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Abstract— The stochastic multi-armed bandit has provided
a framework for studying decision-making in unknown envi-
ronments. We propose a variant of the stochastic multi-armed
bandit where the rewards are sampled from a stochastic linear
dynamical system. The proposed strategy for this stochastic
multi-armed bandit variant is to learn a model of the dynamical
system while choosing the optimal action based on the learned
model. Motivated by mathematical finance areas such as In-
tertemporal Capital Asset Pricing Model proposed by Merton
and Stochastic Portfolio Theory proposed by Fernholz that both
model asset returns with stochastic differential equations, this
strategy is applied to quantitative finance as a high-frequency
trading strategy, where the goal is to maximize returns within
a time period.

I. INTRODUCTION

The stochastic multi-armed bandit (MAB) problem, pro-
posed by Thompson in 1933 [1], has provided a powerful
modeling framework to investigate a large class of decision
making problems. In MAB, a learner interacts with the envi-
ronment where in each interaction, called a round, the learner
chooses an action and receives a reward. The performance
of policies is usually evaluated as the expectation of the
cumulative difference between chosen and optimal actions,
and defined as regret. In its basic formulation rewards
are sampled from a stationary distribution, a very popular
algorithm, called the Upper Confidence Bound (UCB) algo-
rithm [2], guarantees logarithmic growth of regret [3].

MAB has seen different applications in several areas
such as machine learning, dynamic pricing, and portfolio
management. In machine learning, the MAB formulation
can be used to find a set of hyperparameters to increase
the performance of the learning process [4]. This has been
extended further by applying MAB to algorithm selection,
where a learner searches for a high-performing algorithm to
use for training [5]. For dynamic pricing, when selling a set
of products, the price needs to be set according to the current
demand in order to maximize profit. To find the optimal
pricing, MAB is used where the model for demand is based
on a low-dimensional demand model [6] or a differential
equation [7]. In portfolio selection, MAB formulation is
natural in the case where the manager creates a portfolio
with multiple assets [8], [9].

In the examples mentioned above, the environments that
the learner interacts with has time correlations and cor-
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relations between the rewards for each action. Hyperpa-
rameter optimization can be viewed as optimizing a cost
function with correlated decision variables [10] and the
training process is dynamic [4]. In dynamic pricing, the
pricing for each product can be correlated with each other
based on a low dimensional demand model [6] and the
demand changes over time [7]. As for portfolio management,
equations used in Intertemporal Capital Asset Pricing Model
(ICAPM) proposed by Merton [11] and Stochastic Portfo-
lio Theory proposed by Fernholz [12] model asset returns
using stochastic differential equations. The examples above
motivate the need to investigate non-stationary stochastic
MAB where the rewards are sampled from a stochastic
dynamical system. Here the reward can be expressed as
the inner product between the action vector and a dynamic
unknown parameter vector. Previous work in non-stationary
MAB studies the case where the change in magnitude of the
unknown parameter vector is bounded [13], [14] or when
such vector is is sampled from a predefined set [15], [16].
In both cases the unknown parameter vector changes the
distribution of the reward, making the original stochastic
MAB formulation non-stationary. To the best of our knowl-
edge, the bulk of papers in non-stationary MAB focus on
the piece-wise stationary case, where the distributions are
stationary within set intervals. Papers for the piece-wise
stationary case focus on remembering-vs-forgetting trade-
off using either discounting or sliding windows [17] to
forget early recorded rewards or detecting the change in the
distribution to decide when to restart the learning process
[18], [19], [20], [21]. Other papers in non-stationary MAB
bound the cumulative change of the reward mean in the form
of variational budget VT [22], [23]. However, the rewards
sampled from a stochastic dynamical system change in a
very different manner, making previous work not well suited.
In this paper we tackle the stochastic multi-armed bandit
problem when the rewards are sampled from an unknown
stochastic linear dynamical system driven by Gaussian noise.
Since the rewards are now dynamic, the paper introduces a
methodology that focuses on finding the optimal decision
while learning a model of the system. We will leverage and
adapt results in [24] to learn the linear model. We then use
such model to design a policy based on reward predictions.
To illustrate the concept, we apply the algorithm to a simple
trading example.

The framework of the paper is as follows: Section II
reviews the stochastic multi-armed bandit and introduces
a variant where the rewards are sampled from a linear
dynamical system. In section III, a methodology to model
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and predict rewards is presented. Section IV then uses the
model to develop a strategy to maximize cumulative reward
over a horizon. Section V performs regret analysis and
provides a theoretical upper bound for the regret of the
proposed algorithm. Section VI shows an application of
the proposed algorithm to a simple high frequency trading
example. Finally, section VII provides conclusions and future
directions.
Notation. To denote the transpose of a matrix, the notation
> is used. For norms, || · ||2 is the `2-norm norm for vectors.
The trace of a matrix is denoted with Tr(·). For a normal
distribution, notation N (M,S) is used, where M is the mean
and S is the covariance of the distribution. Inner product
is 〈a,b〉 , a>b where a,b ∈ Rd . The term O(·) is big-O
notation. For the equality

g(n) = O( f (n)),

this implies that for some constant M > 0 and n0 ≥ 0, g(n)≤
M f (n) for all n > n0 [25].

II. PROBLEM FRAMEWORK

Suppose that for k given actions ca ∈A ⊂Rd , the reward
Xt is sampled from the following stochastic linear dynamical
system 

zt+1 = Γzt +ξt ,z0 ∼N (µ0,Σ0)

θt =Cθ zt +φt

Xt = 〈ca,zt〉+µa +ηt

, (1)

where the unknown parameter vector zt ∈ Rd is the state of
the system. For each round t = 1, . . . ,n, n > d, the learner
observes the reward Xt ∈ R based on the chosen action and
the context θt ∈Rm. The context θt is a value that the learner
always observes and its observation matrix Cθ is constant.
The processes ξt ∈Rd , φt ∈Rm, and ηt ∈R are i.i.d. normally
distributed, i.e. ξt ∼N (µξ ,Q), φt ∼N (µφ ,Rφ ), and ηt ∼
N (0,ση). The matrices Γ, Cθ , Q, Rφ , Σ0, vectors µξ , µφ , µ0,
and scalars ση , µa (a= 1, . . . ,k) are assumed to be unknown.
The dimension d is unknown, but dimension m is known as
it is the dimension of the context. For notation, given that
there are k vectors ca ∈ A , we denote a ∈ {1, . . . ,k} to be
which vector ca is chosen. The system has the following
assumptions

Assumption 1: The matrix pair (Γ,Cθ ) is observable. The
matrix Q is positive definite.

Assumption 2: The matrix Γ is Schur, i.e. ρ(Γ)< 1.
The goal of the learner is to maximize cumulative reward

over a finite time horizon n. To prove the performance of
the learning strategy, regret analysis is used [26]. Regret
is defined as the cumulative, over all rounds, expected
difference between the highest reward (denoted as X∗t ) and
the reward for the chosen action at time t, i.e.

Rn =
n

∑
t=1

E[X∗t −Xt ]. (2)

III. MODELING THE SYSTEM FROM DATA

If the learner knew (1), then the Kalman filter could be
used to predict the state zt and consequently the reward Xt
for each action a ∈ {1, . . . ,k}:

ẑt+1|t = Γẑt|t +µξ , Pt+1|t = ΓPt|tΓ
>+Q

Kt = Pt|t−1C>
θ
(Cθ Pt|t−1Cθ +Rφ )

−1

ẑt|t = ẑt|t−1 +Kt(θt −Cθ ẑt|t−1−µφ ),
Pt|t = Pt|t−1−KtCθ Pt|t−1,

X̂t|t−1 = 〈ca, ẑt|t−1〉+µa

, (3)

where ẑt|t , E[zt |Ft ] and Ft is the sigma algebra generated
by previous contexts θ0, . . . ,θt . Since the Kalman gain matrix
Kt converges thanks to assumption 1, then using the steady-
state Kalman filter is reasonable where the prediction of the
state ẑt+1|t and the estimate of the state ẑt|t can be combined
into one equation

ẑt+1 = Γẑt +µξ +ΓK(θt −Cθ ẑt −µφ )

X̂t = 〈ca, ẑt〉+µa
, (4)

K = PC>θ (Cθ PC>θ +Rφ )
−1,

P = ΓPΓ
>+Q−ΓPC>θ (Cθ PC>θ +Rφ )

−1Cθ PΓ
>,

ẑt , ẑt|t−1,

X̂t , X̂t|t−1.

Since using the steady-state Kalman filter prediction X̂t
provides a good prediction of Xt , then learning the steady-
state Kalman filter will intuitively provide a good prediction
of the reward Xt for each action a ∈ {1, . . . ,k}. Therefore,
to learn the steady-state Kalman filter, a variation of [24] is
used. Let s > 0 be the horizon length of how far we look
into the past. We define a matrix Ga for each a ∈ {1, . . . ,k}
and a vector Θt below

Ga ,
[
c>a (Γ−ΓKCθ )

s−1ΓK . . .

c>a ΓK ∑
s
τ=1〈ca,Γ

τ(µξ −µφ )〉+µa
]
∈ R1×(ms+1),

Θt ,
[
θ>t−s . . . θ>t−1 1

]> ∈ Rms+1×1. (5)

Using Ga and Θt defined above, it can be shown that the
reward Xt has the following expression

Xt = GaΘt + 〈ca,(Γ−ΓKCθ )
sẑt−s〉+ εa;t , (6)

where

εa;t , Xt − X̂t ,

= 〈ca,zt − ẑt〉+ηt ,

∼N (0,c>a Pca +ση).

Note that since Γ−ΓKCθ is Schur by construction, then
the magnitude of the term 〈ca,(Γ−ΓKCθ )

sẑt−s〉 decreases as
s increases. If given a set of time instants Ta = {t1, . . . , tNa}



then (6) can be rearranged in the following form

X>t1
...

X>tNa


>

= Ga

Θ>t1
...

Θ>tNa


>

+

 〈ca,(Γ−ΓKCθ )
sẑt1−s〉>+ ε>a;t1

...
〈ca,(Γ−ΓKCθ )

sẑtNa−s〉>+ ε>a;tNa


>

. (7)

A regularized least squares estimate for (7) is

Ĝa =

X>t1
...

X>tNa


>Θ>t1

...
Θ>tNa


λ I +

Θ>t1
...

Θ>tNa


>Θ>t1

...
Θ>tNa



−1

,

= ∑
τ∈Ta

Xτ Θ
>
τ V−1

a . (8)

where Va is defined to be

Va , λ I + ∑
τ∈Ta

Θτ Θ
>
τ , (9)

and λ ≥ 0 is the regularization parameter. Note that the λ I
is added so that that Va is positive definite and therefore
invertible.

IV. BANDIT STRATEGY

The action the learner ought to choose is the action that
the learner predicts will output the highest reward. This
prediction is based on the matrix Ĝa, which is an estimate
of the matrix Ga. Therefore, the learner should focus on
learning Ĝa for each action a ∈ {1, . . . ,k} at the beginning
and then choose an action based on Ĝa after the initial phase.

The proposed strategy the learner will use is the following.
The parameter to set is s, where a larger s value decreases
the bias term 〈ca,(Γ−ΓKCθ )

sẑt−s〉 in (6) which impacts the
identification error ||Ĝa−Ga||2. At the start of the algorithm,
the learner will cycle through each action a ∈ {1, . . . ,k}
round t = 1 to round t = ks. The learner will start computing
Ĝa once t > s. After round t = ks, the learner will choose
the action a ∈ {1, . . . ,k} that has the largest ĜaΘt value and
update Ĝa.

The proposed Algorithm 1, inspired by Explore-Then-
Commit [26], is summarized below.

V. REGRET ANALYSIS OF SB-ETC

The following theorem below provides a bound for regret
defined in (2).

Theorem 1: Given a failure rate of δ ∈ (0,1), regret as in
(2) has the following bound with a probability of at least

Algorithm 1 Systems-Based Explore-Then-Exploitation
(SB-ETC)

t← 1
for a ∈ {1, . . . ,k} do

Sa← 0
Ĝa← 01×ms+1
Ta←{}

end for
while t ≤ n do

if t > ks then
a← argmax

a∈{1,...,k}
ĜaΘt

else
a← argmax

a∈{1,...,k}

1
Sa

Sa← Sa +1
end if
if t > s then

for a ∈ {1, . . . ,k} do
Update Ta
Learn Ĝa based on (8) and (9)

end for
end if
Sample (θt ,Xt) based on (1)
t← t +1

end while

1−δ :

Rn ≤
ks

∑
t=1

∑
a6=a∗

E[〈∆ca,zt〉+∆µa]

+
n

∑
t=ks+1

∑
a6=a∗

Ez[〈∆ca,zt〉+∆µa|a]·

min

{
BaEΘ

[
||Θt ||2
|∆GaΘt |

]
,1

}
, (10)

where ∆ca, ∆µa and ∆Ga are defined to be

∆ca , ca∗ − ca, (11)

∆µa , µa∗ −µa, (12)

∆Ga , Ga∗ −Ga. (13)

and Ba is a bound such that with a probability of at least
1−δ :

||Ĝa−Ga||2 + ||Ga∗ − Ĝa∗ ||2 ≤ Ba. (14)
Proof: Using the law of iterated expectations [27], the

instanteneous regret for one round t = ks+1, . . . ,n is

E[X∗t −Xt ] = E[〈∆ca,zt〉+∆µa]

= Ea[Ez[〈∆ca,zt〉+∆µa|a]]

=
k

∑
a=1

Ez[〈∆ca,zt〉+∆µa|a]P[a], (15)

where ∆ca and ∆µa are defined in (11) and (12). In the
following, we will provide an upper bound for P[a]. Consider
the following event Ea

Ea , {ĜaΘt ≥ Ĝa∗Θt}, (16)



which implies that modeling error leads to selecting an action
rather than the optimal one. Note that P[a] is the following
probability

P[a] = P
[
∩i 6=a {ĜaΘt ≥ ĜiΘt}

]
= P

[
∩i 6=a,a∗ {ĜaΘt ≥ ĜiΘt}∩{ĜaΘt ≥ Ĝa∗Θt}

]
,

(17)

implying that P[a] ≤ P[Ea]. Adjusting the inequality in Ea
provides the following

ĜaΘt ≥ Ĝa∗Θt

GaΘt +(Ĝa−Ga)Θt ≥ Ga∗Θt

− (Ga∗ − Ĝa∗)Θt . (18)

Let ∆Ga be as in (13). Then (18) can be written as follows:

∆GaΘt ≤ (Ĝa−Ga)Θt

+(Ga∗ − Ĝa∗)Θt ,

which implies that

∆GaΘt ≤ ||Ĝa−Ga||2||Θt ||2
+ ||Ga∗ − Ĝa∗ ||2||Θt ||2. (19)

At this stage, we use (8) and (9) to express Ĝa for any
actions as follows:

Ĝa = ∑
τ∈Ta

GaΘτ Θ
>
τ V−1

a

+ 〈ca,(Γ−ΓKCθ )
sẑτ−s〉Θ>τ V−1

a

+ εa;τ Θ
>
τ V−1

a ,

= Ga(Va−λ I)V−1
a

+ ∑
τ∈Ta

〈ca,(Γ−ΓKCθ )
sẑτ−s〉Θ>τ V−1

a

+ ∑
τ∈Ta

εa;τ Θ
>
τ V−1

a ,

= Ga−λGaV−1
a

+ ∑
τ∈Ta

〈ca,(Γ−ΓKCθ )
sẑτ−s〉Θ>τ V−1

a

+ ∑
τ∈Ta

εa;τ Θ
>
τ V−1

a .

Thus, the `-2 norm ||Ĝa−Ga||2 is

Ĝa−Ga =−λGaV−1
a

+ ∑
τ∈Ta

〈ca,(Γ−ΓKCθ )
sẑτ−s〉Θ>τ V−1

a

+ ∑
τ∈Ta

εa;τ Θ
>
τ V−1

a ,

||Ĝa−Ga||2 ≤ ||λGaV−1
a ||2

+

∣∣∣∣∣
∣∣∣∣∣ ∑

τ∈Ta

〈ca,(Γ−ΓKCθ )
sẑτ−s〉Θ>τ V−1

a

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣ ∑

τ∈Ta

εa;τ Θ
>
τ V−1

a

∣∣∣∣∣
∣∣∣∣∣
2

. (20)

Since ρ(Γ) < 1, the estimate 〈ca,(Γ− ΓKCθ )
sẑτ−s〉 is

bounded. For the product εa;tΘ
>
t V−1

a , based on theorem 1
in [28], since εa;t is conditionally c>a Pca +ση -sub-Gaussian
and Θt is measurable, then given a failure rate δ ∈ (0,1),
this term is bounded with a probability of at least 1− δ .
Therefore, (14) is satisfied with a probability of at least 1−δ .
Denote (14) as E1. Now assuming E1 is given, the inequality
(19) can be rewritten as

Ba||Θt ||2 ≥ ∆GaΘt

⇒ ||Θt ||2
∆GaΘt

≥ 1
Ba

⇒ ||Θt ||2
|∆GaΘt |

≥ 1
Ba

. (21)

Let (21) be denoted as E2|E1. Based on the Markov
inequality [29], the following concentration bound is given

P[E2|E1]≤min

{
BaEΘ

[
||Θt ||2
|∆GaΘt |

]
,1

}
. (22)

Note (16) and (21) can be rewritten the following way

E2|E1 =
{

Ba
||Θt ||2
|∆GaΘt |

≥ 1
}
,

Ea =
{ (Ĝa−Ga)Θt +(Ga∗ − Ĝa∗)Θt

∆GaΘt
≥ 1
}
. (23)

Note that P[Ea]≤ P[E2|E1] is true if the following inequal-
ity is true.

Ba
||Θt ||2
|∆GaΘt |

≥ (Ĝa−Ga)Θt +(Ga∗ − Ĝa∗)Θt

∆GaΘt
. (24)

Since (24) is satisfied with a probability of at least 1−δ

based on (14), then P[Ea]≤ P[E2|E1] with a probability of at
least 1−δ . Therefore, (15) has the following upper bound

E[X∗t −Xt ] =
k

∑
a=1

Ez[〈∆ca,zt〉+∆µa|a]P[a]

≤ ∑
a6=a∗

Ez[〈∆ca,zt〉+∆µa|a]P[Ea]

≤ ∑
a6=a∗

Ez[〈∆ca,zt〉+∆µa|a]P[E2|E1].

Using (22), this provides the upper-bound for (15) with a
probability of at least 1−δ

E[X∗t −Xt ]≤ ∑
a6=a∗

Ez[〈∆ca,zt〉+∆µa|a]·

min

{
BaEΘ

[
||Θt ||2
|∆GaΘt |

]
,1

}
. (25)

Summing (25) over t rounds gives the bound (10).

Based on theorem 1, the regret performance is based on
the bound for model error Ba. Therefore, if the model is
known, then Ba = 0 sets the bound to be zero after t = ks
which is reasonable. Note that Ba is based on the number of
times action a is chosen, which can affect the upper bound.
For now, the exploration period is set to ks so that the learner



has s samples for each action a∈ {1, . . . ,k}. Future work will
focus on what is a more effective length for the exploration
period.

VI. APPLICATION TO TRADING

This section will exemplify the use of the proposed frame-
work. Let there be two stocks, i = 1,2 a trader is interested
in. The trader can either buy then sell either stock 1 or 2, or
refrain from trading for each round t = 1, . . . ,104. Figure 1
provides an example timeline of the trader’s strategy. The

Fig. 1. Example timeline of trader’s strategy.

context θt represent the price change for the stock. The
reward Xt is the financial gain (loss) deriving from trading
a stock. Both variables are sampled from the following
stochastic linear dynamical system, where its derivation is
in the Appendix.

z′t+1 =


0 0 0 0
0 0 0 0
0 0 0.9512 0
0 0 0 0.6065

z′t +ξt

θt =

[
−1 0 0.0353 0
0 −1 0 0.2987

]
z′t

Xt = 〈ca,z′t〉

, (26)

ξt ∼N

0,


0.9672 0 20.0957 0

0 0.6503 0 0.7536
20.09570 1112.3 0

0 0.7536 0 4.0537


 ,

ca ∈ {
[
−1 0 0.0353 0

]
,
[
0 −1 0 0.2987

]
,[

0 0 0 0
]
}.

For the model, the number of previous contexts θt that are
used is s = 10 and the regularization parameter λ = 10−1.
Since Γ is Schur, one could argue that the reward Xt is just
Gaussian distributed as t >> 0. Therefore, using UCB is a
reasonable method to use as a comparison. The parameter
used in UCB is δ = 0.1. To provide an upper bound on
the algorithm’s performance we use an oracle that leverages
optimal predicted awards generated by the Kalman filter
X̂t|t−1 (3) to choose the action ca ∈A .

Figure 2 contains the instanteneous regret (the top plot)
and regret (the bottom plot) of the learner using UCB (the
red line), algorithm 1 (the blue line), and the oracle (the

green line) averaged across 1,000 different simulations. Even
though the system converges to the steady-state, UCB still
performs sub-par compared to algorithm 1. Figure 3 is a
comparison of just algorithm 1 and the oracle. It can be
observed that algorithm 1 instantenous regret is converging
to the oracle’s instanteneous regret.

Fig. 2. Figure for algorithm performance for UCB, algorithm 1, and the
oracle.

Fig. 3. Figure for algorithm performance for algorithm 1 and the oracle.

VII. CONCLUSION

This paper introduces a new variant of the stochastic
multi-armed bandit where the rewards are sampled from an
unknown stochastic linear dynamical system. To approach
this problem, the learner first explores all the actions to
learn the underlying linear model. Using the learned model,
the learner uses the model to predict the action with the
highest reward. Simulation results show how the proposed



strategy yields near optimal actions after the learning phase.
An application to high frequency trading is used to illustrate
the methods and the results.
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APPENDIX

The trader models the price evolution of stock i (denoted
as S[i]τ ) using the following stochastic differential equation
for τ ∈ [0,T ] based on [11].

dS[i]τ

S[i]τ

= M[i]
τ dτ +dW [i]

τ

dM[i]
τ = κ[i]

(
1
2 −M[i]

τ

)
dτ +σ[i]dV [i]

τ

, (27)

where κ[i] and σ[i], i = 1,2, are defined to be[
κ[1]
κ[2]

]
,

[
10−1

1

]
,[

σ[1]
σ[2]

]
,

[
10
1

]
. (28)

The variable M[i]
τ is the drift rate of stock i, κ[i] is the

speed of reversion (the rate M[i]
τ returns to its mean), and

σ[i] sets the magnitude of dV [i]
τ . Both dW [i]

τ and dV [i]
τ are

independent Gaussian distributed random variables with a
variance of 1 with no time correlation, i.e. dW [i]

τ ∼N (0,δτ)

and dV [i]
τ ∼N (0,δτ) where δτ is the delta dirac function. Let

Y [i]
τ = log(S[i]τ ). Using Itô’s lemma, the stochastic differential

equation for log(S[i]τ ) is

d log(S[i]τ ) =

〈
∂ log(S[i]τ )

∂S[i]τ

,S[i]τ M[i]
τ

〉
dτ

+
1
2

〈
∂ 2 log(S[i]τ )

∂ (S[i]τ )2
,(S[i]τ )2

〉
dτ

+

〈
∂ log(S[i]τ )

∂S[i]τ

,S[i]τ

〉
dW [i]

τ , (29)

d log(S[i]τ ) =
1

S[i]τ

S[i]τ M[i]
τ dτ +

(
1
2

)(
−1

(S[i]τ )2

)
(S[i]τ )2dτ

+
1

S[i]τ

S[i]τ dW [i]
τ , (30)

d log(S[i]τ ) =
(

M[i]
τ −

1
2

)
dτ +dW [i]

τ . (31)



This leads to the following stochastic differential equa-
tions:

dY [i]
τ =

(
M[i]

τ − 1
2

)
dτ +dW [i]

τ

dM[i]
τ = κ[i]

(
1
2 −M[i]

τ

)
dτ +σ[i]dV [i]

τ

. (32)

Let the following matrices and vectors be defined as
below:

y(τ),
[
Y [1]

τ Y [2]
τ

]>
,

m(τ),
[
M[1]

τ M[2]
τ

]>
,

κ ,

[
κ[1] 0
0 κ[2]

]
,

F ,

[
0 I2

0 −κ

]
,

dw(τ),
[

dWτ

σdVτ

]
∼N (0,Σδτ),

Σ ,


1 0 0 0
0 1 0 0
0 0 σ2

[1] 0
0 0 0 σ2

[2]

 ,

Bµ ,


−1/2
−1/2
κ[1]/2
κ[2]/2

 . (33)

This provides the stochastic linear dynamical system[
dy(τ)
dm(τ)

]
=
(

F
[

y(τ)
m(τ)

]
+Bµ

)
dt +dw(τ). (34)

System (34) is discretized with intervals of size ∆T
(n∆T = T ) which gives the following discrete-time stochastic
linear dynamical system[

y(t∆T +∆T )
m(t∆T +∆T )

]
= exp(F∆T )

[
y(t∆T )
m(t∆T )

]
+∆Bµ +∆w(t∆T ), (35)

where ∆Bµ and ∆w(t∆T ) are defined below.

∆Bµ ,
∞

∑
i=0

F iBµ

∆T i+1

(i+1)!
, (36)

∆w(t∆T )∼N (0,Ξ),

Ξ =
∫ (t+1)∆T

t∆T
eF((t+1)∆T−τ)SeF>(t+1)∆T−τ)dτ. (37)

Equations (36) and (37) are from [30]. Evaluating (37) is
analytically intractable; therefore, [31] is used to approxi-
mate Ξ.[

Φ1,1 Φ1,2

0 Φ2,2

]
= exp

([
−F> Σ

0 F

]
∆T

)
,

Φ
>
2,2Φ1,2 ≈ Ξ. (38)

Say that the trader uses the following strategy: the trader
buys stock i at the start of time t∆T −∆T and then sells that

stock at time t∆T . Define reward Xt for this time period to
be

Xt , Y [i]
t∆T −Y [i]

(t−1)∆T = log
( S[i]t∆T

S[i]
(t−1)∆T

)
. (39)

Therefore, the difference Y [i]
t∆T−Y [i]

(t−1)∆T is the logarithm of
the percentage increase/decrease of buying at t∆T −∆T and
then selling at t∆T . We extend (35) by using the following
matrices and vectors:

zt ,

 y(t∆T )
m(t∆T )

y(t∆T −∆T )

 ∈ R6,

Γ ,

[
F 0

I2 0

]
,

µξ ,
[
∆B>µ 0>

]>
,

ξt ∼N (µξ ,Q),

Q ,

[
Φ>2,2Φ1,2 0

0 0

]
,

Cθ ,

[
1 0 0 0 −1 0
0 1 0 0 0 −1

]
,

ca ∈ {
[
1 0 0 0 −1 0

]>
,[

0 1 0 0 0 −1
]>

,[
0 0 0 0 0 0

]>}. (40)

Finally, the eigenvectors
[
U U ′

]
of Γ are computed,

where (CθU,U−1ΓU) is observable and U−1ΓU is Schur.
This transformation provides (26).
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