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Abstract. We show that the explicit realization of data-
driven predictive control (DPC) for linear deterministic sys-
tems is more tractable than previously thought. To this
end, we compare the optimal control problems (OCP) cor-
responding to deterministic DPC and classical model predic-
tive control (MPC), specify its close relation, and systemati-
cally eliminate ambiguity inherent in DPC. As a central re-
sult, we find that the explicit solutions to these types of DPC
and MPC are of exactly the same complexity. We illustrate
our results with two numerical examples highlighting fea-
tures of our approach.

I. INTRODUCTION

Data-driven predictive control (DPC), where the prediction of
the systems’ behavior is carried out based on collected input-
output data instead of a model, is becoming more and more pop-
ular (see, e.g., [1–4]). Remarkably, assuming perfect data and
linear dynamics, Willems’ fundamental lemma [5] and variants
of it (as, e.g., [6] and [7]) allow establishing the equivalence of
the data-driven and model-based approach with respect to the
resulting control actions.

However, while strongly related, the two approaches lead to
different optimal control problems (OCP). In fact, DPC usually
results in an OCP with significantly more decision variables than
model-based predictive control (MPC). As a consequence, ex-
plicit solutions of the data-driven OCP seem “unattractive” at
first sight (especially for noisy setups [8, Sect. IV.B]), even for
applications where explicit MPC [9] is tractable. In fact, more
decision variables typically result in significantly more complex
explicit solutions (in terms of the number of regions etc.). Yet,
we show in this paper that the perceived imbalance between
MPC and DPC can be completely resolved for the special case of
linear deterministic systems. More precisely, we reveal that the
larger number of decision variables only results in ambiguous
but not more complex solutions in this case. Further, we present
a simple method to systematically eliminate this ambiguity. As a
central result, we obtain an explicit DPC solution of exactly the
same complexity as explicit MPC.

Before detailing our approach, we briefly discuss related
works from the literature. First of all, it is already well-known
that the optimal input sequences resulting from deterministic
DPC and MPC are identical given equivalent initial conditions
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[2, Cor. 5.1]. Yet, it is also known that the original OCPs related
to MPC are strictly convex while those for DPC are only convex.
Thus, optimizers in DPC are typically non-unique, which signif-
icantly complicates an explicit solution. Clearly, strict convexity
can be enforced through additional regularization [8, 10] (which
is also helpful for noisy setups). However, this either destroys
the structure we are about to identify or it renders its derivation
more difficult. Alternatively, one can consider explicit DPC for
fully measurable states. For this simpler case, a result similar to
ours has recently been obtained in [11]. Finally, especially since
we are dealing with the deterministic case and linear systems,
removing ambiguity from the OCP shows many similarities to
subspace identification (SID, [12]) and subspace predictive con-
trol [13]. In fact, using the data matrices inherent in DPC, one
could also identify a state space model and the corresponding
MPC formulation would yield another equivalence. However,
we provide a simple and direct approach, which can be inter-
preted as a tailored subspace analysis for DPC.

The remaining paper is organized as follows. In Section II,
we summarize classical MPC and fundamentals of DPC. The
analysis of explicit solutions of the corresponding OCPs and the
central identification of a closer relation between them are car-
ried out in Section III. Finally, we illustrate our findings with
two numerical examples in Section IV and we discuss promising
directions for future research in Section V.

II. FUNDAMENTALS OF MPC AND DPC

A. Classical MPC

We briefly summarize classical MPC in a form that is compatible
with the data-driven realization in Section II.B. To this end, we
assume that a linear prediction model

x(k + 1) = Ax(k) +Bu(k) (1a)
y(k) = Cx(k) +Du(k) (1b)

is known. We further assume that input and output constraints
are given in terms of convex polyhedral sets

U := {u ∈ Rm |Muu ≤ vu}, Y := {y ∈ Rp |Myy ≤ vy}, (2)

which are specified by the matrices Mu/y and vectors vu/y , re-
spectively. Then, classical MPC (without terminal cost and con-
straints) can be realized by solving
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min
u(k),x(k),y(k)

Nf−1∑
k=0

‖y(k)‖2Q + ‖u(k)‖2R (3)

s.t. x(0) = x0,

x(k + 1) = Ax(k) +Bu(k), ∀k ∈ {0, ..., Nf − 2},
y(k) = C x(k) +Du(k), ∀k ∈ {0, ..., Nf − 1},

(y(k), u(k)) ∈ Y × U , ∀k ∈ {0, ..., Nf − 1}

in every time-step for the current state x0 ∈ Rn, where Q ∈
Rp×p and R ∈ Rm×m denote weighting matrices and where
Nf ∈ N is the prediction horizon. Now, the OCP (3) is typ-
ically condensed into a quadratic program (QP) such that only
the inputs remain as decision variables. To this end, one first
introduces the sequences

uf :=

 u(0)
...

u(Nf − 1)

 and yf :=

 y(0)
...

y(Nf − 1)

 , (4)

and the augmented weighting matrices Q := diag(Q, . . . , Q)
andR := diag(R, . . . , R) to rewrite the cost function as

Nf−1∑
k=0

‖y(k)‖2Q + ‖u(k)‖2R = ‖yf‖2Q + ‖uf‖2R. (5)

We further define the matrices

ON :=


C
CA

...
CAN−1

 and TN :=


D 0

CB
. . .

...
. . . . . .

CAN−2B . . . CB D

,

which we will consider for different N during this note. For
N = Nf , we then obtain the relation

yf = ONf
x0 + TNf

uf . (6)

Finally, substituting (6) into (5) and introducing the augmented
matricesMu/y := diag(Mu/y, . . . ,Mu/y) leads to

u∗f (x0) := arg min
uf

1

2
u>f Huf + x>0 F

>uf (7)

s.t. Guf ≤ Ex0 + d

with the parameter x0 as well as

H := 2T >Nf
QTNf

+ 2R, F := 2T >Nf
QONf

,

G :=

(
Mu

MyTNf

)
E :=

(
0

−MyONf

)
, (8)

d :=
(
v>u . . . v>u v>y . . . v>y

)>
.

Remarkably, H is positive definite, i.e., (7) is strictly convex,
under the assumption that Q is positive semi-definite and that R
is positive definite.

B. DPC using input-output sequences

In contrast to MPC, DPC considers input-output data instead of
a model as in (1). More precisely, DPC builds (in its simplest
form) on two sequences ud and yd as in (4) but of lengthNd ∈ N
that reflect prerecorded system inputs and outputs. We note, at
this point, that with slight abuse of notation, we denote both the
elements of uf and ud with u(k) (and analogously elements in
yf and yd with y(k)). However, the specific relationship will al-
ways be clear from the context. Now, in order to realize DPC by
means of ud and yd, the sequences have to carry enough infor-
mation about the systems’ dynamics. This holds, for instance, if
yd is consistent with a persistently exciting and sufficiently long
input sequence ud. More specifically, for deterministic DPC as
considered here, consistency means that there exists a model (1)
with initial state x0 ∈ Rn such that

yd = ONd
x0 + TNd

ud. (9)

Further, according to [5], ud is persistently exciting of order
Ne ∈ N if the Hankel matrix

HNe(ud) :=


u(0) u(1) . . . u(Nd −Ne)
u(1) u(2) . . . u(Nd −Ne + 1)

...
. . .

...
u(Ne − 1) u(Ne) . . . u(Nd − 1)


has full row rank, i.e., rank(HNe(ud)) = mNe. This requires
HNe

(ud) to have as least as many columns as rows, i.e.,

Nd −Ne + 1 ≥ mNe ⇐⇒ Nd ≥ (m+ 1)Ne − 1. (10)

Finally, Willems’ fundamental lemma [5] allows associating the
given sequences ud and yd with other input-output sequences of
the same system. In fact, under the assumption that the underly-
ing system is linear, controllable, and ud is persistently exciting
of order Ne := Nc + n, candidate sequences (uc, yc) of length
Nc ∈ N belong to the same system as (ud, yd) if and only if(

uc
yc

)
∈ im

(
HNc

(ud)
HNc(yd)

)
.

At this point, we briefly note that recent extensions of the funda-
mental lemma in [6] and [7] allow alleviating some of the restric-
tions above. Now, in order to utilize the previous results for DPC,
we proceed similarly to [2]. We choose an integer Np equal to
(or larger than) the observability index, i.e., such that the cor-
responding matrix ONp

has full column rank (which obviously
requires observability). Next, we assume that ud is persistently
exciting of order

Ne := Np +Nf + n. (11)

According to the fundamental lemma, we then find that the con-
catenated sequences (u>p u>f )> and (y>p y>f )> with

up :=

u(−Np)
...

u(−1)

 and yp :=

y(−Np)
...

y(−1)





and with (uf , yf ) as in (4), belong to the same system as (ud, yd)
if and only if 

up
uf
yp
yf

 =

(
HNp+Nf

(ud)
HNp+Nf

(yd)

)
a. (12)

for some a ∈ Rl with l := Nd − Nf − Np + 1. Based on
reordering and partitioning, (12) can be rewritten as

ξ :=

(
up
yp

)
= Wpa, uf = Ufa, and yf = Yfa (13)

with the matrices Wp, Uf , and Yf representing blocks of the
concatenated Hankel matrices. We are now ready to formulate
the OCP associated with DPC. In fact, the combination of (5)
and (13) allow expressing the costs

‖yf‖2Q + ‖uf‖2R = ‖a‖2Y >
f QYf+U>

f RUf

as a function of a. Taking into account the constraintsMuuf ≤
Vu andMyuf ≤ Vy and the remaining condition ξ = Wpa then
leads to the QP

a∗(ξ) := arg min
a

1

2
a>H̃a s.t. G̃a ≤ d, Wpa = ξ (14)

with the parameter ξ, the vector d as in (7), and

H̃ := 2Y >f QYf + 2U>f RUf , G̃ :=

(
MuUf
MyYf

)
.

Remarkably, the role of the initial state x0 in (7) is replaced by
ξ, i.e., the Np previous inputs and outputs, in (14). Furthermore,
a∗(ξ) only reflects an intermediate result that is used to compute
optimal inputs via u∗f (ξ) := Ufa

∗(ξ).

III. FROM EXPLICIT MPC TO EXPLICIT DPC

The QP (7) or (14) is typically solved for the current state x0 or
the most recent sequences ξ, respectively, to obtain the optimal
input for the current time-step. Subsequently, the procedure is
repeated at the next sampling instance. Alternatively, in order
to avoid numerical optimization during runtime, (7) can also be
solved explicitly using parametric optimization. As a result, we
then find the continuous and piecewise affine (PWA) solution

u∗f (x0) =


L1x0 + c1 if x0 ∈ X1,

...
...

Lsx0 + cs if x0 ∈ Xs,
(15)

which is defined on a polyhedral partition {Xi}si=1 of the state
space [9]. Computing this solution offline and evaluating it on-
line is referred to as explicit MPC. While conceptually attractive,
explicit MPC can usually only be applied for moderate “sizes”
of the underlying QP since it is well-known that the number of
regions s ∈ N typically grows exponentially with the number of
decisions variables and constraints. As a consequence, solving

(14) parametrically seems unattractive at first sight, since espe-
cially the number of decision variables is significantly larger than
in (7). In fact, while uf is of dimension mNf , the dimension l
of a is lower-bounded by

l ≥ (m+ 1)(Np +Nf + n)−Nf −Np
= mNp +mNf + (m+ 1)n (16)

according to (10) and (11). Now, while the difference of at least
mNp+(m+1)n decisions variables is significant especially for
m > 1, we claim that this increase does not result in a more com-
plex explicit solution for the special case of deterministic DPC.
In fact, we show that the increase in decision variables only leads
to ambiguous solutions and that this ambiguity can be removed
by systematically eliminating variables using tools inspired from
SID. Remarkably, simultaneously to our work, [14] proposed a
conceptually similar way of eliminating decision variables for
non-deterministic systems. The focus in [14] is, however, not on
explicit DPC.

A. Eliminating equality constraints for DPC

Following this claim, we initially eliminate the equality con-
straints in (14). To this end, we assume that a generalized inverse
W+
p of Wp (satisfying the Penrose conditions) and a matrix Vp

characterizing the null-space of Wp (i.e., im(Vp) = ker(Wp))
are known. Then, we can substitute a in (14) with

a := W+
p ξ + Vpα, (17)

where α is of dimension

ν := nullity(Wp) = l − rank(Wp). (18)

Clearly, the equality constraints in (14) are satisfied for every
α ∈ Rν . Hence, we obtain the transformed QP

α∗(ξ) = arg min
α

1

2
α>Ĥα+ ξ>F̂>α s.t. Ĝα ≤ Êξ + d (19)

with Ĥ := V >p H̃Vp, Ĝ := G̃Vp, F̂ := V >p H̃W
+
p , and

Ê := −G̃W+
p . While the elimination of equality constraints is a

standard procedure often performed internally by QP solvers, it
has a useful interpretation in the case of DPC. Unlike a, which
parametrizes all possible system trajectories of lengthsNp+Nf ,
the new variable α only parametrizes those trajectories that are
consistent with ξ, i.e., the Np most recent inputs and outputs.
However, it is important to note that (14) is only feasible for ξ
belonging to the system while (19) may also be feasible for other
ξ. This observation will be relevant further below for Theorem 9.

Now, according to (18), the reduction of decision variables
when replacing (14) with (19) is determined by rank(Wp). Tak-
ing into account that Wp contains mNp rows of the full rank
matrix HNp+Nf

(ud), we immediately find rank(Wp) ≥ mNp.
A closer investigation reveals the following specification.

Lemma 1. Let ud and yd be as in Section II.B and con-
sider the partitions (13) of the Hankel matrices in (12). Then,
rank(Wp) = mNp + n.



Proof. It is easy to see that Wp can be written as

Wp =

(
HNp(ûd)
HNp

(ŷd)

)
,

where ûd and ŷd refer to the sequences ud respectively yd
shortened by the last Nf elements. It is further straightfor-
ward to show that ûd is persistently exciting of order Np + n
(i.e., the order of ud likewise reduced by Nf ). As summarized
in [7, Sect. I.], Willems’ fundamental lemma [5] then implies
rank(Wp) = mNp + n. �

The combination of (16), (18), and Lemma 1 implies

ν = l − rank(Wp) ≥ m(Nf + n). (20)

In other words, while the number of decision variables is signif-
icantly reduced from (14) to (19), we still find at least mn more
decision variables in (19) than in (7). Fortunately, this deficit can
be eliminated as follows.

B. Eliminating solution candidates in irrelevant null-spaces

As noted in Section II.B, also when applying DPC, we are
mainly interested in the optimal control sequence

u∗f (ξ) = Ufa
∗(ξ) = UfW

+
p ξ + UfVpα

∗(ξ) (21)

(or even only in its first element). As apparent from (21), com-
ponents of α(ξ) in the null-space of UfVp will not affect the
resulting sequence uf (ξ). As a consequence, it seems promising
to parametrize α by

α := Kfβ + Vfβ0, (22)

where Kf ∈ Rν×µ and Vf ∈ Rν×ν−µ with µ := rank(UfVp)
are such that im(Vf ) = ker(UfVp) and rank

(
(Kf Vf )

)
= ν.

Clearly, the columns of Kf and Vf span the subspaces that are
relevant and irrelevant for uf , respectively. By construction, we
thus obtain

UfVpVfβ0 = 0 for every β0 ∈ Rν−µ. (23)

Hence, β0 has no effect on the resulting input sequence uf . Fur-
ther, since ξ determines x0 in (6) and since yf is then deter-
mined by uf , also yf should be independent of β0. In order to
verify this hypothesis, we initially note that ξ and the assumed
observability allow reconstructing x(−Np). This state in combi-
nation with up determines x0. The relation is formally captured
by x0 = Γξ, where

Γ :=
((
ANp−1B . . . B

)
−ANpO+

Np
TNp ANpO+

Np

)
withO+

Np
:= (O>Np

ONp)−1O>Np
. Using this relation in (6) leads

to
yf = ONf

Γξ + TNf
uf . (24)

This equation provides the basis for a useful relation between
Wp, Uf , and Yf . In fact, noting that the columns of these matri-
ces can be interpreted as uniformly shifted sequences ξ, uf , and
yf , respectively, one finds

Yf = ONf
ΓWp + TNf

Uf (25)

as also pointed out in [12, p. 41]. Based on this relation, we can
easily derive the analogue to (23) for output sequences.

Lemma 2. Let Yf , Vp and Vf be defined as in (13), (17) and
(22), respectively. Then,

YfVpVfβ0 = 0 for every β0 ∈ Rν−µ. (26)

Proof. To prove the claim, we multiply (25) with Vp as in (17)
from the right and obtain

YfVp = TNf
UfVp (27)

due to WpVp = 0. Substituting (27) in (26) and taking (23) into
account completes the proof. �

The relations (23) and (26) formally show that β0 neither af-
fects input nor output sequences parametrized by α as in (22).
As a consequence, (19) can be replaced by a QP, where only
β ∈ Rµ appears as a decision variable. This central observation
is formalized in the following theorem.

Theorem 3. Let Uf , W+
p , Vp and Kf be defined as in (13), (17)

and (22), respectively. Then, the relation

u∗f (ξ) = UfW
+
p ξ + UfVpKfβ

∗(ξ) (28)

holds, where

β∗(ξ) := arg min
β

1

2
β>Ȟβ + ξ>F̌>β s.t. Ǧβ ≤ Êξ + d (29)

with Ȟ := K>f ĤKf , F̌ := K>f F̂ , and Ǧ := ĜKf .

Proof. We initially show that

ĤVfβ0 = 0, F̂>Vfβ0 = 0, and ĜVfβ0 = 0 (30)

for every β0 ∈ Rν−µ. To see this, we first substitute the expres-
sions for Ĥ , F̂ , as well as Ĝ and then insert H̃ , F̃ , as well as G̃,
respectively, Doing so, we obtain

ĤVfβ0 = V >p H̃VpVfβ0 = 2V >p (Y >f QYf + U>f RUf )VpVfβ0

for the first expression in (30). Clearly, this expression indeed
evaluates to zero for every β0 ∈ Rν−µ due to (23) and (26). Ana-
logue observations result for the remaining expressions in (30).
Now, the relations in (30) imply that the choice of β0 neither
affects the cost function nor the constraints in (19) when α is
parametrized as in (22). Hence, when applying this parametriza-
tion to (19), we can omit the variable β0 (or set it to zero) and
restrict our attention to the new decision variable β. Formally,
this results in the QP (29). �

Clearly, the number of decision variables in (29) equals
µ = rank(UfVp). Since UfVp is of dimension mNf × ν and
since (20) applies, we immediately find

µ = rank(UfVp) ≤ min{mNf , ν} = mNf . (31)



In other words, while (19) definitely contains more decision vari-
ables then (7) according to (20), (29) contains at most as many
decision variables as (7) according to (31). At this point, it is im-
portant to note that (31) simply reflects the dimensions of UfVp.
Recalling that (7) is a strictly convex QP and that (29) provides
equivalent solutions according to (28), already excludes the case
µ < mNf . In fact, we always have µ = mNf according to the
following lemma.

Lemma 4. Let Uf and Vp be defined as in (13) and (17), respec-
tively. Then, rank(UfVp) = mNf .

Proof. To prove the claim, we consider (12) for the special case
ξ = 0, i.e., (up, yp) = (0, 0). As apparent from (24), any
uf ∈ RmNp in combination with yf := TNf

uf leads to con-
sistent sequences for this case. As a consequence, there exists an
a ∈ Rl such that ξ

uf
yf

 =

 0
uf
TNf

uf

 =

Wp

Uf
Yf

 a

for every uf ∈ RmNp . Since we have 0 = Wpa by construction,
every such a can be parametrized as a = Vpα for a suitable α ∈
Rν according to (17). Now, since the choice of uf ∈ RmNf is
not restricted, we find im(UfVp) = RmNf , which immediately
completes the proof. �

Before analyzing implications of µ = mNf , we briefly note
that Lemma 4 also allows to specify the choice of Kf .

Lemma 5. Any Kf that complies with the parametrization
in (22) can be written as

Kf = V >p U
>
f Φ (32)

for some non-singular matrix Φ ∈ RmNf×mNf .

Proof. By construction of (22), the column space of Kf has to
be equal to the row space of UfVp. Since UfVp has full row rank
according to Lemma 4, the row space is, for example, spanned by
the mNf columns of V >p U

>
f . Clearly, any other basis of the row

space can be obtained according to (32) by a suitable transition
matrix Φ. �

C. Two sides of the same coin

The parametrizations (17) and (22) reveal a novel relation be-
tween MPC and deterministic DPC that goes beyond existing
studies of the close relationship (as, e.g., in [2, Sect. V.D]). In
fact, the QP (7) associated with MPC is formally related to the
DPC variant (29) as follows.

Lemma 6. The cost and constraint specifications of (7) and (29)
satisfy the relations

Ȟ = K>f V
>
p U

>
f HUfVpKf , (33a)

F̌ = K>f V
>
p U

>
f FΓWpW

+
p +K>f V

>
p U

>
f HUfW

+
p , (33b)

Ǧ = GUfVpKf , and Ê = EΓWpW
+
p −GUfW+

p . (33c)

Proof. In order to prove (33a), we note that

Ȟ = 2K>f V
>
p

(
Y >f QYf + U>f RUf

)
VpKf

= 2K>f V
>
p U

>
f T >Nf

QTNf
UfVp + 2V >p U

>
f RUfVpKf

= K>f V
>
p U

>
f HUfVpKf

by definition of Ȟ , Ĥ and H̃ , due to (27), and by definition of
H in (8), respectively. The remaining relations in (33) can be
proven analogously. �

In principle, we can state a similar result to Lemma 6 for the
relation between (7) and (19). However, only (33) involves the
terms UfVpKf with the following useful feature.

Lemma 7. Let Uf , Vp, and Kf be defined as in (13), (17), and
(22), respectively. Then, UfVpKf is non-singular.

Proof. We initially find UfVpKf = UfVpV
>
p U

>
f Φ for some

non-singular Φ according to Lemma 5. Further, since UfVp has
full row rank by Lemma 4, UfVpV >p U

>
f is non-singular and,

hence, also the product UfVpV >p U
>
f Φ. �

Lemma 7 immediately leads to the following major result.

Lemma 8. The QP (29) is strictly convex.

Proof. Since UfVpKf is non-singular by Lemma 7, Ȟ and H
are congruent according to (33a). Hence, Ȟ inherits the positive
definiteness of H , which proves the claim. �

We are now ready to address the explicit solutions of (7) and
(29). To this end, we recall that (15) can be derived from the
parametric Karush-Kuhn-Tucker (KKT) conditions

Hu∗f (x0) + Fx0 +G>λ∗(x0) = 0, (34a)

Gu∗f (x0)− Ex0 − d ≤ 0, (34b)

λ∗(x0) ≥ 0, (34c)

diag (λ∗(x0))
(
Gu∗f (x0)− Ex0 − d

)
= 0 (34d)

of (7) [9, Sect. 4.1]. Analogously, the explicit solution of (29)
follows from the parametric KKT conditions

Ȟβ∗(ξ) + F̌ ξ + Ǧ>λ̌∗(ξ) = 0, (35a)

Ǧβ∗(ξ)− Êξ − d ≤ 0, (35b)

λ̌∗(ξ) ≥ 0, (35c)

diag
(
λ̌∗(ξ)

) (
Ǧβ∗(ξ)− Êξ − d

)
= 0. (35d)

A central observation now is that (34) and (35) are equivalent.

Theorem 9. The KKT conditions (34) and (35) are coupled by
the relations (28), x0 = ΓWpW

+
p ξ, and λ∗(x0) = λ̌∗(ξ).

Proof. Substituting the coupling relations in (34) and multiply-
ing (34a) with the transpose of T := UfVpKf from the left, and
taking (33) into account, immediately allows us to transform (34)
into (35). The inverse transformation follows analogously by
noting that T is invertible according to Lemma 7, which, e.g., al-
lows to derive β∗(ξ) = T−1(u∗f (x0)−UfW+

p ξ) from (28). �



Remark 1. The relation between x0 and ξ has initially been
introduced as x0 = Γξ above (24). However, we require x0 =
ΓWpW

+
p ξ in Theorem 9 in order to account for ξ not belonging

to the system but feasible for (19). In fact, WpW
+
p ξ maps such ξ

to belonging ones (and leaves already belonging ξ unaltered).

Based on the equivalence of the KKT conditions, it is straight-
forward to see that also the explicit solutions of (7) and (29) are
equivalent. Most importantly, we find the following result that
we state without a formal proof.

Corollary 10. Assume that the explicit solution of (7) can be
described based on a continuous PWA function with s segments
as in (15). Then, the same applies to the explicit solution of (29)
and vice versa.

Remark 2. Note that a similar statement could, in principle,
also be formulated for the solution a∗(ξ) of (14). In fact, by
exploiting [2, Cor. 5.1], it immediately follows that uf (ξ) =
Ufa

∗(ξ) can also be described with s segments. However, even
for fixed data matrices, a∗(ξ) is not unique, which significantly
complicates the derivation of an explicit solution (without using
the tools leading to (29)).

IV. NUMERICAL EXAMPLES

A. Illustrating key insights with a 1-dimensional system

As a first example, we consider system (1) with

A = 1.2 and B = C = D = 1

subject to the constraints U = [−1, 1] and Y = [−4, 4]. Further,
we chooseQ = R = 0.5 andNf = 2, which already determines
the MPC problem (3). In order to specify (7), we note thatMu =
My = (1 − 1)>, vu = (1 1)> and vy = (4 4)> are in line
with (2). Explicitly solving (7) then leads to the PWA functions
in Figure 1 with s = 5 segments.

Now, to setup and investigate the DPC, we first note thatNp =
1 guarantees full rank of ONp

= C = 1. Hence, we choose an
input sequence ud, which is persistently exciting of order Ne =
4 as in (11). According to (10), this requires at least Nd = 7
elements. It can be easily verified that

ud :=
(
−0.6 0 0 0 0.5 0.5 1

)>
satisfies all conditions. Furthermore,

yd :=
(
−0.1 0 0 0 0.5 1 2.1

)>
is a consistent output sequence since (9) is satisfied for x0 = 0.5.
According to (13), ud and yd specify

Wp =

(
−0.6 0 0 0 0.5
−0.1 0 0 0 0.5

)
, Uf =

(
0 0 0 0.5 0.5
0 0 0.5 0.5 1

)
,

and Yf with l = 5. In the following, we mainly focus on the
transformation to (29) and its explicit solution. To this end, we
first require W+

p and Vp as in (17). Taking rank(Wp) = 2 and,
consequently, ν = 3 into account, suitable choices are

Figure 1: Explicit solution u∗f (x0) for MPC.

Figure 2: Explicit solution β∗(ξ) for (modified) DPC. Note that
(yp, up) is artificially restricted to Y × U for visualization.

W+
p =


−2 2
+0 0
+0 0
+0 0
−0.4 2.4

 and Vp =


0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

 .

We next focus on the parametrization in (22) and choose

K>f = 2UfVp =

(
0 0 1
0 1 1

)
in accordance with (32) for Φ = 2I2. This specifies (29), where
we only list

Ȟ =

(
1.75 2.5
2.5 3.75

)
and F̌ =

(
−1.34 8.04
−1.96 11.76

)
as a reference. Explicitly solving (29) leads to the PWA func-
tions in Figure 2. Obviously, β∗(ξ) likewise consists of s = 5
segments as predicted by Corollary 10.

B. Investigating practical features with the double integrator

As a second example, we consider a standard double integrator
system with

A =

(
1 1
0 1

)
, B =

(
0.5
1

)
, C =

(
1 0

)
, and D = 0

subject to the constraints U = [−1, 1] and Y = [−25, 25]. Fur-
ther, we choose Nf = 5 as well as Q = I2 and R = 0.01. We
next reformulate the constraints as in the first example with vy =
(25 25)> and explicitly solve (7) using the multi-parametric
toolbox [15]. As a result, we obtain mNf = 5 PWA functions
with s = 33 segments.



The focus of the following analysis of the modified DPC is
slightly different to that in Section IV.A. In fact, while the first
example aimed for an as simple as possible illustration of the
novel approach, this second example addresses more practical
implementations. More specifically, we investigate the influence
of randomly chosen input sequences ud with larger lengths Nd
than theoretically required. In this context, we initially note that
full rank ofONp requiresNp ≥ 2. As a consequence, we need at
least Nd ≥ 17 to achieve persistent excitation of order Ne ≥ 9.
Hence, DPC initially results in the QP (14) with l ≥ 11 decision
variables. Next, by eliminating the equality constraints, we find
(19) with ν ≥ 7. As indicated by (31) and Lemma 4, the final
simplification step always leads to the QP (29) with µ = mNf =
5 and, hence, as many decision variables as (7) independent of
the actual choices of Nd and Np. In addition, also the number of
segments of the explicit PWA solution to (29) is identical to that
of (7). These observations can be useful in practice since lower
bounds for Nd and Np might not always be available.

V. CONCLUSIONS AND OUTLOOK

By establishing a stricter relation to classical MPC, we have
shown that explicit DPC for deterministic linear systems is not as
intractable as the “dimensions” of the corresponding OCP sug-
gest. More precisely, through SID-type manipulations of the in-
volved data matrices, we expressed DPC in terms of a strictly
convex parametric QP that has exactly as many decisions vari-
ables and an exactly as complex explicit solution as its MPC
counterpart.

Deterministic DPC for linear systems is of limited use for
practical applications, which typically involve uncertainties and
nonlinear effects. Hence, future work will address extensions
to noisy and uncertain data as well as nonlinear systems. In this
context, a promising direction could be the estimation of the “de-
terministic part” of the system as recently proposed in [14]. Fur-
thermore, we will investigate potential applications of explicit
DPC such as, e.g., the extension of the encrypted DPC without
constraints in [16] to a realization involving the constraints (2).
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[3] J. Berberich and F. Allgöwer. A trajectory-based frame-
work for data-driven system analysis and control. 2020
European Control Conference, pp. 1365–1370, 2020.

[4] F. Dörfler, J. Coulson, and I. Markovsky. Bridging di-
rect&indirect data-driven control formulations via regular-
izations and relaxations. IEEE Transactions on Automatic
Control, 2022

[5] J. C. Willems, P. Rapisarda, I. Markovsky, and B. De Moor.
A note on persistency of excitation. Syst. Control Lett.,
54(4):325–329, 2005.

[6] H. J. van Waarde, J. De Persis, M. K. Çamlibel, and P. Tesi.
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