
ar
X

iv
:2

20
3.

11
30

7v
1

 [
m

at
h.

O
C

]
 2

1
M

ar
 2

02
2

1

Faster Asynchronous Nonconvex Block Coordinate

Descent with Locally Chosen Stepsizes

Matthew Ubl⋆ and Matthew T. Hale⋆

Abstract

Distributed nonconvex optimization problems underlie many applications in learning and autonomy, and such

problems commonly face asynchrony in agents’ computations and communications. When delays in these operations

are bounded, they are called partially asynchronous. In this paper, we present an uncoordinated stepsize selection rule

for partially asynchronous block coordinate descent that only requires local information to implement, and it leads to

faster convergence for a class of nonconvex problems than existing stepsize rules, which require global information

in some form. The problems we consider satisfy the error bound condition, and the stepsize rule we present only

requires each agent to know (i) a certain type of Lipschitz constant of its block of the gradient of the objective and

(ii) the communication delays experienced between it and its neighbors. This formulation requires less information

to be available to each agent than existing approaches, typically allows for agents to use much larger stepsizes, and

alleviates the impact of stragglers while still guaranteeing convergence to a stationary point. Simulation results provide

comparisons and validate the faster convergence attained by the stepsize rule we develop.

I. INTRODUCTION

A number of applications in learning and autonomy take the form of distributed optimization problems in which a

network of agents minimizes a global objective function f . As these problems grow in size, asynchrony may result

from delays in computations and communications between agents. For many problems (i.e., those such that ∇2f

is not block-diagonally dominant [1, Theorem 4.1(c)]), arbitrarily long delays may cause the system to fail to

converge [2, Chapter 7, Example 1.3]. Synchrony can be enforced by making faster agents idle while waiting for

communications from slower agents, though the network will suffer from “straggler” slowdown, where the progress

of the network is restricted by its slowest agent. This has led to interest in partially asynchronous algorithms, which

converge to a solution when all delays in communications and computations are bounded by a known upper limit

B [3], [4].

Partially asynchronous algorithms avoid requiring agents to idle by instead “damping” the dynamics of the system

based on knowledge of B. For gradient-based algorithms, this is achieved by reducing agents’ stepsize γ as B grows.

While this method (along with mild assumptions on f) ensures convergence when all delays are bounded by B,

straggler slowdown is still present. Specifically, in existing block coordinate descent algorithms, if just one agent’s

⋆Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA. Emails:

{m.ubl,matthewhale}@ufl.edu. This work was supported by AFOSR under grant FA9550-19-1-0169, ONR under grants N00014-

19-1-2543 and N00014-21-1-2495, and by a Task Order contract with the Air Force Research Laboratory, Munitions Directorate, at Eglin

AFB.

March 23, 2022 DRAFT

http://arxiv.org/abs/2203.11307v1

2

delays have length up to B, then every agent’s stepsize is O(1/B), even if the delays experienced by the other

agents are much shorter than B [3]–[5]. When B is large, this method leads to excessively small stepsizes, which

significantly slow convergence. This stepsize rule also requires agents to have knowledge of B, which may be

difficult to gain. For example, agents in a large network may not know the lengths of all delays experienced by all

agents.

In this paper, we will instead show that, under the same standard assumptions on f in seminal work in [3], a

gradient-based partially asynchronous algorithm converges to a solution while allowing agents to choose uncoor-

dinated stepsizes using only local information. That is, agent i may choose its own stepsize γi as a function of

only a few entries of ∇f and only the communication delays between itself and its neighbors. We analyze block

coordinate descent because it is widely used and because it is a building block for many other algorithms. In this

and related algorithms, the stepsize is the only free parameter and it has a substantial impact on convergence rate,

which makes the use of larger values essential when possible. We prove that agents still converge to a stationary

point under this new stepsize rule, and comparisons in simulation validate the significant speedup that we attain.

To the best of the authors’ knowledge, this is the first proof of convergence of a partially asynchronous algorithm

with uncoordinated stepsizes chosen using only local information.

Related work in [6]–[11] allows for uncoordinated stepsizes that differ across agents, though they must still obey

a bound computed with global information. In contrast, in this paper each agent’s stepsize bound can be computed

using only local information, i.e., global Lipschitz constants and global delay bounds are not required, hence the

“locally chosen” label. Existing literature with locally chosen stepsizes either requires a synchronous setting [12],

diminishing stepsizes [13], [14], or for ∇2f to be block diagonally-dominant [15], whereas we do not require any

of these.

The rest of the paper is organized as follows. Section II gives the problems and algorithm we study. Then

Section III proves convergence under the local stepsize rule we develop and gives a detailed discussion of our

developments in relation to recent work. Section IV empirically verifies the speedup we attain, and finally Section V

concludes.

II. PROBLEM STATEMENT AND PRELIMINARIES

This section establishes the problems we solve, the assumptions placed on them, and the algorithm we use.

Below, we use the notation [d] = {1, . . . , d} for d ∈ N.

A. Problem Statement and Assumptions

We solve problems of the following form:

Problem 1: Given N agents, a function f : Rn → R, and a set X ⊆ Rn, asynchronously solve

minimize
x∈X

f(x). △
We first make the following assumption about X :

March 23, 2022 DRAFT

3

Assumption 1: There exist sets X1, . . . , XN such that X = X1×X2×· · ·×XN , where Xi ⊆ Rni is nonempty,

closed, and convex for all i ∈ [N], and n =
∑

i∈[N] ni. △
We emphasize that X need not be compact, e.g., it can be all of Rn. This decomposition will allow each agent to

execute a projected gradient update law asynchronously and still ensure set constraint satisfaction. For any closed,

convex set Ω, we use ΠΩ[y] to denote the Euclidean projection of y onto Ω.

In our analysis, we will divide n-dimensional vectors into N blocks. Given a vector v ∈ Rn, where n =
∑N

i=1 ni,

the ith block of v, denoted v[i], is the ni-dimensional vector formed by entries of v with indices
∑i−1

k=1 nk + 1

through
∑i

k=1 nk. In other words, v[1] is the first n1 entries of v, v[2] is the next n2 entries, etc. Thus, for x ∈ X ,

we have x[k] ∈ Xk for all k ∈ [N]. For ∇f(x), we write ∇[1]f(x) for its first n1 entries, ∇[2]f(x) for its next n2

entries, etc.

We assume the following about f .

Assumption 2: f is bounded from below on X . △
Assumption 3: f is Li

j-smooth on X . That is, for all i, j ∈ [N] and for any x, y ∈ X with x[k] = y[k] for all

k 6= j, there exists a constant Li
j ≥ 0 such that ‖∇[i]f(x)−∇[i]f(y)‖ ≤ Li

j‖x[j] − y[j]‖. △
In words, each block of ∇f must be Lipschitz in each block of its argument. We note that any L-smooth

function f in the traditional sense (i.e., satisfying ‖∇f(x)−∇f(y)‖ ≤ L‖x−y‖ for all x, y ∈ X) trivially satisfies

Assumption 3 by setting Li
j = L for all i, j ∈ [N]. Thus, Assumption 3 is no stronger than the standard L-smooth

assumption, but it will allow us to leverage more fine-grained information from the problem. Note also from this

construction that Li
j = Lj

i .

B. Algorithm Setup

For all i ∈ [N], agent i stores a local copy of x, denoted xi. Due to asynchrony, we can have xi 6= xj for i 6= j.

Agent i is tasked with updating the ith block of the decision variable, and thus it performs computations on its own

block x
[i]
i . For j 6= i, agent i’s copy of agent j’s block, denoted x

[j]
i , only changes when it receives a communication

from agent j.

Due to asynchrony in communications, at time t we expect x
[j]
i (t) 6= x

[j]
j (t). We define the term τ ji (t) to be the

largest time index such that τ ji (t) ≤ t and x
[j]
i (t) = x

[j]
j (τ ji (t)). In words, τ ji (t) is the most recent time at which

xj
j equaled the value of xi

j(t). Note that τ ii (t) = t for all i ∈ [N]. Using this notation, for all i ∈ [N], we may

write agent i’s local copy of x as xi(t) = (x
[1]
1 (τ1i (t)), . . . , x

[n]
n (τni (t)).

Defining T i as the set of all time indices for which agent i computes an update to x
[i]
i , we formalize the partially

asynchronous block coordinate descent algorithm as follows.

Algorithm 1: Let f , X , x1(0), . . . , xN (0), and γ1, . . . , γN > 0 be given. For all i ∈ [N] and j ∈ [N]\{i},

March 23, 2022 DRAFT

4

execute

x
[i]
i (t+ 1) =











ΠXi

[

x
[i]
i (t)− γi∇[i]f(xi(t))

]

t ∈ T i

x
[i]
i (t) t /∈ T i

x
[i]
j (t+1) =











x
[j]
j

(

τ ji (t+1)
)

i receives x
[j]
j at time t+1

x
[i]
j (t) otherwise. ⋄

We emphasize that agents do not need to know T i or τ ji for any i or j; these are only used in our analysis.

Additionally, communications in Algorithm 1 are generally not all-to-all; agents i and j only need to communicate

if ∇[i]f has an explicit dependence on agent j’s block (i.e., if Li
j 6= 0).

Below, we will analyze the “true” state of the network, denoted x(t) = (x
[1]
1 (t), . . . , x

[n]
n (t)), which contains

each agent’s current value of its own block. For clarity we will write x[i](t) when discussing the ith block of the

global state x(t), and we will write x
[i]
i (t) when discussing the ith block of agent i’s local copy xi(t), though we

note that x[i](t) = x
[i]
i (t) by definition.

Partial asynchrony is enforced by the next two assumptions

Assumption 4: For every i, j ∈ [N], there exists an integer Dj
i ≥ 0 such that 0 ≤ ti − τ ji (t

i) ≤ Dj
i for all

ti ∈ T i. △
Assumption 4 states that when agent i computes an update, its value of agent j’s block equals some value that x

[j]
j

had at some point in the last Dj
i +1 timesteps. Note that Di

i = 0, and we allow Dj
i 6= Di

j , i.e., delays not need be

symmetric for any pair of agents. For completeness, if two agents i and j do not communicate (i.e., Li
j = 0), then

Di
j = Dj

i = 0.

Assumption 5: For each i ∈ [N], there exists an integer Gi ≥ 0 such that for every t, T i∩{t, t+1, . . . , t+Gi} 6=
∅. △
Assumption 5 simply states that agent i updates at least once every Gi + 1 timesteps. Note that in the existing

partially asynchronous literature B = maxi,j∈[N]{Dj
i , D

i
j, Gi}, and this is used to calibrate stepsizes. We show in

the next section that a finer-grained analysis leads to local stepsize rules that still ensure convergence.

III. CONVERGENCE RESULTS

The goal of Algorithm 1 is to find an element of the solution set X∗ := {x ∈ X : x = ΠX [x−∇f(x)]}. That

is, we wish to show limt→∞ ‖x(t) − x∗‖ = 0, where x∗ is some element of X∗. Our proof strategy is to first

establish that the sequence {x(t)}∞t=0 has square summable successive differences, then show that its limit point is

indeed an element of X∗.

A. Analysis of Algorithm 1

The forthcoming theorem uses the following lemma.

Lemma 1: Let Assumption 3 hold. For all i ∈ [N] and x, y ∈ X , ‖∇[i]f(x)−∇[i]f(y)‖ ≤∑N

j=1 L
i
j‖x[j]−y[j]‖.

Proof: Fix x, y ∈ X . For all k ∈ {0, . . . , N}, define a vector zk ∈ Rn as z
[j]
k = x[j] if j > k and z

[j]
k = y[j] if

j ≤ k. By this definition, z0 = x and zN = y. Then ‖∇[i]f(x)−∇[i]f(y)‖ = ‖∑N

k=1 ∇[i]f(zk−1)−∇[i]f(zk)‖ ≤

March 23, 2022 DRAFT

5

∑N

k=1 ‖∇[i]f(zk−1)−∇[i]f(zk)‖. We note that zk−1 and zk differ in only one block, i.e., z
[j]
k−1 = z

[j]
k for all j 6= k,

and z
[k]
k−1 6= z

[k]
k . Then each element of the sum satisfies the conditions of Assumption 3, and applying it to each

element of the sum completes the proof. �

For conciseness, we define s(t) = x(t + 1) − x(t). The following theorem shows that the sequence {s(t)}∞t=0

decays to zero.

Theorem 1: Let Assumptions 1-5 hold. If for all i ∈ [N] we have γi ∈
(

0, 2∑
N
j=1

Li
j
(1+D

j

i
+Di

j
)

)

, then under

Algorithm 1 we have limt→∞ ‖x(t+ 1)− x(t)‖ = 0 and, for all i ∈ [N], limt→∞ ‖x(t)− xi(t)‖ = 0.

Proof: See Appendix I. �

B. Convergence of Algorithm 1 to a Stationary Point

Theorem 1 on its own does not necessarily guarantee that Algorithm 1 converges to an element of X∗, and in

order to do so we must impose additional assumptions on f . The first is the error bound condition.

Assumption 6 ([16]): For every α > 0, there exist δ, κ > 0 such that for all x ∈ X with f(x) ≤ α and

‖x−ΠX [x−∇f(x)] ‖ ≤ δ,

min
x̄∈X∗

‖x− x̄‖ ≤ κ‖x−ΠX [x−∇f(x)] ‖. △
Assumption 6 is satisfied by a number of problems, including several classes of non-convex problems [17], [18]. It

also holds when f is strongly convex on X or satisfies the quadratic growth condition on X [17], [18], and when

X is polyhedral and f is either quadratic [16] or the dual functional associated with minimizing a strictly convex

function subject to linear constraints [19].

Additionally, we make the following assumption on X∗, which simply states that the elements of X∗ are isolated

and sufficiently separated from each other.

Assumption 7: There exists a scalar ǫ > 0 such that for every distinct x, y ∈ X∗ we have ‖x− y‖ ≥ ǫ. △
In addition to Assumptions 6 and 7, we will utilize the following lemma.

Lemma 2: For any x ∈ X , any i ∈ [N], and any γi > 0,

∥

∥

∥x[i](t)−ΠXi

[

x[i](t)−∇[i]f(x(t))
]∥

∥

∥ ≤ max

{

1,
1

γi

}

∥

∥

∥x[i](t)−ΠXi

[

x[i](t)− γi∇[i]f(x(t))
]∥

∥

∥ .

Proof: This follows from [3, Lemma 3.1] with γi, x
[i](t), ∇[i]f(x(t)), and Xi replacing γ, x,∇f , and X . �

Theorem 2: Let the conditions of Theorem 1 and Assumptions 6 and 7 hold. Then, for some x∗ ∈ X∗,

lim
t→∞

‖x(t)− x∗‖ = 0.

Proof: For every t and i ∈ [N], define ki(t) = t̂i, where t̂i is the largest element of T i such that t̂i ≤ t. By

Assumption 5, ki(t) ≥ t − Gi for all t. Therefore, as t → ∞, ki(t) → ∞, which, under Theorem 1, gives

limt→∞ ‖s[i](ki(t))‖ = 0 for all i ∈ [N]. The definition of s[i] and Algorithm 1 give

s[i](ki(t))=ΠXi

[

x[i](ki(t))−γi∇[i]f(xi(ki(t)))
]

− x[i](ki(t)).

We now define the residual vector r[i](ki(t)) as

r[i](ki(t))=ΠXi

[

x[i](ki(t))−γi∇[i]f(x(ki(t)))
]

− x[i](ki(t))

March 23, 2022 DRAFT

6

for all i ∈ [N]. Note that the arguments of the gradient term differ between s[i] and r[i]. Here, s[i] represents the

update performed by agent i with its asynchronous information, while r[i] represents the update that agent i would

take if it had completely up to date information from its neighbors. The non-expansive property of ΠXi
gives

‖s[i](ki(t)) − r[i](ki(t))‖ ≤ γi‖∇[i]f(x(ki(t)))−∇[i]f(xi(ki(t)))‖

≤ γi

N
∑

j=1

Li
j‖x[j](ki(t))− x

[j]
i (ki(t))‖, (1)

where the last line follows from Lemma 1.

Theorem 1 gives limt→∞ ‖x[j](t)−x
[j]
i (t)‖ = 0 for all i, j ∈ [N], implying limt→∞ ‖x[j](ki(t))−x

[j]
i (ki(t))‖ =

0. Combined with (1), this gives limt→∞ ‖s[i](ki(t)) − r[i](ki(t))‖ = 0. Because limt→∞ ‖s[i](ki(t))‖ = 0, we

have limt→∞ ‖r[i](ki(t))‖ = 0 for all i ∈ [N] and therefore limt→∞ ‖r[i](t)‖ = 0. Using Lemma 2, we have

‖x(t)−ΠX [x(t)−∇f(x(t))] ‖ ≤
N
∑

i=1

∥

∥

∥x[i](t)−ΠXi

[

x[i](t)−∇[i]f(x(t))
]∥

∥

∥

≤
N
∑

i=1

max

{

1,
1

γi

}

∥

∥

∥x[i](t)−ΠXi

[

x[i](t)−γi∇[i]f(x(t))
]∥

∥

∥

=
N
∑

i=1

max

{

1,
1

γi

}

‖r[i](t)‖, (2)

implying limt→∞ ‖x(t) − ΠX [x(t)−∇f(x(t))] ‖ = 0. Since {f(x(t))}∞t=1 is bounded by Theorem 1, then by

Assumption 6 there exists a threshold t̄ ≥ 0 and scalar κ > 0 such that

min
x̄∈X∗

‖x(t)− x̄‖ ≤ κ‖x(t)−ΠX [x(t) −∇f(x(t))] ‖ (3)

for all t ≥ t̄. For each t, let x̄(t) = argminx̄∈X∗ ‖x(t)− x̄‖. Then, combining (3) with (2) gives limt→∞ ‖x(t)−
x̄(t)‖ = 0, which along with Theorem 1 implies limt→∞ ‖x̄(t+ 1)− x̄(t)‖ = 0. Then Assumption 7 implies that

there exists a t̂ ≥ t̄ such that x̄(t) = x∗ for all t ≥ t̂, where x∗ = x̄(t̂). This gives limt→∞ ‖x(t) − x∗‖ = 0, as

desired. �

C. Comparison to Existing Works

We make a few remarks on the two preceding theorems.

Remark 1: Our locally chosen stepsize rule given in Theorem 1 improves on the one provided in [4], which is

the most relevant work, in a few ways. For clarity, our rule is

γi ∈
(

0,
2

∑N

j=1 L
i
j(1 +Dj

i +Di
j)

)

for all i ∈ [N], (4)

while the global, coordinated rule in [4] is

γ ∈
(

0,
2

L(1 + 2
√
NB)

)

. (5)

First, while the similarity in structure between (4) and (5) is evident, (4) only requires agent i to know ∇[i]f

and the inward and outward communication delays to and from its neighbors to compute γi. Second, the
√
N in

March 23, 2022 DRAFT

7

(5) is eliminated. The elimination of this explicit dependence on B and N is significant, especially when B is large

compared to the communication delays experienced by a particular agent, and N is large compared to the number

of neighbors a particular agent communicates with, in which case the upper bound in (4) will be significantly larger

than in (5).

Remark 2: Under Assumptions 1-7, our stepsize rule can be shown to provide geometric convergence by following

a similar argument to [3] and [4]. However, (as seen in [3] and [4]) a convergence rate proof is quite involved,

and due to space constraints is deferred to a future publication. Thus, to reiterate, the contribution of this paper is

providing, to the best of the authors’ knowledge, the first proof of convergence of a partially asynchronous algorithm

with uncoordinated stepsizes chosen using only local information.

IV. SIMULATIONS

We compare the performance of the locally chosen stepsize rule (4) with the globally coordinated rule (5) on a set-

constrained quadratic program of the form f(x) = 1
2x

TQx+rTx. There are N = 20 agents, each of which updates

a scalar variable. Q and r are generated such that Q � 0, n = 20, L = 100, and Xi = {x ∈ R : |x| ≤ 10, 000} for

all i ∈ [N]. Under this setup, f is a nonconvex quadratic function on a polyhedral constraint set X , which satisfies

Assumption 6 [16]. Each communication bound Dj
i is randomly chosen from {0, . . . , 20}.

Since the effect of asynchronous communications is maximized when communications are less frequent than

computations, we have every agent compute an update at every timestep, i.e., Ti = N for all i ∈ [N]. In this

simulation communications between agents are instantaneous, with asynchrony arising from them being infrequent,

with the number of timesteps between communications from agent j to agent i being bounded by Dj
i . If agent

j communicates with agent i at time t, the next such communication will occur at t + 1 + δji (t), where δji (t) is

a randomly chosen element of {0, . . . , Dj
i }. This simulation is run from t = 0 to t = 500, and every agent is

initialized with xi(0) = 0.

To ensure a fair comparison, both simulations are run using the same communication and computation time

indices; one using a global coordinated stepsize, and the other using locally chosen stepsizes. The global coordinated

stepsize is chosen to be the upper bound in (5) multiplied by 0.95 (to satisfy the strict inequality), which gives

γ = 2.1 × 10−4. The local stepsizes are chosen as the upper bounds in (4) multiplied by 0.95, and range from

4.9 × 10−4 to 2.8 × 10−3. The values of f(x(t)) for each simulation are plotted against t in Figure 11, where a

clear speedup in convergence can be seen.

In Figure 1, we can see that both stepsize schemes appear to achieve geometric convergence, with our locally

chosen scheme reaching a solution significantly faster. In particular, the algorithm using locally chosen stepsizes

converges to a stationary point and stops updating at t = 239, while the algorithm using a global stepsize is still

updating as of t = 500. This illustrates better performance when using the stepsize rule presented in this paper

compared to the current state of the art, in addition to allowing the agents to implement this rule using only local

information.

1MATLAB code for both simulations is available at https://github.com/MattUbl/asynch-local-stepsizes

March 23, 2022 DRAFT

8

0 50 100 150 200 250 300 350 400 450 500
Iteration Number

-1011

-1010

-109

-108

-107

-106

-105

-104

S
ys

te
m

 C
o

st

Cost Convergence Comparison

Locally Chosen
Global

Fig. 1. Convergence comparison of f(x(t)) for algorithms using globally chosen (5) (orange dashed line) and locally chosen (4) (blue solid

line) stepsizes. (5) is to the best of the authors’ knowledge the best available result in the literature, and the stepsize rule developed in this paper

is shown to significantly accelerate convergence beyond it.

V. CONCLUSIONS

We have presented, to the best of the authors’ knowledge, the first proof of convergence of a partially asynchronous

algorithm with uncoordinated stepsizes chosen using only local information. The local stepsize selection rule in this

paper generally allows for larger stepsizes than the current state of the art and is empirically shown to significantly

accelerate convergence. Future work will develop a full proof of geometric convergence of Algorithm 1 and extend

this stepsize rule to other algorithms.

APPENDIX I

PROOF OF THEOREM 1

In addition to Lemma 1, proof of Theorem 1 will use the following lemmas:

Lemma 3: Under Assumption 1, for all t and all i ∈ [N] in Algorithm 1 we have 〈s[i](t),∇[i]f(xi(t))〉 ≤
− 1

γi
‖s[i](t)‖2.

Proof: This is a property of orthogonal projections [3]. �

Lemma 4: Consider the set {0, . . . ,M}, with M ≤ ∞. Then
∑M

i=0

∑M

j=0 a
j
i =

∑M

i=0

∑M

j=0 a
i
j

Proof: This follows by re-labeling indices. �

Proof of Theorem 1: The identities x(t+ 1) = x(t) + s(t) and f(a)− f(b) =
∫ 1

0
〈(a− b),∇f(b+ τ(a− b))〉dτ

March 23, 2022 DRAFT

9

give

f(x(t+ 1))− f(x(t)) =

∫ 1

0

〈s(t),∇f(x(t) + τs(t)〉dτ

=

N
∑

i=1

∫ 1

0

〈s[i](t),∇[i]f(x(t) + τs(t))〉dτ

=

N
∑

i=1

〈s[i](t),∇[i]f(xi(t))〉+Hi(t)

≤
N
∑

i=1

− 1

γi
‖s[i](t)‖2 +Hi(t), (6)

where the last line uses Lemma 3 and Hi(t) =
∫ 1

0 〈s[i](t),∇[i]f(x(t) + τs(t)) −∇[i]f(xi(t))〉dτ . Next,

Hi(t) ≤
∫ 1

0

‖s[i](t)‖‖∇[i]f(x(t) + τs(t))−∇[i]f(xi(t))‖dτ

≤ ‖s[i](t)‖
N
∑

j=1

Li
j

∫ 1

0

‖x[j](t) + τs[j](t)− x
[j]
i (t)‖dτ

≤ ‖s[i](t)‖
N
∑

j=1

Li
j

∫ 1

0

(

τ‖s[j](t)‖ + ‖x[j](t)− x
[j]
i (t)‖

)

dτ

= ‖s[i](t)‖
N
∑

j=1

Li
j

(

1

2
‖s[j](t)‖ + ‖x[j](t)− x

[j]
i (t)‖

)

, (7)

where the 2nd line uses Lemma 1. Using ab ≤ a2+b2

2 gives

‖s[i](t)‖
N
∑

j=1

Li
j

1

2
‖s[j](t)‖ ≤ 1

2

N
∑

j=1

Li
j

(

1

2
‖s[i](t)‖2 + 1

2
‖s[j](t)‖2

)

. (8)

To bound the term ‖s[i](t)‖∑N

j=1 L
i
j‖x[j](t)−x

[j]
i (t)‖ in (7), recall that x[j](t) = x

[j]
j (t) and x

[j]
i (t) = x

[j]
j (τ ji (t)).

Then

‖x[j](t)− x
[j]
i (t)‖ = ‖x[j]

j (t)− x
[j]
j (τ ji (t))‖

=

∥

∥

∥

∥

∥

∥

t−1
∑

k=τ
j

i
(t)

s[j](k)

∥

∥

∥

∥

∥

∥

≤
t−1
∑

k=τ
j

i
(t)

‖s[j](k)‖, (9)

March 23, 2022 DRAFT

10

If τ ji (t) = t, the above sum is 0. Using (9) and ab ≤ a2+b2

2 , we have

‖s[i](t)‖
N
∑

j=1

Li
j‖x[j](t)− x

[j]
i (t)‖ ≤ ‖s[i](t)‖

N
∑

j=1

Li
j

t−1
∑

k=τ
j

i
(t)

‖s[j](k)‖

≤
N
∑

j=1

Li
j

t−1
∑

k=τ
j

i
(t)

1

2

(

‖s[i](t)‖2 + ‖s[j](k)‖2
)

=
1

2

N
∑

j=1

Li
j



(t− τ ji (t))‖s[i](t)‖2 +
t−1
∑

k=τ
j

i
(t)

‖s[j](k)‖2




≤ 1

2

N
∑

j=1

Li
j



Dj
i ‖s[i](t)‖2 +

t−1
∑

k=τ
j

i
(t)

‖s[j](k)‖2


 , (10)

where the last line follows from Assumption 4. Using (8) and (10) in (7) gives

Hi(t) ≤
1

2

N
∑

j=1

Li
j

(

1

2
+Dj

i

)

‖s[i](t)‖2 + 1

2

N
∑

j=1

Li
j





1

2
‖s[j](t)‖2 +

t−1
∑

k=τ
j

i
(t)

‖s[j](k)‖2


 ,

which combined with (6) gives

f(x(t+1))−f(x(t)) ≤
N
∑

i=1



− 1

γi
+
1

2

N
∑

j=1

Li
j

(

1

2
+Dj

i

)



 ‖s[i](t)‖2+
N
∑

i=1

1

2

N
∑

j=1

Li
j





1

2
‖s[j](t)‖2 +

t−1
∑

k=τ
j

i
(t)

‖s[j](k)‖2


.

From Lemma 4, we see

N
∑

i=1

1

2

N
∑

j=1

Li
j





1

2
‖s[j](t)‖2 +

t−1
∑

k=τ
j

i
(t)

‖s[j](k)‖2


 =

N
∑

i=1

1

2

N
∑

j=1

Lj
i





1

2
‖s[i](t)‖2 +

t−1
∑

k=τ i
j
(t)

‖s[i](k)‖2


 ,

which, using the fact that Li
j = Lj

i , gives

f(x(t+ 1))− f(x(t)) ≤
N
∑

i=1



− 1

γi
+

1

2

N
∑

j=1

Li
j

(

1 +Dj
i

)



 ‖s[i](t)‖2 +
N
∑

i=1

1

2

N
∑

j=1

Li
j

t−1
∑

k=τ i
j
(t)

‖s[i](k)‖2.

Summing this inequality over t from 0 to m− 1 and rearranging gives

f(x(m)) − f(x(0)) ≤
N
∑

i=1



− 1

γi
+

1

2

N
∑

j=1

Li
j

(

1 +Dj
i

)





m−1
∑

t=0

‖s[i](t)‖2 +
N
∑

i=1

N
∑

j=1

1

2
Li
j

m−1
∑

t=0

t−1
∑

k=τ i
j
(t)

‖s[i](k)‖2.

(11)

Using Lemma 4 and τ ij(t) ≥ 0 we see

m−1
∑

t=0

t−1
∑

k=τ i
j
(t)

‖s[i](k)‖2 =

m−1
∑

t=0

t−1
∑

k=τ i
j
(t)

‖s[i](t)‖2

=

m−1
∑

t=0

(t− τ ij(t))‖s[i](t)‖2

≤
m−1
∑

t=0

Di
j‖s[i](t)‖2,

March 23, 2022 DRAFT

11

which combined with (11) and rearranging gives

f(x(m)) − f(x(0)) ≤ −
N
∑

i=1

Ci

m−1
∑

t=0

‖s[i](t)‖2,

where Ci=
1
γi
− 1

2

∑N

j=1 L
i
j

(

1+Dj
i+Di

j

)

. Next, Ci > 0 if

0 < γi <
2

∑N

j=1 L
i
j

(

1 +Dj
i +Di

j

) .

Choosing γi this way for each i ∈ [N], taking m → ∞ gives

lim sup
m→∞

f(x(m)) ≤ f(x(0))−
N
∑

i=1

Ci

∞
∑

t=0

‖s[i](t)‖2.

Rearranging gives

N
∑

i=1

Ci

∞
∑

t=0

‖s[i](t)‖2 ≤ f(x(0))− lim sup
m→∞

f(x(m))

≤ f(x(0))− inf
z∈X

f(z),

and rearranging once more gives

∞
∑

t=0

‖s[i](t)‖2 ≤ f(x(0))− infz∈X f(z)

Ci

< ∞,

for all i ∈ [N], where the final inequality follows from Assumption 2 and the fact that each Ci is positive. The

final inequality implies limt→∞ ‖s[i](t)‖ = 0 for all i ∈ [N]. Following from the definition of s[i](t) this in turn

implies limt→∞ ‖x[i](t+ 1)− x[i](t)‖ = 0 for all i ∈ [N] and therefore limt→∞ ‖x(t+ 1)− x(t)‖ = 0.

We now wish to show limt→∞ ‖x(t)− xi(t)‖ = 0 for all i ∈ [N]. To do so, consider x[j](t)− x
[j]
i (t). Using (9)

and Assumption 4 gives

‖x[j](t)− x
[j]
i (t)‖ ≤

t−1
∑

k=t−D
j

i

‖s[j](k)‖.

Then the fact that limt→∞ ‖s[j](t)‖ = 0 implies limt→∞ ‖x[j](t) − x
[j]
i (t)‖ = 0 for all i, j ∈ [N], which gives

limt→∞ ‖x(t)− xi(t)‖ = 0 for all i ∈ [N]. �

REFERENCES

[1] A. Frommer and D. B. Szyld, “On asynchronous iterations,” Journal of computational and applied mathematics, vol. 123, no. 1-2, pp.

201–216, 2000.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numerical methods. Prentice hall, 1989, vol. 23.

[3] P. Tseng, “On the rate of convergence of a partially asynchronous gradient projection algorithm,” SIAM Journal on Optimization, vol. 1,

no. 4, pp. 603–619, 1991.

[4] Y. Zhou, Y. Liang, Y. Yu, W. Dai, and E. P. Xing, “Distributed proximal gradient algorithm for partially asynchronous computer clusters,”

The Journal of Machine Learning Research, vol. 19, no. 1, pp. 733–764, 2018.

[5] L. Cannelli, F. Facchinei, G. Scutari, and V. Kungurtsev, “Asynchronous optimization over graphs: Linear convergence under error bound

conditions,” IEEE Transactions on Automatic Control, vol. 66, no. 10, pp. 4604–4619, 2021.

[6] A. Nedić, A. Olshevsky, W. Shi, and C. A. Uribe, “Geometrically convergent distributed optimization with uncoordinated step-sizes,” in

2017 American Control Conference (ACC). IEEE, 2017, pp. 3950–3955.

March 23, 2022 DRAFT

12

[7] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient methods for multi-agent optimization under uncoordinated constant

stepsizes,” in 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015, pp. 2055–2060.

[8] ——, “Convergence of asynchronous distributed gradient methods over stochastic networks,” IEEE Transactions on Automatic Control,

vol. 63, no. 2, pp. 434–448, 2017.

[9] P. Latafat and P. Patrinos, “Multi-agent structured optimization over message-passing architectures with bounded communication delays,”

in 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018, pp. 1688–1693.

[10] Q. Lü, H. Li, and D. Xia, “Geometrical convergence rate for distributed optimization with time-varying directed graphs and uncoordinated

step-sizes,” Information Sciences, vol. 422, pp. 516–530, 2018.

[11] H. Li, H. Cheng, Z. Wang, and G.-C. Wu, “Distributed nesterov gradient and heavy-ball double accelerated asynchronous optimization,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 12, pp. 5723–5737, 2020.

[12] Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient method with network independent step-sizes and separated convergence

rates,” IEEE Transactions on Signal Processing, vol. 67, no. 17, pp. 4494–4506, 2019.

[13] Y. Tian, Y. Sun, and G. Scutari, “Asy-sonata: Achieving linear convergence in distributed asynchronous multiagent optimization,” in 2018

56th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2018, pp. 543–551.

[14] ——, “Achieving linear convergence in distributed asynchronous multiagent optimization,” IEEE Transactions on Automatic Control,

vol. 65, no. 12, pp. 5264–5279, 2020.

[15] M. Ubl and M. Hale, “Totally asynchronous large-scale quadratic programming: Regularization, convergence rates, and parameter selection,”

IEEE Transactions on Control of Network Systems, vol. 8, no. 3, pp. 1465–1476, 2021.

[16] Z.-Q. Luo and P. Tseng, “Error bound and convergence analysis of matrix splitting algorithms for the affine variational inequality problem,”

SIAM Journal on Optimization, vol. 2, no. 1, pp. 43–54, 1992.

[17] D. Drusvyatskiy and A. S. Lewis, “Error bounds, quadratic growth, and linear convergence of proximal methods,” Mathematics of Operations

Research, vol. 43, no. 3, pp. 919–948, 2018.

[18] H. Zhang, “The restricted strong convexity revisited: analysis of equivalence to error bound and quadratic growth,” Optimization Letters,

vol. 11, no. 4, pp. 817–833, 2017.

[19] Z.-Q. Luo and P. Tseng, “On the convergence rate of dual ascent methods for linearly constrained convex minimization,” Mathematics of

Operations Research, vol. 18, no. 4, pp. 846–867, 1993.

March 23, 2022 DRAFT

