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Abstract— We consider the filtering and prediction problem
for a diffusion process. The signal and observation are modeled
by stochastic differential equations (SDEs) driven by correlated
Wiener processes. In classical estimation theory, measure-
valued stochastic partial differential equations (SPDEs) are
derived for the filtering and prediction measures. These equa-
tions can be hard to solve numerically. We provide an ap-
proximation algorithm using conditional generative adversarial
networks (GANs) in combination with signatures, an object
from rough path theory. The signature of a sufficiently smooth
path determines the path completely. As a result, in some
cases, GANs based on signatures have been shown to efficiently
approximate the law of a stochastic process. For our algorithm
we extend this method to sample from the conditional law, given
noisy, partial observation. Our generator is constructed using
neural differential equations (NDEs), relying on their universal
approximator property. We show well-posedness in providing a
rigorous mathematical framework. Numerical results show the
efficiency of our algorithm.

I. INTRODUCTION

In many applications the state of a system is not fully
observable and instead only partial or noisy information
is available, from which the state has to be estimated.
The development of estimation theory for deterministic and
stochastic dynamical systems has received enormous atten-
tion over the past decades. A very common model are SDEs,
consisting of a signal (Xt)t∈[0,T ] and an observation (Yt)t∈[0,T ],
the coefficients of which depend on X . Letting FY

t denote
the information available from Y until time t, then it is
known that under some conditions the conditional expec-
tation E(Xt |FY

t ) minimizes a mean square error. Sometimes
it is desirable to, more generally, estimate

E(ϕ(Xt)|FY
s ) (1)

for times s, t ∈ [0,T ] and arbitrary ϕ ∈C∞
0 . This is referred to

as smoothing, filtering and prediction if t < s, s = t and t > s
respectively. This paper is concerned with the latter two.
Filtering in particular is a heavily researched area and the
literature on it is vast [1]. There are numerous methods
of analyzing or deriving (1), [2]. If the signal and the
observation are given by stochastic differential equations
(SDEs) driven by Wiener processes, they model a partially
observable diffusion process. Then it is possible to derive
a measure valued SPDE for the time evolution of the nor-
malized conditional distribution P(Xt ∈ dx|FY

t ), referred to
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as Kushner-Shiryaev equation [3]. Such “filtering equations”
have been thoroughly investigated for diffusion processes.
In a similar way, SPDEs for the smoothing and prediction
measures, respectively P(Xt ∈ dx|FY

r ) and P(Xt ∈ dx|FY
s ),

s < t < r, can be obtained [4]. Under additional regularity
assumptions, it is possible to prove the existence and regu-
larity of densities to these measures, see [5], [6], [7], [8] for
early works on this and [9], [10] for a recent extension to
systems with discontinuous noise.
The filtering equations are numerically challenging to solve
and different approaches have been developed to approximate
their solutions [2]. One of the most common, the splitting
method, seperates the right-hand side into a deterministic and
a random operator and solves them separately [11], [12]. This
either requires additional assumptions on the spaces involved
[13] or relatively high regularity of the coefficients [11], [12].
Moreover, numerical solvers for (S)PDEs often suffer from
the curse of dimensionality. Recently the splitting-up method
was combined with a neural net representation to overcome
this [14]. The prediction density can then be obtained using
the transition probability of the process Z = (X ,Y ) [7], [4].
While filtering and prediction theory are mainly developed
in a stochastic setting, the techniques have also proven
successful in observer design for determinisic systems, where
the disturbance is a single, often continuous path [15], [16],
[17].
Rough path theory is a young field, developed to treat differ-
ential equations driven by paths of low regularity that escape
the scope of classical integration, see [18] and the references
therein. Signatures, as sequences of iterated integrals with
similarity to the Taylor expansion, are an object arising in
rough path theory which encode a surprising amount of
information about the path. Early works by Chen [19], [20]
show that the signature map, sending a path to its signature,
is injective when restricting it to a certain class of paths and
later results [21], [22] establish uniqueness up to tree-like
equivalence for paths with bounded variation. These results
motivated the use of signatures in machine learning [23]
as paths obtained by interpolation of data can be uniquely
characterized by their signature [24].
Generative Adversarial Networks (GANs) were first intro-
duced in 2014 [25] as a novel way to learn data distributions.
In this setting, two neural networks, the generator and the
discriminator, compete to generate and verify potentially
new or fake data. In a time series context, there have been
many recent contributions, especially attempting to learn
conditional laws, [26], [27].
Neural differential equations (NDEs) have also had a sharp
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increase in their popularity and their applications in re-
cent years with the release of several torch-based libraries
[28], [29]. In an NDE, a process is modeled as an ordi-
nary/stochastic/controlled differential equation with a neural
network (NN) as vector field(s). The relationship between
deep NNs and continuous time models is clearly presented
in [29] where the authors observe that a residual NN is a first-
order Taylor expansion of an ODE with an NN as the vector
field. Furthermore, they provide a memory-efficient training
scheme (initially proposed by [30] and [31]) where the
gradient of the loss in terms of the vector field’s parameters is
calculated as the solution of another backward neural ODE.
We refer the reader to [32] for a comprehensive survey of
NDEs and their different training methods.

This paper presents a first signature-GANs based estimator
for the conditional and prediction law of a diffusion process.
More precisely, our model learns the family of conditional
probability measures

P(Xt ∈ dx|{Yr : r ∈ [0,s]}), s≤ t,

by using the universal approximation property of neural
differential equations (NDEs). We prove that the estima-
tor is well-posed and give explicit forms of the neural
nets involved. Numerical results show the efficiency of our
method. In a subsequent paper we will provide a proof
of convergence as well as error bounds for the learned
conditional distributions to the true ones.

In section 2 we state conditions under which the filtering
and prediction measures admit densities, required for well-
posedness of our estimator. Section 3 introduces the signature
and collects useful results. In section 4 we present our
estimator and show well-posedness. Numerical results are
shown in section 5.

Notation. Throughout the paper we use the following
notation. We fix a T > 0 and consider the time interval [0,T ].
We denote by D ⊂ [0,T ] a finite set of points including
0 and T . We denote by CD = CD ([0,T ],Rd) the set of
continuous functions that are linear between the points in D .
If (Xt)t∈[0,T ] is a stochastic process with contiunous sample
paths, then we denote by (X̂)t∈[0,T ] the process constructed by
interpolating the points Xti , where ti ∈D . Moreover, for any
process (Xt)t∈[0,T ] the notation X̄ means the time-augmented
path (t,Xt)t∈[0,T ]. For p≥ 1 we denote by V p([0,T ],Rd) the
space of Rd-valued continuous paths with finite p-variation
[18]. On it, we consider the norm ‖X‖V p := ‖X‖BV,p+‖X‖∞,
with ‖·‖BV,p denoting the p-variation and ‖X‖∞ the essential
supremum.

II. THE FILTERING AND PREDICTION DENSITIES

Let (Ω,(Ft)t∈[0,T ],P) be a complete filtered probability
space. Consider the signal-observation system

dXt = b(t,Xt ,Yt)dt +σ(t,Xt ,Yt)dWt +ρ(t,Xt ,Yt)dVt

dYt = h(t,Xt ,Yt)dt +dWt ,
(2)

where (Xt)t∈[0,T ] and (Yt)t∈[0,T ] are Rd and Rd′ -valued respec-
tively, b, h, σ and ρ are B(R1+d+d′)-measurable functions

taking values in Rd , Rd′ , Rd×d′ and Rd×d′′ respectively, and
where (Wt ,Vt)t∈[0,T ] is a d′+d′′-valued Ft -Wiener process.

Assumption 2.1: (i) The initial condition Z0 = (X0,Y0) is
F0-measurable, independent of (Wt ,Vt)t∈[0,T ] and satisfies
E|Z0|2 < ∞.
(ii) There are constants K0,K1≥ 0 such that for all z∈Rd+d′ ,
t ∈ [0,T ] we have |h(t,z)| ≤ K0 and

|b(t,z)|+ |σ(t,z)|+ |ρ(t,z)| ≤ K0 +K1|z|.

(iii) There exists L≥ 0 such that for z1,z2 ∈Rd+d′ , t ∈ [0,T ],

|b(t,z1)−b(t,z2)|+ |h(t,z1)−h(t,z2)|+ |σ(t,z1)−σ(t,z2)|

+|ρ(t,z1)−ρ(t,z2)|+|(σ ·h)(t,z1)−(σ ·h)(t,z2)| ≤L|z1−z2|.
If Assumption 2.1 is satisfied, then by a well-known

theorem by Itô we know that there exists a unique Ft -
adapted solution Z = (Zt)t∈[0,T ] = ((Xt ,Yt))t∈[0,T ] to (2) such
that Z0 = (X0,Y0) almost surely, Z has continuous sample
paths almost surely and Esupt∈[0,T ] |Zt |2 < ∞. Moreover, it
covers a wide range of applications, as often more regularity
than Lipschitzness is used in SDE models.

Let for t ∈ [0,T ]

FY
t := σ

(
{Yr : r ∈ [0, t]}

)
∨N

be the filtration generated by Y and completed by the zero
sets N . The goal of filtering and prediction is to derive and
analyze the quantities

E(ϕ(Xt)|FY
t ) and E(ϕ(Xt)|FY

s ), s≤ t,

respectively, for t ∈ [0,T ] and ϕ ∈C∞
0 (Rd). Fix an s ∈ [0,T ].

In many applications it is desirable to obtain real valued
density processes, (πt)t∈[0,T ] and (πt,s)t∈[0,T ], such that for
each s, t ∈ [0,T ], t ≥ s,

πt =
P(Xt ∈ dx|FY

t )

dx
and πt,s =

P(Xt ∈ dx|FY
s )

dx
almost surely and hence for all ϕ ∈C∞

0 and s, t ∈ [0,T ],

E(ϕ(Xt)|FY
s ) =

∫
Rd

ϕ(x)πt,s(x)dx,

almost surely, where πs,s = πs.
The following result is well-known. For a proof and more

details we refer to [2], [1], [3] for classical literature, or
[9] and [10] for a recent generalization to a wider class of
systems.

Theorem 2.1: Let Assumption 2.1 (i) & (ii) hold. Then
there exists an FY

t -adapted measure valued process Pt(dx) =
P(Xt ∈ dx|FY

t ) such that almost surely for each t ∈ [0,T ] and
ϕ ∈C∞

0 (Rd),

E(ϕ(Xt)|FY
t ) =

∫
Rd

ϕ(x)Pt(dx).

If moreover Assumption 2.1 (iii) holds and for π0 = P(X0 ∈
dx|FY

0 )/dx we have E|π0|2L2
< ∞, then there exists an L2-

valued weakly continuous process (πt)t∈[0,T ] such that for
each t ∈ [0,T ] almost surely

πt = P(Xt ∈ dx|FY
t )/dx.



The following relates the prediction density to the filter-
ing density, [4]. For that purpose, denote by p(t1,z; t0,z0)
the transition probability for the process (Zt)t∈[0,T ] =
((Xt ,Yt))t∈[0,T ], that is, for t0, t1 ∈ [0,T ], t1 ≥ t0 and z0 ∈
Rd+d′ , for every B ∈B(Rd+d′),

P(Zt1 ∈ B|Zt0 = z0) =
∫

B
p(t1,z; t0,z0)dz.

Theorem 2.2: Let Assumption 2.1 hold and let E|π0|2L2
<

∞. Assume the process Z has the transition density p =
p(t1,z; t0,z0), let (πt)t∈[0,T ] be the filtering density from
Theorem 2.1 and fix s ∈ [0,T ]. Then there exists a measure
valued process (Pt,s)t∈[s,T ] such that
(i) for each t ∈ [s,T ], Pt,s is the regular conditional distribu-
tion of Xt given FY

s and such that
(ii) for each t ∈ [s,T ], Pt,s has the Radon-Nikodym derivative

πt,s(x) =
∫
Rd

∫
Rd′

p(t,x,y;s,x′,Ys)πs(x′)dx′dy.

For fixed s ∈ [0,T ] we call (πt,s)t∈[s,T ] the prediction density
of (Xt)t∈[s,T ] given FY

s . Indeed, an immediate calculation
shows that for each ϕ ∈C∞

0 , t ∈ [s,T ], almost surely

E(ϕ(Xt)|FY
s ) =

∫
Rd

ϕ(x)πt,s(x)dx.

Henceforth we assume for the conditions of Theorem 2.2 to
hold.

III. SIGNATURES AND ELEMENTS FROM ROUGH PATH
THEORY

In this section we collect some objects and properties that
will be used later. If not mentioned otherwise, the reader is
referred to [18] and the references therein, as well as to [23],
for the use of signatures in machine learning.

It is first necessary to introduce the space of formal
series of tensors, which is the space signatures live in. For
simplicity, we restrict ourselves to tensors over Rd . We
denote by (Rd)⊗n the usual space of tensors over Rd of
order n≥ 0.

Definition 3.1: (i) The space of formal series of tensors of
Rd , denoted by T ((Rd)), is defined as space of sequences,

T ((Rd)) := {a = (a0,a1,a2, . . .) : an ∈ (Rd)⊗n,n ∈ N}.

For two elements a = (a0,a1, . . .) and b = (b0,b1, . . .) we
can define an addition and a product by

a+b = (a0 +b0,a1 +b1, . . .), a⊗b = (c0,c1, . . .),

where for each n ∈ N0, with the usual (finite-dimensional)
tensor product ⊗, cn = ∑

n
k=0 ak⊗bn−k.

(ii) Let N ∈ N and define BN = {a ∈ T ((Rd)) : a0 = · · · =
aN = 0}. Then the truncated tensor algebra of order N is the
quotient algebra T N(Rd) = T ((Rd))/BN , with the canonical
homomorphism pN : T ((Rd))→ T N(Rd).
We can naturally identify T N(Rd) with R ⊕ Rd ⊕ ·· · ⊕
(Rd)⊗N . Now we can introduce the (truncated) signature.

Definition 3.2: Let X : [0,T ] → Rd be a path of finite
variation and for s, t ∈ [0,T ], n∈N define the iterated integral

X (n)
s,t :=

∫
· · ·
∫

s<s1<···<sn<t

dXs1 ⊗·· ·⊗dXsn .

Then the signature of X over (s, t)⊂ [0,T ] is

Xs,t = (1,X (1)
s,t ,X

(2)
s,t , . . .) ∈ T ((Rd)).

Similarly, the truncated signature is

XN
s,t = (1,X (1)

s,t , . . . ,X
(N)
s,t ) ∈ T N(Rd).

Example 3.1: Consider Xt = t on [0,T ]. Then

X0,T = (1,XT −X0,
(XT −X0)

2

2!
,
(XT −X0)

3

3!
, . . .).

Though signature captures deep geometric properties of a
path, it does not necessarily characterise the path completely.
It was shown that for continuous paths of bounded variation,
the signature determines the path up to tree like equivalence
[21]. A sufficient result for the present case is the following,
Theorem 2.29 in [18].

Theorem 3.1: Among all paths with bounded variation
sharing the same signature, there exists a path with minimal
length, which is unique up to reparametrization.
For linearly interpolated data points this in particular means
the following. Recall the notation introduced in section I.

Corollary 1: For X ,Y ∈CD , X = Y only if X = Y .
It is clear that for a basis (e1, . . . ,ed) of Rd and its

dual basis (e∗1, . . . ,e
∗
d) of (Rd)∗, the elements (eI = ei1 ⊗

·· ·⊗ ein)I={i1,...,in}⊂{1,...,d}n form a basis of (Rd)⊗n, just as
the elements (e∗I = e∗i1 ⊗ ·· · ⊗ e∗in)I={i1,...,in}⊂{1,...,d}n form a
basis of ((Rd)∗)⊗n. Recall that we can canonically identify
((Rd)∗)⊗n with ((Rd)⊗n)∗. Thus we have a linear mapping
((Rd)∗)⊗n→ (T ((Rd)))∗ by the relation

e∗I (a) = e∗I (pn(a)) = ai1,...,in ,

which is the coefficient in front of the basis vector eI in a.
In this way we get a linear mapping [18]

T ((Rd)∗) =
∞⊕

n=0

((Rd)∗)⊗n→ (T ((Rd)))∗.

Thus also, for a path X and its signature Xs,t , by linearity

e∗I (X) =
∫
· · ·
∫

s<s1<···<sn<t

e∗i1(dXs1)⊗·· ·⊗ e∗in(dXsn).

Definition 3.3: Let (Ω,F ,P) be a probability space,
(Xt)t∈[0,T ] an Rd-valued stochastic process and X its signa-
ture. If E(X)< ∞, then it is the expected signature of X .

The following is a very useful result [33], which we rely
on in our algorithm.

Theorem 3.2: Let p ≥ 1, let K ⊂ S(V p([0,T ],Rd)) be
compact and let f : K → R be continuous. Then for every
ε > 0 there exists a linear functional L ∈ (T ((Rd)))∗ such
that for all a ∈ K we have

| f (a)−La| ≤ ε.
While we do not go into details on the choice of a norm

‖ · ‖ on T ((Rd)) (see [18] for instance), we define, for
functionals f ∈ (T ((Rd)))∗,

‖ f‖Lip,1 = sup
a 6=b

| f (a)− f (b)|
‖a−b‖

.



IV. THE SIG-WASSERSTEIN-GAN PREDICTOR

In the following we provide a mathematical framework for
our approximation method. First we give precise meaning
and forms to the NNs in the GAN used in our model.
Then we outline the use of the Wasserstein distance on the
signature space [26], [34] using expected signatures [24].

A. Well-posedness of the estimator

We build the estimator as the composition of two neural
differential equations (NDEs) [32]. The first NDE encodes
the information carried by the filtration (FY

r )0≤r≤s, whilst
the second NDE is carefully designed so that its vector field
parametrizes the rate of change of the mean prospective
transition, see Lemma 4.2 below.

Estimator equations. Let θ = (θ1,0,θ1,θ2,0,θ2) ∈ Θ :=
Rp1,0+p1+p2,0+p2 , for some p1,0, p1, p2,0, p2 ∈ N which we
refer to as (learning) parameter and parameter space respec-
tively. Fix k ∈N and let K :=Rk and Z :=Rd be latent and
sampling space respectively1. Let z∼N (0, I) be a standard
Gaussian Z-valued random variable with distribution µZ and
density k(z). For each θ ∈ Θ let Hθ1,0 : Rd′ → K, Hθ2,0 :
K×Z→Rd , Gθ1 :R×K→ L(Rd′ ,K) and Gθ2 :R×Rd→Rd

be continuous functions in all its variables. Let (X ,Y )t∈[0,T ]
be the solution of (2). Henceforth we fix an s ∈ [0,T ].
Consider the following generator equations, which will serve
as an estimator for sample paths of E(Xt |FY

s ), t ∈ [s,T ].
1) For r ∈ [0,s], let X̃r be a FY

r -adapted K-valued process
given by the controlled differential equation (CDE)

X̃0 = Hθ1,0(Y0)

X̃r = X̃0 +
∫ r

0
Gθ1(u, X̃u)dYu.

(3)

2) For t ∈ [s,T ], let with z∼N (0, I),

X z
s =Hθ2,0(X̃s,z),

X z
r =X z

s +
∫ r

s
Gθ2(u,X

z
s )du.

(4)

Equation (3) is solved using the Log-ODE method [35],
and Hθ1,0 ,Gθ1 are parametrized feed-forward NNs, with θ1,0
and θ1 denoting the learning parameters. Similarly, Hθ2,0 and
Gθ2 are feed-forward neural nets, parametrized by θ2,0 and
θ2 respectively, where equation (4) can be solved by any
ODE solver. The aim is to find θ ∈ Θ, such that for each
t ∈ [s,T ] we have

E(Xt |FY
s )≈

1
N

N

∑
i=1

X zi
t , (5)

where zi, i = 1, . . . ,N are samples from the random variable
z. More precisely, if the mappings Hθ1,0 ,Hθ2,0 ,Gθ1 and Gθ2
are such that for t ∈ [s,T ],

E(Xt |FY
s ) =

∫
Z

X z
t µZ(dz),

1In some applications it is useful to choose k larger than d, as often a
higher dimensional latent space proves to be more efficient in approxima-
tions.

then (5) is an example of simple random sampling [36]. It
is known that then, by the Law of Large Numbers (LLN),
the right-hand side of (5) converges to E(ϕ(Xt)|FY

s ) almost
surely as the sample size N → ∞. In the remainder of this
subsection we show that the model (3)-(4) is well posed. In
other words, we argue that the approximation error of (5)
can be made arbitrarily small by the right choice of θ ∈Θ.

Recall the notation X̄ for the time-augmented path
(t,Xt)t∈[0,T ]. Let m,k ∈ N. The following result, Theorem
B.7 in [28], shows that CDEs of the form (3) are universal
approximators in V 1.

Lemma 4.1: Let a path R ∈ V 1([0,T ],Rk). Then for any
ε > 0 there exist continuous functions f0 : Rd → Rm and
f : Rm → Rm×(d+1), a linear map l : Rm → Rk and a path
X ∈ V 1([0,T ],Rd) such that the unique solution of the CDE

R̃t = R̃0 +
∫ t

0
f (R̃r)dX̄r, R̃0 = f0(X0),

satisfies ‖R− l(R̃)‖V 1 ≤ ε.
It is known, [4], that for some FY

r -predictable process C we
can write

E(Xr|FY
r ) = E(X0|FY

0 )+
∫ r

0
Cu dYu. (6)

Consider, for D , the processes ̂E(Xr|FY
r ), r ∈ [0,s] and Ŷ .

Then Lemma 4.1 together with the martingale representation
(6) ensures that (3), for the right choice of θ ∈ Θ and with
Ŷ instead of Y , is an efficient and accurate estimator for
̂E(Xr|FY

r ), r ∈ [0,s]. A version of the universal approximator
property, Lemma 4.1, can also be proven for sample paths of
(E(Xt |FY

t ))t∈[0,T ] with Y as driver for the CDE. A rigorous
proof exceeds the scope of the present article and will be
given in a follow-up paper.

The following result gives an explicit form to the mappings
Hθ2,0 and Gθ2 in (4), where we suppress the dependence on
θ2,0,θ2 and X̃ for the reader’s convenience. In other words,
we consider model (3)-(4) for a fixed ω ∈ Ω. Recall that
z ∼N (0,1) is a standard Gaussian Z = Rd-valued random
variable with distribution µZ . In a continuation of the present
article we will present a more general class of diffeomorphic
generators.

Lemma 4.2: Assume the transition probability
p(t,x,y;s,x′,y′) from Theorem 2.2 is continuously
differentiable in time for all s, t ∈ [0,T ] and
(x,y),(x′,y′) ∈ Rd+d′ . Fix ω ∈Ω.
(i) There exists a diffeomorphism H : Z → Rd such that
(µ ◦H−1) = πs. Then

E(Xs|FY
s ) =

∫
Z

H(z)µZ(dz). (7)

(ii) Moreover, the mean prospective transition

G(t,x′) :=
∂

∂ t

∫
Rd

x
∫
Rd′

p(t,x,y;s,x′,Ys)dydx (8)

satisfies

E(Xt |FY
s ) =

∫
Z

H(z)µ(dz)+
∫
Z

∫ t

s
G(r,H(z))dr µZ(dz).

(9)



Proof: Let A and B denote the first and second term
on the right-hand side of (9) respectively. It is known, see
[37], that since µZ and πs are absolutely continuous with
respect to the Lebesgue measure, there is a diffeomorphism
H : Z→ Rd such that (µz ◦H−1)(dx) = P(Xs ∈ dx|FY

s ), or
alternatively, [37, Ch. 1],

k(z) = πs(H(z))|detDH(z)|.

Then, a calculation using change of variables yields, for ϕ ∈
C∞

0 (Rd),

A =
∫
Z

ϕ(H(z))k(z)dz

=
∫
Z

ϕ(H(z))πs(H(z))|detDH(z)|dz

=
∫
Rd

ϕ(x)πs(x)dx = E(ϕ(Xs)|FY
s ).

This proves (7). For the second term, we compute

B =
∫
Z

∫ t

s
G(r,H(z))k(z)dr dz

=
∫
Z

∫ t

s
G(r,H(z))πs(H(z))|detDH(z)|dr dz

=
∫
Rd

∫ t

s
G(r,x′)πs(x′)dr dx′

=
∫
Rd

xπt,s(x)dx−
∫
Rd

xπs,s(x)dx = E(Xt |FY
s )−E(Xs|FY

s ),

where we used the form (8). This finishes the proof.
In applications the data corresponds to a collection of values

DD ,m := {(Xti ,Yti)(ω j), ti ∈D ,ω j ∈Ω, j = 1, . . . ,m}, (10)

where |D |= n, for integers n,m∈N. The estimator (3)-(4) is
then applied to the interpolated paths {(X̂(ω j),Ŷ (ω j)), j =
1, . . . ,m}. Depending on the context and required regularity,
different interpolation techniques can be used [28], [26]. In
the context of our well-posedness results, note that (i) always
(X̂ ,Ŷ ) ∈ V 1 and that (ii), we only require a finite collection
of diffeomorphisms H(ω j, ·), which is sure to exist. This
motivates the following.

Claim 1: For each ε > 0 and δ > 0 there exists an
equidistant partition D of size m, a data set DD ,m (10) and
mappings Hθ1,0 ,Gθ1 ,Hθ2,0 ,Gθ2 such that

P

(∣∣E(Xt |FY
s )− 1

N

N

∑
i−1

X zi
t
∣∣≥ δ

)
≤ ε. (11)

Proof: The proof of this result is quite technical and
will be the subject of a subsequent paper. Here we only
provide a rough sketch. For simplicity of exposition we set
d = d′ = k = 1 and only present the case t = s, corresponding
to the filtering problem. First observe that supt∈[0,T ] |Xt | is
uniformly integrable, meaning that for each ε there exists a
Kε such that P(supt∈[0,T ] |Xt | ≥Kε)≤ ε . Next we partition the
set Ωε := [supt∈[0,T ] |Xt |< Kε ] of probability 1− ε . For ri ∈
D ∩ [0,s], i = 1, . . . ,n′ and numbers k j =

Kε

M j, j = 0, . . . ,M,

assume without loss of generality that Xt ≥ 0, t ∈ [0,s], and
define sets of the form

Ai
j := {ω ∈Ω

ε : E(Xri |F
Y
ri
) ∈ [k j,k j+1]},

BJ :=
⋂

i=1,...,n′; ji∈{0,...,N}
Ai

k ji
.

The set BJ prescribes a certain range of paths for
E(Xr|FY

r )(ω), when ω ∈ BJ. We show that due to the
integrability and continuity of (X ,Y ) and the universal ap-
proximation property of Lemma 4.1 we can obtain (11) on
BJ. Repeating this procedure yields the result for t = s.

Recall the notation for CD . If D consists of n points, then
the identification CD 3 f ←→ ( fti)ti∈D ∈ Rd×n induces a σ -
algebra on CD in a natural way. Then, as for each ω ∈ Ω,
X̂(ω) ∈ CD , by an abuse of notation we can equivalently
regard X̂ as CD -valued random variable with a distribution
µ X̂ on CD . Further, by Corollary 1, we have a bijection of
the signature map

S : CD → S(CD ),

enabling us to consider the push-forward measure µ X̂ ◦S−1

on S(CD ). Let P(S(CD )) denote the set of all such push-
forward measures. The following result, Proposition 1 and
Corollary 3.3 in [24], is fundamental to our methods.

Lemma 4.3: Consider two continuous Rd-valued pro-
cesses (Xt)t∈[0,T ] and (Yt)t∈[0,T ] such that supt∈[0,T ]E(|Xt |+
|Yt |) < ∞. Denote by µ X̂ ,µŶ ∈ P(CD ) the push-forward
measures constructed above and denote by E

µ X̂ ,EµŶ the

expectation under µ X̂ ,µŶ respectively. Then

E
µ X̂ (S) = E

µŶ (S) iff µ
X̂ = µ

Ŷ . (12)

Then naturally X̂ = Ŷ in distribution.
As we want to learn the conditional law P(Xt ∈ dx|FY

s )
for the solution (X ,Y ) of our diffusion system (2) based on
a finite set of data points at times in D , we need a metric on
P(S(CD )) which makes use of (12). Making use of Theorem
3.2 allows us to approximate the usual Wasserstein metric by
the Sig-W1 metric

W1(µ,ν) = sup
‖ f‖Lip,1≤1

Eµ( f (S))−Eν( f (S))

≈ sup
‖L‖Lip,1≤1,L is linear

Eµ(LS)−Eν(LS)

:= Sig-W1(µ,ν)

(13)

where µ,ν ∈P(S(CD )). In a very useful way, if µ,ν ∈
P(S(CD )) have compact support we get2

Sig-W1(µ,ν) = ‖Eµ(S)−Eν(S)‖2, (14)

where the subscript 2 denotes the L2-norm on the signature
space. In practice the truncated signature is used, which

2Equation (14) provides an explicit form of the supremum in (13).
This is not the case in similar settings, where f is parametrized by an
NN, and a min-max problem is numerically solved by alternating gradient
descent and gradient ascent algorithms, with additional constraints to ensure
Lipschitzness. It is well known that first order gradient descent/ascent might
not converge even in the convex-concave case [38].



results in the use of the Euclidian norm. For a detailed
derivation see the recent work [26], [34], where this is first
introduced. This justifies the use of signatures in conditional
generative adversarial networks, resulting in the Conditional
Sig-Wasserstein GAN (CSigWGAN).

B. Implementation

Training. Consider again the model (3)-(4) and the setup
in subsection IV-A. To train the estimator we generate data
DD ,m as in (10). Considering ̂E(X |FY ) as random variable
on the space CD , we obtain an approximative measure µD,
which for each fixed time t > s approximates the prediction
measure P(Xt ∈ dx|FY

s ). Then, using the Sig-W1- metric in
(13), we train the neural nets in the estimator (3)-(4) so that

θ
∗ = argmin

θ

E(W1(µD,νθ )), (15)

where νθ is the distribution of the approximated conditional
expectation in (5), i.e. our estimator. This is outlined in
Algorithm 1.

Algorithm 1 Training and evaluation of CSigWGAN

Input: i) Time discretisation D := {0 = t0 < .. . < tN = T}
and fixed s≤ t ∈D ,
ii) Training dataset DD ,m := {(Xti ,Yti)(ω j), ti ∈ D ; j =
1, . . . ,m}
Notation: ED denotes the empirical expectation calculated
on the dataset D,
Training:

1) Approximate the conditional expectation E(XN
s,t |FY

s )
under the data measure by the L2-orthogonal projec-
tion of XN

s,t on the space of FY
s -measurable r.v., by

leveraging Doob-Dynkin lemma and Theorem 3.2,

L̂ := argmin
L is linear

ED [(XN
s,t −L(YN

0,s))
2] ,

E(XN
s,t |FY

s )(ω)≈ L̂(YN
0,s(ω)).

2) Use Stochastic Gradient Descent to minimise (14),

θ
∗ = argmin

θ

ED [‖L̂(YN
0,s)−Eνθ

[
XN

s,t
]
‖2
]
,

where Eνθ

[
XN

s,t
]

can be estimated using Monte Carlo
by drawing samples from the generator using differ-
ent values of z in the generators (3)-(4).

return θ ∗.

V. NUMERICAL RESULTS

We consider the linear SDE with Xt ,Yt ∈ R, t ∈ [0,1]

dXt =0.1(1+ t)Xtdt +dVt , X0 ∼N (0,1)
dYt =0.2Xtdt +dWt , Y0 ∼N (0,1),

(16)

where X0, Y0, V and W are pairwise independent. The
generator (3)-(4) is parametrized as follows: hθ1,0 ,Hθ2,0 are
feedforward NNs with one hidden layer with 20 neurons
and ReLU activation function. The resulting process X̃r from
equation (3) takes values in R10, and X z

r takes values in R.

The vector fields Gθ1 ,Gθ2 are parametrized by feedforward
NNs with one hidden layer with 128 hidden neurons and
Tanh activation function.

We use (16) to create a synthetic dataset (10) with 20
000 samples. The algorithm is trained for a total of 50
epochs, where the NDEs are backpropagated using the
adjoint method [29].

Fig. 1 provides an example of the numerical approximation
of E[Xt |FY

s ], t ≥ s,s= 0.5 compared to the existing analytical
solution of E[Xt |FY

t ] given by the Kalman filter. Each red
line is a sample generated with (3)-(4) for one sample of z.
The conditional expectation, depicted in stronger red, is then
approximated using the average of the samples according to
(5). For t = s, our estimator matches the Kalman filter.

Prediction methods are used less frequently in the litera-
ture in comparison to filtering and are more challenging to
implement. However, the Kalman filter, being the optimal
estimate and using more information on the observation
process Y , can be used well for validation purposes.

The implementation is available at https://github.
com/msabvid/SigFiltering.
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