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Abstract— Cluster synchronization underlies various func-
tions in the brain. Abnormal patterns of cluster synchronization
are often associated with neurological disorders. Deep brain
stimulation (DBS) is a neurosurgical technique used to treat
several brain diseases, which has been observed to regulate
neuronal synchrony patterns. Despite its widespread use, the
mechanisms of DBS remain largely unknown. In this paper, we
hypothesize that DBS plays a role similar to vibrational control
since they both highly rely on high-frequency excitation to func-
tion. Under the framework of Kuramoto-oscillator networks,
we study how vibrations introduced to network connections
can stabilize cluster synchronization. We derive some sufficient
conditions and also provide an effective approach to design
vibrational control. Also, a numerical example is presented to
demonstrate our theoretical findings.

I. INTRODUCTION

Cluster synchronization describes a phenomenon where
the behavior of the units in a network evolves into different,
yet synchronized, clusters. It has been widely observed in
the brain as correlated neural activity. Patterns of cluster
synchronization underlie various brain functions such as neu-
ronal communication, memory formation, and cognition [1],
[2]. Pathological synchrony patterns also characterize many
brain disorders, e.g., Parkinson’s disease [3] and epilepsy [4].

DBS is a therapeutic technique that uses intracranial elec-
trodes and high-frequency electrical stimulation (see Fig. 1
(a)) to treat such brain disorders [5]. Despite its ubiquitous
use, the underlying mechanisms of DBS are still elusive.
Selecting the proper dose of stimulation and the best location
in the brain, which is crucial for achieving the greatest
clinical benefits of DBS, still largely relies on trial and error
[5]. It is thus critical to further characterize the mechanisms
that underpin DBS’s efficacy, which, in turn, can inform the
design of optimal and personalized brain stimulation.

In this paper, we provide a hypothetical mechanism for
DBS from the perspective of control systems. We propose
that high-frequency signals delivered by DBS to brain re-
gions work as vibrational control. Vibrational control is
an open-loop control strategy that has been used to stabi-
lize engineering systems, e.g., inverted pendulums, chem-
ical reactors, and under-actuated robots (see [6]–[9] and
the references therein). Similar to DBS, vibrational control
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Fig. 1. Vibrational control of cluster synchronization inspired by DBS. (a)
DBS consists of an intracranial electrode, an extension wire, and a pulse
generator. (b) DBS predominantly affects axons and dendrites rather than
the soma. (c) Vibrations are introduced to network connections to stabilize
cluster synchronization (different colors represent different clusters).

relies on high-frequency dithers. It is particularly useful in
situations where feedback control is not applicable since
online measurement of systems’ states or outputs is unavail-
able. Using the Kuramoto-oscillator framework, we study
how vibrational control can stabilize cluster synchronization.
Despite its simplicity, the Kuramoto model has been widely
used to study synchronization in neural systems [10].

Related work. Cluster synchronization has recently at-
tracted extensive attention. Some studies have found that
cluster synchronization is closely related to network symme-
tries [11]–[13] and equitable partitions [14]. Stability condi-
tions for cluster synchronization are constructed in networks
with dyadic [15]–[18] and hyper connections [19], [20].
Different control strategies, such as pinning control [21],
and intervention of network connections or nodes’ dynamics
[22]–[24], are proposed to control cluster synchronization.
By contrast, we employ vibrational control, a much more
realistic control strategy especially for neural oscillation
regulation since it does not need to modify structural brain
networks or the intrinsic dynamics of neurons.

Paper contribution. The contribution of this paper is
threefold. First, we use vibration control, a potential mech-
anism of DBS, to regulate cluster synchronization. Different
from the existing computational studies on DBS (e.g., see
[25]), we introduce control inputs to network connections
rather than nodes’ dynamics (see Fig. 1 (c)). This is inspired
by the observation that brain stimulation predominantly
affects dendrites and axons near the electrode, rather than
the soma [26] (see Fig. 1 (b)). Second, we derive sufficient
conditions on the vibrational inputs such that they can
stabilize originally unstable cluster synchronization. The key
idea is that vibrations are required improve the robustness of
synchronization within clusters to a level that is sufficient to
overcome perturbations resulting from inter-cluster connec-
tions. Averaging methods and perturbation theory are used
for the analysis. Third, we propose an analytically tractable
approach to design vibrational control. Finally, we provide
an example to demonstrate our theoretical findings.
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Notation. We denote the unit circle as S1, a point of which
is a phase. The n-dimensional torus is denoted by Tn =
S× · · · × S. Given a set S, |S| stands for its cardinality. For
two sets S1 and S2, S1\S2 is their set-theoretic difference.
Given A ∈ Rn×m, B := [A]+ is the matrix where bij = aij
if aij > 0 and bij = 0 otherwise. Given matrices A1, . . . , Ar,
blkdiag(A1, . . . , Ar) is the block-diagonal matrix of them.

II. PROBLEM FORMULATION AND PRELIMINARY

A. Problem formulation

We consider n oscillators coupled by an undirected net-
work G = (V, E) associated with the weighted adjacency
matrix A = A> = [aij ]n×n. The dynamics of the oscillators
are governed by the following Kuramoto model:

θ̇i = ωi +

n∑

j=1

aij sin(θj − θi), (1)

where θi ∈ S1 is the ith oscillator’s phase, and ωi ∈ R
is its natural frequency. Let θ := [θ1, . . . , θn]> and ω :=
[ωi, . . . , ωn]>.

Since we are interested in studying cluster synchroniza-
tion, we define cluster synchronization manifolds as follows.

Definition 1 (Synchronization manifold). For the the network
G = (V, E), consider the partition C := {C1, C2, . . . , Cr},
where Ck ⊂ V , Ck ∩ C` = ∅ for any k 6= `, and ∪rk=1Ck =
V . The cluster synchronization manifold associated with the
partition C is defined as

M := {θ ∈ Tn : θi = θj ,∀i, j ∈ Ck, k = 1, . . . , r}. 4

The cluster synchronization manifold is invariant along the
system (1) if starting from any θ(0) ∈M, the solution to (1)
satisfies θ(t) ∈ M for all t ≥ 0. Following [15], [27], we
make the following assumption to ensure thatM is invariant.

Assumption 1 (Invariance). For k = 1, 2, . . . , r: i) the natural
frequencies satisfy ωi = ωj for any i, j ∈ Ck; and ii) the
coupling strengths satisfy that, for any ` ∈ {1, 2, . . . , r}\{k},∑
p∈C`(aip − ajp) = 0 for any i, j ∈ Ck. 4
In addition to Assumption 1, to guarantee that the clus-

ter synchronization represented by M can appear in the
network, M is required to be stable. Further conditions
combining the connection weights and natural frequencies
need to be satisfied to ensure the stability of M (e.g., some
sufficient conditions are constructed in [14]–[16]).

Yet, changes on the anatomical connectivity or the intrinsic
dynamics of neuronal populations, caused by brain aging or
disorders [28], may violate such conditions so that cluster
synchronization patterns needed for normal brain functions
are no longer stable. In this paper, we aim to investigate how
vibrational control, a control strategy that resembles DBS [5],
can restore the stability of such desired synchrony patterns.

Specifically, we consider the following controlled model

θ̇i = ωi +

n∑

j=1

(
aij + q(aij)uij(t)

)
sin(θj − θi), (2)

G, B Gintra, Bintra Ginter, Binter Gdir, Bdir

Gk, B
(k)
intra

Ĝk, B̂
(k)
intra

Ĝ, B̂ Ĝintra, B̂intra Ĝinter, B̂inter Gdir1, Bdir1

Fig. 2. Graphic illustration of the main notations we employ in this paper:
different subgraphs and their corresponding incidence matrices.

where q(aij) = 1 if aij > 0 and q(aij) = 0, otherwise1,
and uij(t) is the corresponding vibrational control input.
Although the couplings are symmetric, satisfying aij = aji
for any i and j, we allow the effect of the vibrational control
on each edge to be asymmetric, that is, it is allowed that
uij(t) 6= uji(t). As typically done in the literature (e.g.,
[6]–[8]), we assume that uij(t) is periodic with period T
and has high frequency and zero mean. It can be seen that∫ T

0
aij+q(aij)uij(t)dt = aij , which means that the effect of

vibrations on network weights is zero in average. Particularly,
we consider sinusoidal vibrations in this paper, i.e.,

uij(t) =
uij
ε

sin
( t
ε

)
,

where ε > 0 determines the amplitude and frequency of the
vibrations. Then, the period becomes T = 2επ.

It remains to design the parameters of the vibrational con-
trol, i.e., uij’s and ε, to stabilize the cluster synchronization
manifold M. To this end, it is necessary to ensure that the
vibrational inputs preserve the invariance ofM. In this paper,
we consider a special configuration of vibrations that satisfies

uij(t) = 0, ∀i ∈ Ck, j ∈ C`,∀k 6= `,

so that the invariance of M is preserved. In other words,
vibrations are only introduced to the connections between
oscillators within the same clusters (such connections are
referred to as intra-cluster connections).

B. Preliminary

To facilitate analysis in the reminder of this paper, we
introduce some notations (summarized in Fig. 2) and derive
a compact model for the system (2).

For the network G = (V, E) and a partition C :=
{C1, C2, . . . , Cr}, define Gk = (Ck, Ek) where Ek := {(i, j) ∈
E : i, j ∈ Ck}. For each k, denote nk := |Ck| as the
number of nodes in Gk. We assume that each Gk is connected
and contains at least 2 nodes. Let Gintra = (V, Eintra) =
∪rk=1Gk and we refer to it as the intra-cluster graph. Let
Ginter = (V, Einter) be the inter-cluster subgraph, where
Einter := E\Eintra. Define the directed graph associated with
Gintra by Gdir = (V, Edir), where Edir is defined in a way
such that every edge in Gintra becomes two directed edges

1This setting ensures that control inputs can only introduce vibrations to
the existing connections and do not unreasonably create new ones.



in Edir. Let Gdir1 = (V, Edir1) be the graph where Edir1

contains only one directed edge between each pair of nodes
in Edir. Let Gdir2 = (V, Edir2) with Edir2 := Edir\Edir1. Let
Ĝ = (V, Ê) be any spanning tree of G, and thus |Ê | = n−1.
For each k, Let Ĝk = (Ck, Êk) with Êk := Ê ∩ Ek. The
intra-cluster subgraph of the spanning tree Ĝ is Ĝintra =
(V, Êintra) := ∪̂rk=1Ĝk; the inter-cluster subgraph of Ĝ is
Ĝinter = (V, Êinter) with Êinter := Ê\Êintra.

We further define the corresponding (oriented) incidence
matrices of the above graphs and subgraphs as in Fig. 2.
Without loss of generality, we order the columns of these
incidence matrices in a way such that

B = [Bintra, Binter], Bintra = blkdiag(B
(1)
intra, . . . , B

(r)
intra)

B̂ = [B̂intra, B̂inter], B̂intra = blkdiag(B̂
(1)
intra, . . . , B̂

(r)
intra),

Bdir = [Bdir1, Bdir2] Bdir1 = Bintra, Bdir2 = −Bintra.

(3)

Let W =
[
Wintra 0

0 Winter

]
, where Wintra := diag{aij , (i, j) ∈ Gintra}

and Winter := diag{aij , (i, j) ∈ Ginter} are diagonal
weight matrices of Gintra and Ginter, respectively. Simi-
larly, since vibrations are only introduced to the intra-
cluster connections and can have asymmetric influence
on each of them, let U(t) := diag{uij sin(t), (i, j) ∈
Edir}. It holds that U(t) = blkdiag(U1(t), U2(t)) for
U1(t) := diag{uij sin(t), (i, j) ∈ Edir1} and U2(t) :=
diag{uij sin(t), (i, j) ∈ Edir2}. Further, U1 and U2 can be
decomposed as U1(t) = blkdiag(U

(1)
1 (t), . . . , U

(r)
1 (t)) and

U2(t) = blkdiag(U
(1)
2 (t), . . . , U

(r)
2 (t)), where U (k)

1 (t)) and
U

(k)
2 (t)) represent the vibrations to the kth cluster.
Let x := B̂>intraθ and y := B̂>interθ, and they define the

intra- and inter-cluster phase differences, respectively. The
dynamics of x and y are (see Appendix A for the derivation
and the expressions of the matrices R1, R2, and R3)

ẋ = fintra(x) + finter(x, y) + 1
εfctr

(
U
(

t
ε

)
, x
)
, (4a)

ẏ = g(x, y) + 1
εgctr(U( t

ε ), x), (4b)

where
fintra(x) = −B̂>intraBintraWintra sin(R1x),

finter(x, y) = −B̂>intraBinterWinter sin(R2x+R3y),

fctr(U, x) = −B̂>intra

(
[Bintra]+U1(t)− [−Bintra]+U2(t)

)
sin(R1x)

g(x, y) = B̂>interω − B̂>interBintraWinter sin(R1x)

−B̂>interBinterWinter sin(R2x+R3y),

gctr(U, x) = −B̂inter

(
[Bintra]+U1 − [−Bintra]+U2

)
sin(R1x),

(5)

Note that fintra, finter, and fctr describe the dynamics
induced by the intra connections, inter connections, and
vibrational control inputs, respectively. Here, we single out
the important properties of these functions that will be used
later: i) fintra(0) = 0, ii) finter(0, y) = 0 for any y, iii)
fctr(0, x) = 0 for any x, and (iv) fctr(U, 0) = 0 for any U .

Notice that x = 0 corresponds to the cluster synchro-
nization manifold M. The manifold M is exponentially
stable along the system (2) if x = 0 is exponentially
stable uniformly2 in y along (4). To stabilize the cluster

2The equilibrium x = 0 is said to be exponentially stable uniformly in
y if it is exponentially stable starting from any y(0) [29, Chap. 4].

synchronization manifold M, it suffices to design vibration
control inputs to ensure the uniform exponential stability of
x = 0 for the system (4).

III. VIBRATIONAL CONTROL: GENERAL RESULTS

In this section, we derive some general results on vibra-
tional stabilization of x = 0 of the system (4).

The term finter(x, y) in (4a) can be taken as a vanishing
perturbation dependent of y to the controlled nominal system

ẋ = fintra(x) + 1
εfctr(U( t

ε ), x). (6)

It can be decomposed as finter = [(f
(1)
inter)

>, . . . , (f
(r)
inter)

>]>,
where f

(k)
inter = −(B̂

(k)
intra)>BinterWinter sin(R2x + R3y)

describes the inter-cluster dynamics of the kth cluster.
Next, we show how the vibrational control term fctr(U, x)

can stabilize x = 0 in the presence of the perturbation
finter(x, y). To this end, we consider a partially linearized
model of the system (4a), which is

ẋ = (J + 1
εP ( t

ε ))x+ finter(x, y), (7)

where

J =
∂fintra

∂x
(0) = blkdiag(J (1), . . . , J (r)), and

P (t) =
∂fctr

∂x
(0) = blkdiag(P (1)(t), . . . , P (r)(t)),

(8)

with J (k) = −(B̂
(k)
intra)>B

(k)
intraW

(k)
intraR1 and

P (k)(t) = −(B̂
(k)
intra)>

(
[B

(k)
intra]+U

(k)
1 (t)− [−B(k)

intra]+U
(k)
2 (t)

)
R

(k)
1 , (9)

for k = 1, . . . , r. Note that only the first and third terms
of Eq. (4a) are linearized in Eq. (7). Observe that P (t) is
periodic and has the same period T as U(t).

Lemma 1 (Connecting the stability of Systems (4) and (7)).
If the equilibrium x = 0 is exponentially stable uniformly in
y for the system (7), it is also exponentially stable uniformly
in y for the system (4).

The proof can be found in Appendix B. From this lemma,
one can see that to stabilize the cluster synchronization
manifold M, it suffices to configure the vibrational control
such that P (t) stabilizes x = 0 of the system (7).

Let s = t/ε. The system (7) can be rewritten as

dx

ds
= (εJ + P (s))x+ εfinter(x, y). (10)

Next, we use averaging methods to analyze this system.
However, the standard first-order averaging is not applicable
here. Recall that P (s) has zero mean. Then, applying the
first-order averaging to (10) just eliminates the P (s) term and
results in the uncontrolled system dx

ds = εJx+ εfinter(x, y).
To avoid that, we change the coordinates of (10) first

before using averaging method. To to that, we introduce an
auxiliary system

dx̂

ds
= P (s)x̂, (11)

and let Φ(s, s0) be its state transition matrix. Since P is
block-diagonal, it holds that Φ = blkdiag(Φ(1), . . . ,Φ(r)),



where Φ(k) is the transition matrix of the subsystem in the
kth cluster dx̂k/ds = P (k)(s)x̂k.

Consider the change of coordinates z(s) =
Φ−1(s, s0)x(s). It follows from the system (10) that

dz

ds
= ε(Φ−1JΦz + Φ−1finter(Φz, y)). (12)

Since P (s) is T -periodic, Φ and Φ−1 are also T -periodic.
Then, we associate (12) with a partially averaged system

dz

ds
= ε(J̄z + Φ−1finter(Φz, y)), (13)

where

J̄ =
1

T

∫ s0+T

s0

Φ−1(s, s0)JΦ(s, s0)ds. (14)

As both J and Φ are block-diagonal, one can de-
rive that J̄ is also block-diagonal satisfying J̄ =
blkdiag(J̄ (1), . . . , J̄ (r)) with

J̄ (k) =
1

T

∫ s0+T

s0

(
Φ(k)(s, s0)

)−1

J (k)Φ(k)(s, s0)ds.

Recall that Φ and Φ−1 are periodic, ‖Φ‖ and ‖Φ−1‖ are
both bounded. Then, it can be shown that there exist γ̄k` >
0, k, ` = 1, . . . , r, such that

‖Φ−1f
(k)
inter(Φz, y)‖ ≤

r∑

`=1

γ̄k`‖z`‖

for each k (see Lemma 6 in Appendix C for more details).

Theorem 1 (Sufficient condition for vibrational stabiliza-
tion). Assume that J̄ = blkdiag(J̄ (1), . . . , J̄ (r)) in Eq. (14)
is Hurwitz. Let X̄k be the solution to the Lyapunov equation

(J̄ (k))>X̄k + X̄>k J̄
(k) = −I. (15)

Define the matrix S = [sk`]r×r with

sk` =
{
λ−1

max(X̄k)− γ̄kk, if k = `,
sk` = −γ̄k`, if k 6= `.

(16)

If S is an M -matrix, then there exists ε∗ > 0 such that, for
any ε < ε∗:

(i) the equilibrium x = 0 of the system (4) is exponentially
stable uniformly in y;

(ii) the cluster synchronization manifold M of the system
(2) is exponentially stable.

The proof can be found in Appendix C. Theorem 1
provides a guideline to design vibrational control. Any
vibrational input that satisfies the following three conditions
stabilizes the cluster synchronization manifold M: i) J̄ in
(14) is Hurwitz, ii) S defined in (16) is an M -matrix, and
iii) the frequency of the vibrations is sufficiently high, i.e.,
ε > 0 is sufficiently small.

We shall point out that the condition in Theorem 1 is still
conservative. An example will be presented in Sec. IV-B
to show that a vibrational control can effectively stabilize
cluster synchronization without satisfying this condition.

Remark 1 (Synchronization robustness). For a stable linear
system ẋ = Ax, previous studies propose that λmax(X),
where X is the solution to the Lyapunov equation A>X +
XA = −2I , can measure the robustness of this system [30],
[31]. In our case, from (7), the uncontrolled intra-dynamics
around the manifold M are described by

ẋk = J (k)xk + f
(k)
inter(x, y), k = 1, . . . , r, (17)

where J (k) is stable and f (k)
inter(x, y) is taken as the perturba-

tion. Here, xk = 0 means synchronization of the oscillators
in the kth cluster. Let Xk be the solution to

(J (k))>Xk +X>k J
(k) = −I. (18)

Likewise, one can use λ−1
max(Xk) to measure the robustness

of synchronization in the kth cluster. If the intra-cluster
synchronization is sufficiently robust (i.e., large λ−1

max(Xk)’s)
to dominate the perturbations resulted from inter-cluster con-
nections, the cluster synchronization is stable. A sufficient
condition is constructed in [15, Th. 3.2]. By contrast, if
λmax(Xk)’s are not large enough, the cluster synchronization
can lose its stability. Yet, the robustness of the intra-cluster
synchronization can be reshaped by introducing vibrations to
the local network connections. The new robustness is instead
measured by λ−1

max(X̄k), where X̄k is the solution to Eq. (15).
4

The following example illustrates how vibrations can
improve synchronization robustness.
Example 1 (Improving robustness by vibrational control). We
restrict our attention to only one cluster in this example.
Specifically, consider that J (k) in (17) is

J (k) =

[
−1 4
0 −2

]
.

Suppose that there is a vibrational control U (k)(t) to the kth
cluster that results in the state transition matrix

Φ(k)(t, t0) =

[
1 0

cos(t0)− cos(t) 1

]
.

It can be calculated that

J̄ (k) =
1

2π

∫ 2π

0

(
Φ(k)(t, t0)

)−1
J (k)Φ(k)(t, t0)dt =

[
−1 4
−2 −2

]
.

Solving the equations (15) and (18), one can obtain
λ−1

max(Xk) ≈ 0.52 and λ−1
max(X̄k) = 2, which means that

the synchronization in this cluster becomes more robust due
to the vibrational control. 4

In fact, whether the synchronization robustness can be
improved also depends on the intra-cluster network. The
following lemma provides a necessary condition.

Lemma 2 (Necessary condition for robustness improvement).
Let λ−1

max(X̄k) and λ−1
max(Xk) be the solutions to the equa-

tions (15) and (18), respectively. There exists a vibrational
control input such that λ−1

max(X̄k) > λ−1
max(Xk) only if Gk

is not a uniformly weighted complete graph3.

3A uniformly weighted complete graph is a complete graph in which
every edge has the same weight.



1

1

1

1

1
1

B =




−1 0 0 1 0 1
1 −1 0 0 −1 0
0 1 −1 0 0 −1
0 0 1 −1 1 0


⇒ J = −




4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4




Fig. 3. Uncontrollable cluster: a complete and uniformly weighted network.

When Gk is complete and uniformly weighted, it holds
that Jk = −nkInk−1, where nk is the number of nodes
(see an example in Fig. 3). As a consequence, λ−1

max(Xk) =
λ−1

max(X̂k) for any vibrational control since

J̄ (k) =

∫ 2π

0

Φ−1(t)J (k)Φ(t) = −nk
∫ 2π

0

Φ−1(t)Φ(t)dt = J (k).

If all the clusters in a network are complete and uniformly
weighted, one can see that the synchronization robustness
cannot be improved by any vibrational control.

IV. CONFIGURING VIBRATIONAL CONTROL

A. Configuring lower triangular transition matrices

Notice from Theorem 1 that, when designing a vibrational
control, the state transition matrix Φ of the periodic system
(11) plays an important role. However, deriving an explicit
expression of Φ is often not straightforward. In this subsec-
tion, we provide a special approach to configure vibrational
control so that the expression of Φ can be obtained explicitly.

Inspired by [6], we consider vibration control inputs U(t)
such that P (t) = blkdiag(P (1)(t), . . . , P (r)(t)) in Eq. (8)
satisfies that, for any k, P (k) has the following strictly lower
triangular form (where n̄k = nk − 1):

P (k)(t) =



0 0 0 · · · 0 0

u
(k)
21 sin(t) 0 0 · · · 0 0

u
(k)
31 sin(t) u

(k)
32 sin(t) 0 · · · 0 0

...
...

...
. . .

...
...

u
(k)
n̄k,1

sin(t) u
(k)
n̄k,2

sin(t) u
(k)
n̄k,3

sin(t) · · · u
(k)
n̄k,n̄k−1 sin(t) 0



. (19)

Lemma 3 (Lower triangular transition matrix). Assume that
the vibrational control is such that P (t) in the system (8)
satisfies (19). Then, the state transition matrix Φ(t, t0) =
blkdiag(Φ1, . . . ,Φr) satisfies

Φk =




1 0 0 · · · 0 0

Φ
(k)
21 1 0 · · · 0 0

Φ
(k)
31 Φ

(k)
32 1 · · · 0 0

...
...

...
. . .

...
...

Φ
(k)
n̄k,1

Φ
(k)
n̄k,2

Φ
(k)
n̄k,3

· · · Φ
(k)
n̄k,n̄k−1 1



,

where Φ
(k)
ij (t) = −u(k)

ij (cos(t)− cos(t0)).

The next question is whether there exist vibrational control
inputs such that P (t) has the form described by (19).

Lemma 4 (Existence of vibrational control). For each
intra-cluster network Gk, k = 1, . . . , r, there always exist
vibrational control inputs such that P (k)(t) is strictly lower
triangular and satisfies P (k)(t) 6= 0.

The proof can be found in Appendix D. From this lemma,
one can always carefully configure the vibrational control

(a)

(b) (c)

1

2

3 A =



A11 A12 0
A21 A22 A23

0 A32 A33


 A11 = α



0 1 1
1 0 4
1 4 0




A12 = β



1 0 0
0 1 0
0 0 1


 A23 =



1 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 1 0




vibrationsC1

C2

C3

0 50 100 150

0

2
θ1 − θ2

θ4 − θ5

θ7 − θ12

t
0 50 100 150

−0.10
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0.10

0.20

θ1 − θ2

θ4 − θ5

θ7 − θ12

t

Fig. 4. Vibrational stabilization. (a) The network structure and some
connection weights, where α = 0.03 and β = 3. All other unspecified
weights are 1. (b) Phase differences without control, indicating that the
cluster synchronization is unstable. (c) Phase differences under vibrational
control to the cluster C1, showing that the cluster synchronization has been
stabilized by just local vibrations (ε = 0.02). The natural frequencies in
C1, C2, and C3 are ω1 = 1, ω2 = 10, and ω3 = 6, respectively.

so that P (t) is strictly lower triangular. Subsequently, the
explicit form of the transition matrix Φ can be derived,
making the design of vibrations more analytically tractable.

It is worth noting that there certainly exist other configura-
tions of vibration control different from the one we present
in this subsection, which also allow for easy derivation of
explicit transition matrices.

B. A numerical example

In this subsection, we use an example to show how the
obtained results can be used to design vibrational control.

We consider the network depicted in Fig. 4 (a), where the
oscillators are partitioned into 3 clusters. The matrix J =
blkdiag(J (1), . . . , J (3)) as in the system (7) satisfies

J (1) =

[
−0.06 0.06

0 −0.18

]
, J (2) = −3I3, and J (3) = −6I6.

It can be seen in Fig. 4 (b) that the cluster synchronization
manifold M in this network is unstable.

To stabilize the cluster synchronization manifold, we only
introduce vibrations to the cluster C1. Specifically, we let

u12(t) =
u

2ε
sin( t

ε ), u13(t) = − u

2ε
sin( t

ε ),

u32(t) = − u

2ε
sin( t

ε ), u31(t) =
u

2ε
sin( t

ε ),

and uij = 0 for any other i and j. This configuration of
vibrational control ensures that the matrix P (1)(s) in Eq. (8)
is strictly lower triangular, i.e.,

P (1)(s) =

[
0 0

−u sin(s) 0

]
.

Then, the transition matrix of the periodic system (11) can
be calculated as

Φ(1)(s, s0) =

[
1 0

u(cos(s0)− cos(t)) 1

]
.

Subsequently, the matrix J̄ (1) in Eq. (14) is

J̄ (1) =
1

2π

∫ 2π

0

(
Φ(1)(s, s0)

)−1
J (1)Φ(1)(s, s0)ds =

[ −0.06 0.06
−0.06u2

8 −0.18

]
.



Let u = 2
√

2. Solving the equations (15) and (18), re-
spectively, one obtains λ−1

max(X1) ≈ 0.109 and λ−1
max(X̄1) ≈

0.133. This indicates that the synchronization robustness in
C1 is improved by the vibrational control. From Fig. 4 (c),
it can be observed that the local vibrations introduced to C1,
with frequency 50 rad/s (i.e., ε = 0.02), successfully stabilize
the cluster synchronization in the entire network.

It is worth mentioning that the condition in Theorem 1
is not satisfied. Yet and remarkably, the slight improvement
on synchronization robustness still stabilizes the cluster
synchronization. This suggests that vibrational control can
practically work in a much broader region than the theoretical
one we identified in Theorem 1.

V. CONCLUSIONS

In this work, we hypothesize that the vibrational con-
trol is a mechanism of DBS, a widely-used neurosurgi-
cal technique to treat some brain disorders, based on the
observation that they both employ high-frequency dithers
and regulate synchronization patterns. We study how the
vibrational control can stabilize cluster synchronization in
Kuramoto-oscillator networks. Some sufficient conditions on
the vibrations introduced to the network connections are
obtained. We also provide an analytically tractable approach
to design vibrational inputs. Finally, we demonstrate our
theoretical findings by a numerical example. We believe that
our work provides a new angle to understand DBS and can
inform the design of DBS algorithms.

APPENDIX

A. Derivaton of Eq. (4)

To derive Eq. (4), we first present an instrumental lemma.

Lemma 5. For the incidence matrices B and B̂, there exists
R =

[
R1 0
R2 R3

]
such that B> = RB̂>, where

R1 = blkdiag
(
(B

(1)
intra)>((B̂

(1)
intra)>)†, . . . , (B

(r)
intra)>((B̂

(r)
intra)>)†

)
,

and R2 = B>
inter(B̂

>
intraPinter)

†, R3 = B>
inter(B̂interPintra)

† with
Pintra = In − B̂intraB̂

†
intra and Pinter = In − B̂interB̂

†
inter. 4

Proof. The expressions of R2 and R3 follow from
[18]. Recall that Bintra = blkdiag(B

(1)
intra, . . . , B

(r))
intraand

B̂intra = blkdiag(B̂
(1)
intra, . . . , B̂

(r)
intra). Since (B

(k)
intra)> has

full row rank, we have

(B
(k)
intra)> = (B

(k)
intra)>((B̂

(k)
intra)>)†(B̂

(k)
intra)>,

which completes the proof.

One can rewrite Eq. (2) into a compact form

θ̇ = ω −BW sin(B>θ)−B+
dirU sin(B>dirθ).

From Lemma 5, it holds that B>θ = RB̂>θ and B>dirθ =
R[B̂intra,−B̂intra]>θ. Subsequently, one can derive

B̂>θ̇ =B̂>ω − B̂>BW sin(RB̂>θ)

−B+
dirU sin(R[B̂intra,−B̂intra]>θ).

Since x = B̂>intraθ and y = B̂>interθ, one can obtain
the compact dynamics (4) using the fact that [Bdir1]+ =
[Bintra]+ and [Bdir1]+ = [−Bintra]+ and the relations
between matrices in Eq. (3) .

B. Proof of Lemma 1

Since x = 0 is exponentially stable uniformly in y for the
system (7), according to the converse Lyapunov theorem (see
[29, Th. 4.4] and [32]) there exists D = {x ∈ Rn−r : ‖x‖ ≤
ρ1} and a continuously differentiable function function V :
[0,∞]×D × Rr → R such that

∂V

∂t
+
∂V

∂x

(
(J + P (t))x+ finter(x, y)

)
≤ −c1‖x‖2

and ‖∂V∂x ‖ ≤ c2‖x‖ for some constants c1, c2 > 0. Let
h(t, x) = fintra(x) + fctr(U(t), x) and ∆(t, x) = h(t, x) −
(J + P (t))x. It can be checked that ∂h/∂x is bounded and
Lipschitz on D. Then, similar to the proof of [33, Th. 4.13],
one can show that ‖∆(t, x)‖ ≤ c3‖x‖2 for some c3 > 0.
The time derivative along the system (4) satisfies

∂V

∂t
+
∂V

∂x

(
(J + P (t))x+ ∆(t, x) + finter(x, y)

)

≤ −c1‖x‖2 + c2c3‖x‖3
≤ −(c1 − c2c3ρ)‖x‖2,∀‖x‖ < ρ.

Choosing ρ = min{ρ1, c1/c2c3} completes the proof.

C. Proof of Theorem 1

One can observe that (i) implies (ii). Then, it suffices to
prove the exponential stability of x = 0 for (10). To do that,
we first present the following lemma, whose proof follows
similar lines as Lemma 3.1 of [15].

Lemma 6 (Growth bound of perturbations). There exist some
constants γ̄k` > 0, k, ` = 1, . . . , r, such that, for any k, it
holds that

‖Φ−1f
(k)
inter(Φz, y)‖ ≤

∑r

`=1
γ̄k`‖z`‖. 4

Let Vk = z>k Xkzk, and it holds that ∂Vk/∂zk ≤
λmax(Xk). Choose V (z) =

∑r
k=1 dkVk as a Lyapunov

candidate. The time derivative of V (z) satisfies

V̇ (z) =
r∑

k=1

dk[z>k ((J̄ (k))>Xk +XkJ̄
(k))zk +

∂V

∂zk
Φ−1finter(Φz, y)]

≤
r∑

k=1

dk[−‖zk‖2 + λmax(Xk)

r∑

k=1

γ̄k`‖zk‖‖z`‖],

where the second inequality has used Lemma 6.
Let D := diag(d1, . . . , dr) and Ŝ = [ŝij ]r×r where

ŝk` =
{

1− λmax(Xk)γ̄kk, if k = `,
ŝk` = −λmax(Xk)γ̄k`, if k 6= `.

Then, one can rewrite V̇ (z) ≤ − 1
2z
>(DS + S>D)z. By

assumption, S is an M -matrix, and so is Ŝ since Ŝ =
−λmax(Xk)S. It follows from [33, Th. 9.2] that the system
(13) is exponentially stable.

Following similar steps as in [33, Th. 10.4], one can prove
that there exists ε∗ > 0 such that for any ε < ε∗, z = 0



is exponentially stable uniformly in y for the system (12).
Since x(s) = Φ(s, s0)z(s) and ‖Φ‖ is bounded, then x = 0
is also exponentially stable uniformly in y for (10), which
completes the proof.

D. Proof of Lemma 4

Proof. We construct the proof by considering a specific
configuration of vibrational control.

Without loss of generality, we assume that each B(k)
intra and

B̂
(k)
intra are ordered in a way such that their first n̄k = nk− 1

columns are the same, and the first two column are e2 − e1

and e3− e2, respectively, where ei is the ith column of Ink
.

Then, there exists a matrix R̃(k)
1 such that R(k)

1 =

[
In̄k

R̃
(k)
1

]
.

Let U
(k)
1 (t) = ue1e

>
1 sin(t) and U

(k)
2 (t) =

−ue1e
>
1 sin(t). It can be calculated that

P (k)(t)

= −(B̂
(k)
intra)>[B

(k)
intra]+U

(k)
1 (t)− [−B(k)

intra]+U
(k)
2 (t)R

(k)
1

= −(B̂
(k)
intra)>u(e1 + e2)e>1

[
In̄k

R̃
(k)
1

]
sin(t)

= −u(B̂
(k)
intra)>(e1 + e2)(e′1)> sin(t),

where the second equality follows from e>1
[
In̄k

R̃
(k)
1

]
= (e′1)>

with e′1 being the first column of In̄k
. Then, it can be seen

that the first two rows of P (k)(t) are −u(e2 − e1)>(e1 +
e2)(e′1)> sin(t) = 0, and −u(e3 − e2)>(e1 + e2)(e′1)> =
(e′1)> sin(t), respectively. The rest rows of P (k)(t) can only
have non-zero values at the first column. Therefore, P (k)(t)
have the strictly lower triangular form and satisfies P (k)(t) 6=
0, which completes the proof.
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