0kg → 1.0kg while orbiting: comparison of airspeed
and altitude for original and proposed ArduPilot. The proposed solution not
only enables the UAV to reach faster the target altitude and target airspeed,
but it also exhibits much smaller altitude drop with faster recovery after
mass change.

0 20 40 60 80 100 120
0

10

20

30

A
ir
s
p

e
e

d
 (

m
/s

)

Standard PID autopilot

Proposed adaptive autopilot

Target airspeed

0 20 40 60 80 100 120
0

50

100

A
lt
it
u

d
e

 (
m

)

Standard PID autopilot

Proposed adaptive autopilot

Target altitude
25 30 35

96
98

100 70 80 90 100

99
100
101

Mass change

Mass change

Converge faster

Fig. 4. Mass change 2.0kg → 4.0kg while orbiting: comparison of airspeed
and altitude for original and proposed ArduPilot. The proposed solution not
only enables the UAV to reach faster the target altitude and target airspeed,
but it also exhibits much smaller altitude drop with faster recovery after
mass change.

or increase to 4kg (this can represent the UAV catching an
additional load via some net or clamping system).

To evaluate the performance, the tracking error cost is
calculated for the 5 ArduPilot loops. The cost of the original

TABLE III
TRACKING ERROR COSTS FOR ORIGINAL AND PROPOSED AUTOPILOT

Mass Original (non-adaptive) autopilot
Roll Pitch Yaw TECS

throttle
TECS
pitch

Total

2 → 1kg 1.38 0.88 5.68 10.33 3.09 21.36
2kg 1 1 1 1 1 5.0
2 → 4kg 0.72 1.3 4.0 5.43 5.9 17.35

Mass Proposed (adaptive) ArduPilot
Roll Pitch Yaw TECS

throttle
TECS
pitch

Total
Improv.%

2 → 1kg 1.47 0.94 5.44 4.94 2.97 15.76 (35.5%)
2kg 1 1 0.49 0.73 0.92 4.14 (20.8%)
2 → 4kg 0.78 1.17 3.6 2.55 3.9 12.0 (44.6%)

0 20 40 60 80 100 120
0.4

0.6

0.8

1

T
h

ro
tt

le
 d

e
m

a
n

d

Standard PID autopilot

Proposed adaptive autopilot

0 20 40 60 80 100 120

time (s)

-0.2

-0.1

0

0.1

0.2

P
it
c
h

 d
e

m
a

n
d

Standard PID autopilot

Proposed adaptive autopilot

Mass change

Mass change

Fig. 5. Mass change 2.0kg → 1.0kg while orbiting: comparison of throttle
demand and pitch demand for original and proposed ArduPilot. It can be
noticed that the proposed solution responds faster to the mass change in
terms of throttle demand, which in turns requires less pitch variation. Fig. 3
shows that this results in a much smaller altitude drop, with faster recovery.

0 20 40 60 80 100 120
0.2

0.4

0.6

0.8

1

T
h

ro
tt

le
 d

e
m

a
n

d

Standard PID autopilot

Proposed adaptive autopilot

0 20 40 60 80 100 120

time (s)

-0.2

-0.1

0

0.1

0.2

P
it
c
h

 d
e

m
a

n
d

Standard PID autopilot

Proposed adaptive autopilot

Mass change

Mass change

Fig. 6. Mass change 2.0kg → 4.0kg while orbiting: comparison of throttle
demand and pitch demand for original and proposed ArduPilot. It can be
noticed that the proposed solution responds faster to the mass change in
terms of throttle demand, which in turns requires less pitch variation. Fig. 4
shows that this results in a much smaller altitude drop, with faster recovery.

ArduPilot (without mass change) is used as a normalizing
factor, i.e. its cost is 5.0 (due to 5 loops). The tracking
error costs are shown in Table III: the table shows that
the cost of the original ArduPilot increases to 17 and 21
(more than 3 and 4 times the baseline cost) due to mass
change, showing that the mass change scenario is critical
for performance degradation. The tracking error costs of
the proposed adaptive ArduPilot are consistently better than
the original ArduPilot: the proposed adaptive method im-
proves performance up to 20.8% without mass change and
more than 35.5% in the presence of mass change. Most
importantly, the inevitable performance degradation due to
mass change is less than 3 and 4 times the baseline cost,
i.e. the performance degradation is smaller in the proposed
ArduPilot as compared to the original one. This shows
improved robustness of the proposed method.

The experiments with half mass change and double mass

3779

Authorized licensed use limited to: TU Delft Library. Downloaded on January 24,2023 at 12:05:38 UTC from IEEE Xplore. Restrictions apply.

change are visualized in Figs. 3~6 for the original and the
proposed adaptive ArduPilot. As shown in Figs. 3 and 4, the
proposed adaptive ArduPilot has negligible altitude drop after
mass change as compared to the original one. Meanwhile,
Figs. 5 and 6 report the TECS throttle and pitch demand,
i.e. the set points passed to the low-level control loops: the
throttle demand for the proposed adaptive ArduPilot is more
reactive during the mass change, which in turns require a
smaller pitch variation.

VI. CONCLUSIONS

This work has shown a new adaptive ArduPilot that
embeds the original open-source ArduPilot architecture in
a seamless way with adaptive mechanisms. Comparative ex-
periments with the original ArduPilot have shown consistent
improved performance in the presence of changing flight
dynamics. Interesting future work is to cover all modules
of ArduPilot (ArduPlane, ArduCopter, ArduRover) and other
open-source autopilots such as PX4.

REFERENCES

[1] J. A. Marshall, W. Sun, and A. L’Afflitto, “A survey of guidance,
navigation, and control systems for autonomous multi-rotor small
unmanned aerial systems,” Annual Reviews in Control, vol. 52, pp.
390–427, 2021.

[2] “Open source for ardupilot open source autopilot,” Online, https://
github.com/ArduPilot/ardupilot.

[3] “Open source for drones-px4 open source autopilot,” Online, https:
//px4.io/.

[4] “OpenPilot,” Online, http://www.ehirobo.com/openpilot.
[5] E. Ebeid, M. Skriver, K. H. Terkildsen, K. Jensen, and U. P. Schultz,

“A survey of open-source UAV flight controllers and flight simulators,”
Microprocessors and Microsystems, vol. 61, pp. 11–20, 2018.

[6] D. Invernizzi, M. Lovera, and L. Zaccarian, “Dynamic attitude plan-
ning for trajectory tracking in thrust-vectoring UAVs,” IEEE Transac-
tions on Automatic Control, vol. 65, no. 1, pp. 453–460, 2020.

[7] A. Bosso, C. Conficoni, D. Raggini, and A. Tilli, “A computational-
effective field-oriented control strategy for accurate and efficient
electric propulsion of unmanned aerial vehicles,” IEEE/ASME Trans-
actions on Mechatronics, pp. 1–1, 2020.

[8] N. Hovakimyan and C. Cao, L1 Adaptive Control Theory: Guaranteed
Robustness with Fast Adaptation. SIAM, Advances in Design and
Control, 2010.

[9] E. Lavretsky and K. Wise, Robust and Adaptive Control: With
Aerospace Applications. Springer, Advanced Textbooks in Control
and Signal Processing, 2013.

[10] L. Meier, D. Honegger, and M. Pollefeys, “PX4: A node-based
multithreaded open source robotics framework for deeply embedded
platforms,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 6235–6240.

[11] A. Koubâa, A. Allouch, M. Alajlan, Y. Javed, A. Belghith, and
M. Khalgui, “Micro air vehicle link (MAVlink) in a nutshell: A
survey,” IEEE Access, vol. 7, pp. 87 658–87 680, 2019.

[12] J. Yang, X. Wang, S. Baldi, S. Singh, and S. Farì, “A software-in-
the-loop implementation of adaptive formation control for fixed-wing
UAVs,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 5, pp.
1230–1239, 2019.

[13] J. Barreiro-Gomez, I. Mas, J. Giribet, P. Moreno, C. Ocampo-Martinez,
R. Sánchez-Peña, and N. Quijano, “Distributed data-driven UAV for-
mation control via evolutionary games: Experimental results,” Journal
of the Franklin Institute, vol. 358, no. 10, pp. 5334–5352, 2021.

[14] S. Roy, S. Baldi, and L. M. Fridman, “On adaptive sliding mode
control without a priori bounded uncertainty,” Automatica, vol. 111,
p. 108650, 2020.

[15] P. Li, D. Liu, and S. Baldi, “Adaptive integral sliding mode control in
the presence of state-dependent uncertainty,” IEEE/ASME Transactions
on Mechatronics, pp. 1–11, 2022.

[16] R. Chiappinelli, M. Cohen, M. Doff-Sotta, M. Nahon, J. R. Forbes, and
J. Apkarian, “Modeling and control of a passively-coupled tilt-rotor
vertical takeoff and landing aircraft,” in 2019 International Conference
on Robotics and Automation (ICRA), 2019, pp. 4141–4147.

[17] S. Sabet, M. Singh, M. Poursina, and P. E. Nikravesh, “A highly
maneuverable hybrid energy-efficient rolling/flying system,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2021, pp. 2485–2490.

[18] A. Erasmus and H. Jordaan, “Robust adaptive control of a multirotor
with an unknown suspended payload,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 9432–9439, 2020, 21st IFAC World Congress.

[19] K. Amelin, S. Tomashevich, and B. Andrievsky, “Recursive iden-
tification of motion model parameters for ultralight UAV,” IFAC-
PapersOnLine, vol. 48, no. 11, pp. 233–237, 2015, 1st IFAC Confer-
ence on Modelling, Identification and Control of Nonlinear Systems
MICNON 2015.

[20] B. Zhou, H. Satyavada, and S. Baldi, “Adaptive path following for un-
manned aerial vehicles in time-varying unknown wind environments,”
in 2017 American Control Conference (ACC), 2017, pp. 1127–1132.

[21] S. I. Azid, K. Kumar, M. Cirrincione, and A. Fagiolini, “Wind gust
estimation for precise quasi-hovering control of quadrotor aircraft,”
Control Engineering Practice, vol. 116, p. 104930, 2021.

[22] S. Farí, X. Wang, S. Roy, and S. Baldi, “Addressing unmodeled path-
following dynamics via adaptive vector field: A UAV test case,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 56, no. 2, pp.
1613–1622, 2020.

[23] A. L. Fradkov, S. Tomashevich, B. Andrievsky, K. Amelin, and I. N.
Kaliteevskiy, “Adaptive coding for data exchange between quadrotors
in the formation,” IFAC-PapersOnLine, vol. 49, no. 13, pp. 275–280,
2016, 12th IFAC Workshop on Adaptation and Learning in Control
and Signal Processing ALCOSP 2016.

[24] S. Baldi, D. Sun, G. Zhou, and D. Liu, “Adaptation to unknown
leader velocity in vector-field UAV formation,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 58, no. 1, pp. 473–484, 2022.

[25] S. Panza, D. Invernizzi, M. Giurato, and M. Lovera, “Design and
characterization of the 2DoF drone: a multirotor platform for education
and research,” IFAC-PapersOnLine, vol. 54, no. 12, pp. 32–37, 2021,
iFAC Workshop on Aerospace Control Education WACE 2021.

[26] S. Wang, X. Dai, C. Ke, and Q. Quan, “RflySim: A rapid multicopter
development platform for education and research based on Pixhawk
and MATLAB,” in 2021 International Conference on Unmanned
Aircraft Systems (ICUAS), 2021, pp. 1587–1594.

[27] D. Reinhardt and T. A. Johansen, “Control of fixed-wing UAV attitude
and speed based on embedded nonlinear model predictive control,”
IFAC-PapersOnLine, vol. 54, no. 6, pp. 91–98, 2021, 7th IFAC
Conference on Nonlinear Model Predictive Control NMPC 2021.

[28] S. Baldi, S. Roy, K. Yang, and D. Liu, “An underactuated control sys-
tem design for adaptive autopilot of fixed-wing drones,” IEEE/ASME
Transactions on Mechatronics, pp. 1–12, 2022.

[29] L. He, N. Aouf, and B. Song, “Explainable deep reinforcement
learning for UAV autonomous path planning,” Aerospace Science and
Technology, vol. 118, p. 107052, 2021.

[30] E. A. Niit and W. J. Smit, “Integration of model reference adaptive
control (MRAC) with PX4 firmware for quadcopters,” in 2017 24th
International Conference on Mechatronics and Machine Vision in
Practice (M2VIP), 2017, pp. 1–6.

[31] A. Moeini, M. A. Rafique, Z. Xue, A. F. Lynch, and Q. Zhao,
“Disturbance observer-based integral backstepping control for UAVs,”
in 2020 International Conference on Unmanned Aircraft Systems
(ICUAS), 2020, pp. 382–388.

[32] B. Pugach, B. Beallo, D. Bement, S. McGough, N. Miller, J. Morgan,
L. Rodriguez, K. Winterer, T. Sherman, S. Bhandari, and Z. Aliyazi-
cioglu, “Nonlinear controller for a UAV using echo state network,”
in 2017 International Conference on Unmanned Aircraft Systems
(ICUAS), 2017, pp. 124–132.

[33] W. Saengphet, S. Tantrairatn, C. Thumtae, and J. Srisertpol, “Imple-
mentation of system identification and flight control system for UAV,”
in 2017 3rd International Conference on Control, Automation and
Robotics (ICCAR), 2017, pp. 678–683.

[34] A. Goel, J. A. Paredes, H. Dadhaniya, S. A. Ul Islam, A. M. Salim,
S. Ravela, and D. Bernstein, “Experimental implementation of an
adaptive digital autopilot,” in 2021 American Control Conference
(ACC), 2021, pp. 3737–3742.

[35] “SITL Simulator,” Online, https://ardupilot.org/dev/docs/
sitl-simulator-software-in-the-loop.html.

3780

Authorized licensed use limited to: TU Delft Library. Downloaded on January 24,2023 at 12:05:38 UTC from IEEE Xplore. Restrictions apply.

