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Abstract— The classical Lyapunov analysis of stable fixed
points is extended to perturbed dynamical systems that may not
have any fixed point due to perturbations. Practical stability
is meant here to assess the convergence of such systems. This
is achieved by investigating a parametric optimization problem
encoding some worst-case Lie derivative. Key properties of this
parametric optimization problem are formulated. The proposed
framework is finally applied to a class of perturbed linear
systems tracking a highly nonlinear reference.

I. INTRODUCTION

Lyapunov’s method is one of the most widely used tools
to assess the stability of dynamical systems [10], [12].
Broadly applied for both linear and non-linear systems, it
can be generalized to study the stability of a larger class
of dynamical systems, such as uncertain and non-continuous
systems [7]. Lyapunov’s theory is intrinsically local in its
formulation and, while it allows for the analytical assessment
of global stability in general, evaluating the exact Region
of Attraction (ROA) of an equilibrium is a hard problem,
even when the dynamics are known. The ROA’s estimation
problem has been extensively studied in the literature [2] and
we can find several well known approaches to the problem.
Classically, we can estimate the ROA by evaluating the
invariant sub-level sets of a given fixed Lyapunov function. In
the case of polynomial systems, the evaluation is performed
solving optimization problems with linear matrix constraints,
exploiting the sum-of-squares relaxation in polynomial opti-
mization [5], [9], [4]. It’s possible to generalize this approach
to allow for parametric Lyapunov functions [14], [4]. These
techniques can be generalized to compute the robust ROA
of perturbed systems under bounded disturbances [8], [11].

All these methods require that there exists a stable and
robust (i.e. perturbation-independent) equilibrium for the
system. This is a major drawback, since in a large class
of real-world problems this hypothesis is not satisfied. An
important example of this is the problem of tracking a
moving target with unknown dynamics, which is a common
problem that cannot, a priori, allow for a robust equilibrium
point. In these problems it could still be possible however
to discuss the practical stability of the system, i.e. to assess
whether the system, while technically unstable in theory, can
be considered to be stable in practice. Consider, for instance,
the case where the tracking system quickly reaches a small
neighborhood of the target while never actually converging
to it. Motivated by this, we want to relax the requirement of a

robust equilibrium by using instead the concept of attractor.
An attractor is a set of states which is positively invariant and
attracting, i.e. such that the system converges to it (possibly
in infinite time) when its initial state is close enough to the
attractor. In the tracking system example discussed above, the
attractor would be the small neighborhood of the target; this
characterization, however, holds in more general settings.

The main contribution of this paper is to characterize the
practical stability of perturbed systems with bounded pertur-
bations by exploiting a given candidate Lyapunov function.
The proposed definition of value function associated to the
system and candidate Lyapunov function allows character-
izing the system’s attractors, hence extending the classical
Lyapunov analysis of attracting fixed points. Our formulation
does not require any underlying structure for the dynamics of
the system, relaxing the classical hypothesis of polynomial
dynamics and allowing for the study of a large class of non-
linear, perturbed systems.

The paper is organized as follows. In Section II we
generalize the classical ROA’s estimation problem to the
identification of an attractor and the estimation of its ROA,
and we show that this problem can be framed as a para-
metric optimization problem, using the candidate Lyapunov
function’s level sets as parameter. In Section III we study the
continuity of the parametric optimization problem’s solution,
showing that, under common assumptions, we can expect
it to be well-behaved. Finally, in Section IV we apply our
results to discuss the practical stability of a class of perturbed
linear systems.

II. PRACTICAL STABILITY OF PERTURBED SYSTEMS

We consider a perturbed system ẋ = f(x,w), where
w ∈ W represents a time-dependent, unknown perturbation,
with f continuous1 with respect to both x and w and W a
compact set. We also define a candidate Lyapunov function,
that we denote with V (x), to be a continuously differentiable
function satisfying:

V (x) ≥ 0 and V (x0) = 0 (1)

for some x0. For practical purposes, one can think of V
to be a standard Lyapunov function (see, e.g., [12]) for the
nominal system ẋ = f(x, 0). If f(x, 0) is a feedback system,

1Lipschitz continuity with respect to x would enforce uniqueness of
trajectories, but is not required for Lyapunov-based stability analysis.



we can then see our method as a characterization of the
perturbation’s effects on the nominal controller. Still, this
is not a strict requirement for our analysis and the weaker
hypotheses (1) suffice.

Given f and V , we propose to define the function m(c)
that associates to a target value c of the candidate Lyapunov
function the worst-case Lie derivative on the corresponding
level set:

m(c) = sup
x∈Vc

Φ(x) (2a)

Φ(x) = sup
w∈W

∇V (x)T f(x,w), (2b)

where Vc = {x ∈ X : V (x) = c} is the level set with value c.
We call this function the value function2 associated to f and
V , or simply the value function when the associated system
and candidate Lyapunov function are clear from the context.
Sufficient conditions for the two supremum to be maximum
are investigated in the next section. The obvious usefulness
of the value function is summarized in the following two
properties, valid under the typical assumption that the level
sets of the candidate Lyapunov function involved in these
properties are compact:

1) If m(c) < 0 inside the interval (c, c], for some 0 <
c < c, then the sublevel set V≤c is an attractor and
the sublevel set V≤c is inside its region of attraction,
i.e. V≤c is an estimated region of attraction for the
attractor.

2) If m(c) < 0 inside (c,+∞) for some 0 < c, then the
sublevel set Vc is a global attractor.

As discussed in the introduction, for a practically stable
system we typically expect that m(c) > 0 inside (0, c∗) and
m(c) < 0 inside (c∗,+∞): provided that V is proper, i.e.,
has bounded level sets, all trajectories will converge inside
the positively invariant set Vc∗ . The usefulness of the value
function defined here is of course balanced by the difficulty
of computing it. Its formal evaluation is carried out for a
class of perturbed linear system in Section IV.

In the general case, the quest of finding an interval where
the value function is negative provides a strong temptation:
computing its roots is of course a simpler and appealing ap-
proach. The roots of the value function can be characterized
by using the Karush–Kuhn–Tucker (KKT) conditions applied
to the optimization problem3 (2):

∇2V (x)f(x,w) +
(
fx(x,w)T + λI

)
∇V (x) = 0 (3a)(

fw(x,w)T + µI
)
∇g(w) = 0 (3b)

V (x)− c = 0 (3c)
µg(w) = 0 (3d)

∇V (x)T f(x,w) = 0, (3e)

2The theoretical machinery, i.e., Berge’s maximum theorem and the
hemicontinuity of set valued functions, used throughout the paper comes
mainly from economics, the field in which the name value function has
been defined.

3By substituting the definition of Φ(x) into (2a), we can see m(c) as the
solution of a single optimization problem in x and w.

Fig. 1. Example of upper (on the left) and lower (on the right) semicon-
tinuous functions, where the solid black point denotes h(1). In practice,
the only difference is whether h(1) is at the top or bottom portion of the
discontinuity.

where ∇2V denotes the Hessian of V , fx, fw the Jacobians
of f w.r.t. x and w, g(w) represents the constraints on
w (i.e. W = {w : g(w) ≤ 0}) and λ, µ ∈ R are the
KKT multipliers. In addition to the usual KKT conditions,
we consider c as a variable and we add the constraint
V̇ (x,w) = 0 in order to find a solution compatible with
m(c) = 0. However, this simple intuition hides a trap: if
the value function is not continuous, we might incur in a
change of sign without passing through zero, rendering this
approach useless. Thus, before we succumb to temptation, It
is crucial to characterize the properties of f , V that guarantee
the value function’s continuity.

III. CONTINUITY OF THE VALUE FUNCTION

As seen in Section II, the continuity of the value function
plays an important role in choosing the strategy to evaluate
it. We want to study the continuity of m(c) by investigating
its upper semicontinuity and lower semicontinuity separately.
Intuitively, the continuity property can be ”split” into these
two sub-properties, and we find that a function is continuous
when both hold at the same time. For a scalar function (like
m(c)), the following definition applies [1].

Definition 1: Let h : H ⊂ R→ R ∪ {−∞,+∞}. Then:
1) The function h is called upper semicontinuous at c̄ if,

for any ε > 0, there exists δ > 0 such that:

|c− c̄| < δ =⇒ h(c) ≤ h(c̄) + ε (4)

2) The function h is called lower semicontinuous at c̄ if,
for any ε > 0, there exists δ > 0 such that:

|c− c̄| < δ =⇒ h(c) ≥ h(c̄)− ε (5)

A function h which is upper (lower) semicontinuous on its
whole domain is simply called upper (lower) semicontinuous.
If it is both upper and lower semicontinuous, then it is a
continuous function.
An example of the difference between upper and lower
semicontinuity can be seen in Figure 1. While, technically, in
this definition we ask the codomain of h to be the extended
reals R∪{−∞,+∞}, in practice, for m(c), we can consider
to have the set of real numbers R as codomain. Moreover,
due to the positive definiteness of V , its domain is R+.

We are ready to discuss our results. First of all, we show
that, under typical assumptions on f and V , the function
Φ(x) is continuous.

Proposition 1: Let V : X → R be a function of class C1,
and let f : X ×W → Rn be continuous in x and w, where



Fig. 2. On the left, plot of V (x) defined in (7). The dotted line represents
the horizontal asymptote for x → +∞. On the right, the corresponding
value function, where the solid black point denotes the value of m at the
discontinuity.

W is a compact set. Then, Φ(x) is a continuous function
and the maximum is attained, i.e. Φ(x) can be written as a
max instead of sup.

Proof: Being both ∇V (x) and f(x,w) continuous,
the product ∇TV (x)f(x,w) is continuous as well. Thus,
by considering W as a constant (and so continuous) set-
valued function with nonempty compact values, we can
directly apply Berge’s maximum theorem [1, Th. 17.31],
which proves that Φ(x) is continuous.
While promising, the continuity of Φ(x) is not sufficient to
guarantee the continuity of the value function. Consider, for
instance, the unperturbed, scalar system defined as:

ẋ = f(x) =

{
− 10x

(0.1x2+5)2 if x > 0

−2x if x ≤ 0
, (6)

and let:

V (x) =

{
x2

0.1x2+5 if x > 0

x2 if x ≤ 0
(7)

be its candidate Lyapunov function. The plot of V is shown
in Figure 2.

It is easy to verify the continuity and continuous differ-
entiability of f and V , respectively. Moreover, we can see
that f(x) = −V ′(x), meaning that the Lie derivative is
V̇ (x) = −(V ′(x))2, which is negative for all x ∈ R\{0}.
Even with a scalar and globally asymptotically stable system,
we can see, in Figure 2, that the value function is not upper
semicontinuous: this is due to a sudden change of the worst-
case Lie derivative at the level of the horizontal asymptote.

The lower semicontinuity of the value function is not
guaranteed either. Consider, for instance, the system:

ẋ = f(x) = −4x(x2 − x− 2), (8)

with candidate Lyapunov function:

V (x) = x4 − 4

3
x3 − 4x2 +

32

3
. (9)

Similarly to the previous example, we have a system of the
form f(x) = −V ′(x). As we can see in Figure 3, in this case
as well, the value function is discontinuous, in particular it
is not lower semicontinuous: this is due to sudden changes
of the worst-case Lie derivative at the levels of the local
minimizer and local maximizer.

Motivated by this, we want, in the following theorem, to
independently study the upper and lower semicontinuity of

Fig. 3. On the left, plot of V (x) defined in (9). On the right, the
corresponding value function, where the solid black points denote the values
of m at the discontinuities.

the value function. The theorem’s proof relies on the same
foundations of the already introduced Berge’s maximum
theorem: as we will see, the upper and lower semicontinuity
of m(c) depend on the continuity of Φ(x) and the hemicon-
tinuity4 of Vc, seen as a set-valued function Vc : R+ ⇒ X .
We have the following.

Theorem 1: Let V , f satisfy the same hypotheses of
Prop. 1. Then, the following holds true:

1) If V is radially unbounded, then m(c) is upper semi-
continuous and the maximum is attained, i.e. m(c) can
be written as a max instead of sup.

2) If, for all x ∈ Vc̄, ∇V (x) 6= 0, then m(c) is lower
semicontinuous at c̄.

Remark 1: Case 1 rules out situations illustrated by (6)–
(7), while Case 2 rules out situations illustrated by (8)–(9).

Proof: Due to Proposition 1, Φ(x) is continuous in the
theorem’s hypotheses. Thus, we focus in this proof on the
upper and lower hemicontinuity of Vc.

We start with the first statement. Being V continuous, then
the preimage of a closed set through V is closed as well,
meaning that Vc is closed. Moreover, the radial unboundness
of V implies that Vc is bounded, for all c ∈ R+. Thus,
by [3, Cor. 21], Vc is upper hemicontinuous, which means
that, by [1, Lemma 17.30], m(c) is a max and it is upper
semicontinuous.
The second statement’s proof is proved in a similar fashion,
albeit more involved. Firstly, we show that Vc is inner
hemicontinuous at c̄, which is a property equivalent to the
lower hemicontinuity [3, Prop. 23]. By its definition, we have
that Vc is inner hemicontinuous at c̄ if, for all x̄ ∈ Vc̄, it holds
true that:

∀{ck} → c̄, ∃xk ∈ Vck : xk → x̄ (10)

We prove the inner hemicontinuity of Vc by contradiction.
Suppose that Vc is not inner hemicontinuous at c̄. That means
that there exists x̄ ∈ Vc̄ such that:

∃{ck} → c̄ : ∀xk ∈ Vck , xk 6→ x̄. (11)

Consider the restriction of V , centered in x̄ and along the
direction of its gradient evaluated at x̄, i.e. the scalar function
V̄ (h) = V (x̄ +∇hV (x̄)). Notice that, by the continuity of

4Hemicontinuity generalized the concept of continuity for set-valued
functions. Intuitively, a set-valued function is not lower hemicontinuous if
we have a sudden ”explosion” of its value (e.g. a new connected component
appearing), and similarly it is not upper hemicontinuous if we have a sudden
”implosion”. For a formal introduction see, e.g., [1].



V , V̄ is continuous. Moreover, there exists an open interval
H ⊂ R, with 0 ∈ H , such that V̄ is strictly increasing over
H . This is due to the fact that the derivative DV̄ (h) evaluated
at zero is:

DV̄ (h)|h=0 = ‖∇V (x̄)‖2 > 0, (12)

and, by the continuity of ∇V , there exists a neighbourhood
of the origin (i.e. an open interval H containing zero)
where (12) holds true, meaning that V̄ is strictly increasing
on H . Thus, V̄ admits a continuous inverse V̄ −1 on H . Its
continuity means that:

∀{ck} → c̄, V̄ −1(ck)→ V̄ −1(c̄) = 0 (13)

Let hk = V̄ −1(ck). By defining the sequence {xk}k∈N as
xk = x̄+ hk∇V (x̄), it follows from Eq. (13) that:

∀{ck} → c̄, xk → x̄ (14)

which is in contradiction with Eq. 11, proving the inner (and,
thus, lower) hemicontinuity of Vc at c̄. By [1, Lemma 17.29],
the lower hemicontinuity of Vc at c̄ implies that m(c) is lower
semicontinuous at c̄, concluding the proof.

IV. APPLICATION TO LINEAR TRACKING SYSTEMS WITH
BOUNDED VELOCITY TARGET

A. Upper bound of the value function for linear systems with
bounded uncertain right hand side

We consider the linear system

ż = Az + w, (15)

where A is a stable matrix (i.e. all eigenvalues have negative
real part) and the uncertainty w is bounded inside W =
{w ∈ Rn : ‖w‖ ≤M}. We consider a quadratic Lyapunov
function V (z) = zTPz for the nominal system with P
symmetric positive-definite (SPD). The Lie derivative for the
system with nominal w = 0 is given by zT (PA + ATP )z,
which is supposed to be negative-definite. Such a matrix P
is usually obtained by choosing an arbitrary SPD matrix Q,
typically Q = I , and solving the Lyapunov equation

PA+ATP +Q = 0. (16)

The following theorem provides an upper bound for the value
function associated to the system and the Lyapunov function
defined above.

Theorem 2: Let P , Q be positive-definite matrices that
Lyapunov’s equation (16) holds. Then, m(c) ≤ m(c) with

m(c) = σ1c+ 2M
√
λ1

√
c, (17)

where σ1 is the greatest eigenvalue of
(
−P−1Q

)
and λ1 is

the greatest eigenvalue of P . Furthermore, σ1 < 0.
Proof: With these hypotheses, m(c) can be written as:

m(c) = max
z∈Vc

Φ(z). (18)

Here we have

Φ(z) = max
w∈W

(
−zTQz + 2zTPw

)
(19)

= −zTQz + 2 max
w∈W

zTPw. (20)

Fig. 4. Graph of −c +
√
c.

Using Cauchy-Schwarz inequality and the bound on the norm
of w, we obtain zTPw ≤ ‖Pz‖ ‖w‖ ≤ M‖Pz‖, with the
equality holding when w is parallel to Pz. SinceW is a ball
of radius M , such a w parallel to Pz with norm M exists
and we have Φ(z) = −zTQz+ 2M‖Pz‖. This leads us to:

m(c) = max
z∈Vc

[
−zTQz + 2M‖Pz‖

]
(21a)

≤
(

max
z∈Vc

−zTQz
)

+ 2M

(
max
z∈Vc
‖Pz‖

)
, (21b)

where the optimization problem is split into two independent
subproblems that can be solved independently.

For the second subproblem, we solve maxz∈Vc‖Pz‖2.
Lagrange’s first-order conditions yield P 2z − µPz = 0,
which must hold for some µ ∈ R. Being P invertible, this
is equivalent to solving Pz = µz, leading to

max
zTPz=c

‖Pz‖2 = max
zTPz=c
µ∈Λ(P )

µzTPz = λ1c, (22)

where Λ(P ) is the spectrum of P and λ1 = max {Λ(P )}
is the greatest eigenvalue of P . The second subproblem
maximum is therefore

√
λ1c.

For the first subproblem, Lagrange’s first-order conditions
of maxz∈Vc −zTQz lead to −Qz − µPz = 0 for some µ ∈
R. We notice that the values of µ that satisfy this equation
are the generalized eigenvalues [13] of the symmetric matrix
pencil (−Q,P ), whose set we denote with Λ(−Q,P ). Being
P positive-definite, we know that we have n real generalized
eigenvalues (see [13, Th. 15.3.3]), that we denote, w.l.o.g.,
with σ1 ≥ · · · ≥ σn. Thus, by substitution, we have that:

max
zTPz=c

−zTQz = max
zTPz=c

µ∈Λ(−Q,P )

µzTPz = σ1c, (23)

which allows us to write:

m(c) ≤ σ1c+ 2M
√
λ1

√
c. (24)

We conclude the proof by noticing that, being P invertible,
the generalized eigenvalues of the pencil (−Q,P ) are equal
to the eigenvalues of −P−1Q, and that, being −zTQz < 0
for all z 6= 0, we have that σ1c < 0 for c 6= 0, proving that
σ1 is indeed negative.



Fig. 5. Left: r(t); right: r′(t) with a circle of radius 6.

If M is not zero then m(c) starts with an infinite derivate
at c = 0, has a single maximum at c = λ1(Mσ1

)2 and
limc→∞m(c) = −∞. Its typical graph is shown in Figure 4.
The function m(c) has a unique positive root

c∗ =
4M2λ1

σ2
1

, (25)

and is negative for greater values of c. The positive definite
quadratic Lyapunov function being radially unbounded, the
sublevel set V≤c∗ is proved to be a global attractor of the
uncertain system (15). In the typical case where Q = I we
have σ1 = −1

λ1
and the root’s expression simplifies to

c∗ = 4M2λ3
1. (26)

B. Linear tracking systems with bounded velocity target

We consider a simple linear system with known input
matrix gain A of the form:

ẋ = Au, (27)

where x ∈ Rn is the system’s state, u ∈ Rn its input and
A ∈ Rn×n is stable. The target reference signal r(t) ∈ Rn is
measured at all times, and we assume the knowledge of an
upper bound M on ‖ṙ(t)‖. The proportional control u(t) =
−k(x(t) − r(t)), k > 0, leads to the following closed loop
system:

ẋ(t) = kA
(
x(t)− r(t)

)
. (28)

The dynamic of the tracking error z(t) = x(t)− r(t) is then

ż(t) = kAz(t)− ṙ(t). (29)

We use Theorem 2 to find a globally attracting sublevel set
V≤c∗ . In order to compare the sublevel sets for different
gains, we consider the Lyapunov function V (z) = zTPz
with PA+ATP+I = 0 independently of the gain k. There-
fore, the matrix Q that satisfies the Lyapunov equation (16) is
Q = kI . Since Q is proportional to I , the sublevel value (25)
now simplifies to

c∗ =
4M2λ3

1

k2
. (30)

C. Numerical application

We consider the following highly oscillating target,

r(t) =

(
cos(2t) + 2 sin(2t) + 0.5 sin(3t)

sin(t)− cos(3t)

)
, (31)

TABLE I
Values of c∗ obtained using Theorem 2 for different gain values.

k 5 10 50 100
c∗ 3.73 0.932 0.0373 0.00931

Fig. 6. Tracking error of the proportional linear tracking system for the
same initial condition, whose initial error is denoted with a black point,
together with the globally attracting ellipsoids, for different values of the
gain k ∈ {5, 10, 50, 100}, with western reading direction.

whose velocity is bounded by M = 6, see Figure 5. The
matrix A is chosen to be non symmetric and P follows
solving PA+ATP + I = 0:

A =

(
−2 5
−1 −1

)
and P =

(
3
14

1
14

1
14

6
7

)
. (32)

The largest eigenvalue of P is λ1 = 1
28 (15 +

√
85) ≈

0.86. The globally attractive sublevel values obtained using
Theorem 2 for different values of the gain k are given in
Table I. The trajectories of the system and the globally
attracting sublevel sets obtained by Theorem 2 are shown
in Figure 6, while in Figure 7 we can see the value of the
Lyapunov function with respect to time.

D. Application of Theorem 1

The positive definite quadratic Lyapunov function satisfies
the hypothesis of Theorem 1, which proves that the exact
value function m(c) is continuous. We can therefore infer

Fig. 7. Lyapunov function’s value along the trajectories of the proportional
linear tracking system (in blue) together with the globally attracting level
set’s value (in orange), for different values of the gain k ∈ {5, 10, 50, 100},
with western reading direction.



TABLE II
Values of c for the extremal values leading to a zero Lie derivative, with

the corresponding values of the value function.

k 5 10 50 100
c1 0.0507 0.0127 0.000507 0.000127
c2 3.73 0.932 0.0373 0.00931

m(c1) 2.21 1.10 0.221 0.110
m(c2) 0 0 0 0

the sign of m(c) by computing its roots. The system (3) that
characterizes its roots is now

−Qx+ Pw + λPx = 0 (33a)
Px+ µw = 0 (33b)

xTPx = c (33c)

µ(wTw −M2) = 0 (33d)

−xTQx+ 2xTPw = 0. (33e)

It is polynomial of degree three5 and can be solved using
formal computations. For each gain value, we find four
solutions showing two distinct values of c, given in Table II.
The solutions with c2 correspond exactly to the solutions
previously computed, while c1 < c2. We therefore expect the
latter to be local maximizers. This is confirmed by evaluating
m(c1) and m(c2) as follows: for these values of c, we solve
the system (33) with the last equation removed. This is a
square system of equations6 that encodes Lagrange first order
conditions for the Lie derivative, its solutions therefore in-
clude the global maximizer. The global maximizers obtained
this way are shown in Table II and confirm that c2 is indeed
the unique positive root of m(c).

Surprisingly, both m(c) computed here and m(c) com-
puted in the previous section have the same unique posi-
tive root (compare Table I and Table II), while the upper
bound (21) should entail some overestimation. This coinci-
dence is left for future investigations.

V. CONCLUSION

In this paper, we introduced the concept of value function
associated to a perturbed dynamical system and a candidate
Lyapunov function. We have shown that by analyzing this
function it is possible to identify and study the system’s
attractors, even in cases where the system lacks robust
equilibria and when its vector field is nonlinear. In appli-
cations, this translates in the ability to assess the practical
stability of a system, providing quantitative information on
the trajectories’ proximity to the unperturbed equilibrium
and allowing for the evaluation of a region of attraction’s
estimate. On the downside, the value function is difficult
to compute, requiring ad-hoc, non-trivial theoretical results
even in the case of linear systems with a simple perturbation
structure.

5The only degree three monomial in the system is the complementarity
constraint (33d), which is actually a simple alternative. The system can
therefore be solved as two degree two systems.

6With respect to the square system (33), the variable c is now fixed, and
one equation has been removed, hence leading to a new square system.

However, Theorem 1 opens the way to using root finding
algorithms for locating the roots of m(c), deducing intervals
of negative values and identifying the corresponding attrac-
tors. The use of numerical solvers and computer-assisted
proof methods to perform this evaluation will be the subject
of future studies. In particular, the use of interval analysis [8],
which do not require any particular structure for the system’s
vector field, to find the value function’s root in a validated
way seems promising and is currently under investigation.

Even though we specialize the value function’s definition
for perturbed systems, it can clearly be generalized to allow
for a generic differential inclusion. Thus, it appears logical
to try to extend this approach to a larger class of systems,
naturally defined as differential inclusions (for instance, sys-
tems with discontinuous vector fields). Moreover, by using
the notion of set-valued Lie derivative, it would be possible
to relax the continuous differentiability of V (x), allowing for
Lipschitz continuous candidate Lyapunov functions, which
are necessary in several applications (e.g. in sliding mode
control [6]).
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