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Abstract—This paper deals with the design of Excitation and
Measurement Patterns (EMP) for the identification of a class
of dynamical networks whose topology has the structure of a
Directed Acyclic Graph (DAG). In addition to the by now well
known condition that the identifiabiltiy of any dynamical network
requires that the sources be excited, the sinks be measured, and
all other nodes be either excited or measured, we show that
for DAGs two other types of nodes have special excitation and
measurement requirements. Armed with this result, we propose
a systematic procedure for the design of EMPs that guarantee
identifiability of a network with DAG topology.

Index Terms—Dynamic Networks, Generic Identifiability, Net-
work Identification, Directed Acyclic Graphs.

I. INTRODUCTION

This work deals with identifiability of dynamic networks,
which has been an active research topic in the control com-
munity over the last ten years. The network framework used
here was introduced in [1] where signals were represented
as nodes of the network which were related to other nodes
through transfer functions. These networks can be interpreted
as directed graphs where the transfer functions, also called
modules, are the edges of the graph and the node signals are
the vertices.

In [1] it was assumed that all nodes are excited and
measured. As a result, an input-output matrix of the network,
denoted T (z), can be defined, which can always be identified
from these data. The network identifiability question is then
whether the network matrix, denoted G(z) (whose elements
are the transfer functions relating the nodes) can be recovered
from this closed-loop transfer matrix T (z). In subsequent
work, a range of new objectives were defined, from the
identification of the whole network to identification of some
specific part of the network [1]–[9]. As for the assumptions
on the signals, up to 2019, all contributions assumed that
either all nodes are excited, or all nodes are measured. A
typical question would be: given that all nodes are excited,
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which nodes must be measured in order to identify the whole
network?

The first identifiability results for networks where not all
nodes are excited AND not all nodes are measured were pre-
sented in [10]. That paper first provided a necessary condition
for identifiability of any network: each node must be either
excited or measured, at least one node must be excited and
at least one node measured. The paper [10] also presented
identifiability conditions for two special classes of networks,
namely trees and loops.

The results of [10] inspired the definition of an excitation
and measurement pattern (EMP), namely the combination of
excited nodes and measured nodes. The concept of EMP
was introduced in [11] where an EMP was called valid if it
guarantees the identifiability of the whole network. An EMP
was called minimal if it guarantees the identifiability of the
network using the smallest possible combination of excited
and measured nodes [11]. This number is the cardinality
of the EMP. Achieving identifiability of a network with a
minimal EMP is of both theoretical and practical interest. The
excitation of a node typically requires an actuator, while its
measurement requires a measurement device. On the other
hand, having some flexibility in the choice of a valid EMP
is also of practical interest. It may be that exciting node
42, say, is prohibitively expensive while its measurement is
easy; conversely, measuring a node may be difficult while its
excitation is cheap. In evaluating the choice of an EMP for
the identification of a network, one must of course remember
that each node must be either excited or measured, or both.
As a result, the cardinality of a valid EMP is always at least
equal to n, the number of nodes.

The search for valid, and possibly minimal, EMPs began by
looking at special structures. In [10] a necessary and sufficient
condition was given for the identifiability of a tree, which
shows that a tree can possibly be identified with an EMP
of cardinality n. In [12] necessary and sufficient conditions
were derived for the identifiability of some classes of parallel
networks. In [13] necessary and sufficient conditions were
given for the identifiability of loops. This result showed that
any loop with more than 3 nodes can also be identified with
a minimal EMP of cardinality n. In addition, it was shown
that constructing EMPs for loops is very easy and that the
number of minimal EMPs grows very quickly with the number
of nodes.

In this paper, we generalize the results derived in [10] for
the identification of trees to a much wider class of networks,
namely those that have the structure of a Directed Acyclic
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Graph (DAG), i.e. a directed graph that has no cycles. DAGs
have been widely studied in the literature [14]. A specific fea-
ture of a DAG is that the corresponding network matrix G(z)
can be rewritten in a lower triangular form via a relabeling
of the nodes. The corresponding input-output transfer matrix
T (z) is then also lower-triangular and this greatly simplifies
the relations between the elements Gij of the network matrix
and the elements Tij of this transfer matrix.

The main contributions of this paper are as follows. First
we provide an explicit solution for the elements Gij(z) as a
function of elements of the matrix T (z) and elements of its
inverse: S(z) = T−1(z), with the property that the elements
Sij(z) of S(z) are expressed in terms of Tkl only (i.e. they
do not involve inverses of elements Tkl). Next we focus on
the construction of valid EMPs for the identification of a
DAG. We provide a necessary condition on the excitation
and measurement of specific nodes within a DAG. Finally,
we provide a simple procedure for the construction of a valid
EMP for the identification of a DAG.

The paper is organized as follows. In Section II we in-
troduce the notations, and recall the definitions of generic
identifiability of a network, and of a valid, as well as a
minimal, Excitation and Measurement Pattern. We also recall
the main necessary condition for identifiability of any network.
In Section III we present networks that have the topology of
Directed Acyclic Graphs and establish the key results that will
allow one to identify such networks. In Section IV we establish
necessary conditions for the identifiability of a DAG. The
results of Sections III and IV allow us to propose, in Section
V, a recursive procedure for the construction of a valid EMP,
i.e. one that secures identifiability of the network. Finally, we
present conclusions in Section VI.

II. DEFINITIONS, NOTATIONS AND CONCEPTS

In this Section, we briefly state the identifiability problem
for a dynamical network and recall the main necessary condi-
tion for the identifiability of any such network. We then define
the concept of a valid Excitation and Measurement Pattern,
namely a choice of excited nodes and measured nodes that
guarantee identifiability. We also introduce the notations used
throughout the paper.

We consider dynamic networks composed of n nodes (or
vertices) which represent internal scalar signals {wk(t)} for
k ∈ {1, 2, . . . n}. These nodes are interconnected by discrete
time transfer functions, represented by edges, which are entries
of a network matrix G(z). The dynamics of the network is
given by the following equations:

w(t) = G(z)w(t) +Br(t), (1a)
y(t) = Cw(t), (1b)

where w(t) ∈ Rn is the node vector, r(t) ∈ Rm is the input
and y(t) ∈ Rp is the network’s output. The matrix B ∈ Zn×m

2 ,
where Z2 , {0, 1}, is a binary selection matrix with a single 1
and n− 1 zeros in each column; it selects the inputs affecting
the nodes of the network. Similarly, C ∈ Zp×n

2 is a matrix

with a single 1 and n−1 zeros in each row that selects which
nodes are measured.

We now introduce some definitions and notations concern-
ing these dynamical networks and their network matrix G(z).
To each G(z) we can associate a directed graph G defined by
the tuple (V, E), where V is the set of vertices and E ⊆ V ×V
is the set of edges. The graph G defines the topology of the
network. A particular transfer function Gji(z) of the network
matrix is called an incoming edge of node j and outgoing edge
of node i. For the graph G associated to the network matrix
G(z) we introduce the following notations.

• W - the set of all n nodes;
• B - the set of excited nodes, defined by B in (1a);
• C - the set of measured nodes, defined by C in (1b);
• F - the set of sources: nodes with no incoming edges;
• S - the set of sinks: nodes with no outgoing edges;
• I - the set of internal nodes, i.e. nodes that are neither a

source nor a sink: I ,W\(F ∪ S);
• N−

j - the set of in-neighbors of node j;
• N+

j - the set of out-neighbors of node j.

Additionally, we introduce the following two types of nodes.

• A node j is called a dource if it has at least one out-
neighbor that is connected to all in-neighbors of j;

• A node j is called a dink if it has at least one in-neighbor
that connects to all out-neighbors of j.

The following assumptions are made about the network
matrix:

• the diagonal elements are zero;
• (I −G(z))−1 is proper and stable.

One can represent the dynamic network in (1a)-(1b) as an
input-output model as follows

y(t) =M(z)r(t), with M(z) , CT (z)B. (2)

where

T (z) , (I −G(z))−1. (3)

Observe that the matrix T (z) is nonsingular by construction.
It is assumed that the input-output model M(z) is known;

the identification of M(z) from input-output (IO) data
{y(t), r(t)} is a standard identification problem, provided
the input signal r(t) is sufficiently rich. The question of
identifiability of the network is whether the network matrix
G(q) can be fully recovered from the transfer matrix M(z).
We now give a formal definition of generic identifiability of
the network matrix from the data {y(t), r(t)} and from the
graph structure.

Definition II.1. ( [5]) The network matrix G(z) is gener-
ically identifiable from excitation signals applied to B and
measurements made at C if, for any rational transfer matrix
parametrization G(P, z) consistent with the directed graph
associated with G(z), there holds

C[I−G(P, z)]−1B = C[I−G̃(z)]−1B =⇒ G(P, z) = G̃(z),



for all parameters P except possibly those lying on a zero
measure set in RN , where G̃(z) is any network matrix con-
sistent with the graph.

In this paper, we discuss the identifiability in terms of which
nodes must be excited and/or measured in the subsets B and
C in order to guarantee identifiability of the network. This
approach is inspired by [3] and a recent result in [10], which
gives a necessary condition for generic identifiability of a
network.

Proposition II.1. The network matrix G(z) is generically
identifiable only if B, C 6= ∅, F ⊂ B, S ⊂ C and B ∪ C =W .

As a consequence, every node of the network must be either
excited or measured. Generic identifiability of a given network
can thus be equivalently characterized by the network’s Exci-
tation and Measurement Pattern, denoted EMP. The concept
of EMP, which led to the concept of minimal EMP, was
introduced in [11]. They are defined in the following.

Definition II.2. A pair of selection matrices B and C, with
its corresponding pair of node sets B and C, is called an
excitation and measurement pattern - EMP for short. An EMP
is said to be valid if it is such that the network (1a)-(1b) is
generically identifiable. Let ν = |B|+ |C| 1 be the cardinality
of an EMP. A given EMP is said to be minimal if it is valid
and there is no other valid EMP with smaller cardinality.

The following result establishes a lower and upper bound
for the cardinality of a valid EMP for any network.

Theorem II.1. The cardinality of a valid EMP for the identi-
fication of a dynamical network with n nodes is at least equal
to n and at most equal to 2n− f − s, where f is the number
of sources and s the number of sinks.

Proof. The lower bound results from Proposition II.1; it can
actually be achieved for trees and loops [10], [13]. As for the
upper bound, we know by Proposition II.1 that all sources
must be excited and all sinks measured, while the remaining
n− f − s nodes must be excited or measured. Assuming that
these are all excited and measured, then the cardinality of the
EMP is f + s+ 2(n− f − s) = 2n− f − s.

From now on, we drop the arguments z and t used in (1a)-
(1b) whenever there is no risk of confusion.

III. DIRECTED ACYCLIC GRAPHS AND THEIR PROPERTIES

In this section we investigate the generic identifiability
of dynamic networks whose topologies are associated with
directed acyclic graphs, denoted DAG2. These are very general
classes of graphs, of which trees are a special case. We
will derive necessary and sufficient conditions for the generic
identifiability of these classes of networks and characterize
which nodes need to be excited or/and measured in order

1| · | - Denotes the cardinality of a set.
2For simplicity, we shall in the future just refer to a DAG rather than a

network that has the topology of a DAG.

to obtain a valid EMP for these networks. Directed Acyclic
Graphs are defined as follows.

Definition III.1. A directed acyclic graph is a directed graph
that has no cycles.

A property of DAGs is that the sequence of their nodes can
be relabeled by a topological sorting algorithm [15] in such a
way that Gij = 0 for i < j. In the sequel, we assume without
loss of generality that the nodes of the dynamic networks we
study in this section have been relabeled this way. As a result,
the network matrix G can be written as a lower triangular
matrix.

G =


0 0 0 . . . 0
G21 0 0 . . . 0
G31 G32 0 . . . 0

...
...

. . . . . .
...

Gn1 Gn2 . . . Gn,n−1 0

 , (4)

where some Gij , i > j are typically zero. In [12] it was shown
that for a network matrix (4) with all Gij 6= 0 for i > j generic
identifiability is achieved if and only if all sources are excited,
all sinks are measured, and every other node is both excited
and measured. Exciting and measuring all internal nodes is of
course a very strong condition; we shall explain in the next
section why it occurs when all Gij 6= 0.

The following lemma establishes relationships between such
network matrix G with the structure of a DAG and the
corresponding I/O matrix T .

Lemma III.1. Let G be as in (4) and define T = (I −G)−1.
Then the following relationships hold.

Tll = 1, (5)
Tlj = 0, for j > l, (6)

Tlj =

l−1∑
i=j

GliTij , for l > j (7)

Tlj =

l∑
i=j+1

TliGij , for l > j (8)

Glj = Tlj −
l−1∑

i=j+1

GliTij , for l > j (9)

Glj = Tlj −
l−1∑

i=j+1

TliGij , for l > j (10)

Proof. The relations (5)-(7) follow directly from [I −G]T =
In, while (8) follows from T [I − G] = In. Observing that
Tjj = 1 in (7) yields (9), while (10) follows similarly from
(8).

In the sequel of this paper we shall illustrate all our results
with the following 7-node DAG.



Fig. 1. A 7-node DAG network

For this network, equation (10) allows us, for example, to
write:

G43 = T43

G53 = T53 − T54G43

G73 = T73 − T74G43 − T75G53

Equations (9)-(10) define the expressions of the Gij recur-
sively as a function of the Tij and of the previously computed
Gkl. But the Gij can also be expressed explicitly as functions
of the Tij as is shown in the following Theorem, which is one
of the main results of this paper. It shows that for DAGs one
can compute the unknown transfer functions Gij explicitly as
a function of the elements of the I/O matrix.

Theorem III.1. Define S ∆
= T−1 with elements Sij . Then the

following results hold:
(1) Glj = −Slj , and hence Slj = 0 for each pair {l, j}, l 6= j,
for which Glj is known to be zero;
(2) Glj can be written as a sum of products of Tki with k ≤ l
and i ≥ j.

Proof. Item (1) follows from G = I−T−1 and the fact that the
inverse of a lower triangular matrix with ‘ones’ on its diagonal
is a lower triangular matrix with ‘ones’ on its diagonal.
Item (2) (in particular the fact that T−1 does not contain
any T−1

ij ) is a property of the inverse of a lower triangular
matrix with ‘ones’ on its diagonal. It follows from the direct
computation of T−1, but it also follows by substituting the Gij

on the right hand side of (10) by their expressions computed
from the same equation.

To illustrate the result (2) of Theorem III.1, we observe that
if we substitute G53 and G43 in the expression of G73 above
by their expressions, we obtain

G73 = T73 − T74T43 − T75T53 + T75T54T43

as claimed.
Not only does Theorem III.1 provide an explicit expression

for the Glj as a function of the input-output elements Tlk but
it also proves very useful to establish relations among the Tlk.
Indeed, for each Glj that is known to be zero, result (2) of the
Theorem allows one to compute one of the Tlk as a function
of others. This may then allow one to eliminate the need for
the excitation or measurement of some nodes as we shall show
in Section V. Returning again to the 7-node DAG of Figure 1,
since G52 = 0, it follows that S52 = 0, which implies

T52 = T53T32 + T54T42 + T54T43T42.

IV. NECESSARY CONDITIONS FOR THE IDENTIFICATION OF
A DAG

It was shown in [10] that a necessary condition for the
generic identifiability of any network is that all sources must
be excited, all sinks must be measured, and that each other
node must be either excited or measured. Here we show that,
for DAGs, some additional necessary conditions are required
for two special classes of nodes, namely the dources and the
dinks that were defined in Section II. Our main result is the
following.

Theorem IV.1. Consider a dynamic network with the topology
of a directed acyclic graph whose network matrix is given in
(4) with some known Gij = 0 for i > j. Then this network is
generically identifiable only if the following conditions hold.
(1) each node is either excited or measured;
(2) all sources are excited and all sinks are measured;
(3) all dources are excited and all dinks are measured.

Proof. Conditions (1) and (2) have been shown to be necessary
for the idenfication of any network in [10].
We turn to item (3). We first prove that the excitation of all
dources is necessary. Consider a node l that is an outneighbor
of i such that all in-neighbors of node i are connected to that
outneighbor l. This means that node i is a dource. It then
follows that for each in-neighbor j of node i, we have

• Gij 6= 0 since j is an in-neighbor of i;
• Glj 6= 0 by the assumption above.

To show that the dource i needs to be excited, we focus on
the transfer function Tli between the dource i and the out-
neighbor l that is connected to all in-neighbors of i. It follows
from (10) that in the equations defining the Gij as a function
of the Tlk and the other Gij , this specific transfer function
Tli appears only in the expressions of Glj in which l is the
considered out-neighbor of dource i, and j is either the dource
i itself or one of its N−

i in-neighbors. We now observe that in
these 1 +N−

i equations, Tli is either multiplied by ’1’ or by
the Gij that relate the in-neighbors of dource i to itself. These
Gij are nonzero (see above). Each of these equations 1+N−

i

equations therefore contains an unknown Glj on the left hand
side and the unknown Tli on the right hand side. Hence node
i must be excited in order to compute Tli and therefore the
edges Glj linking the dource i and all its in-neighbors to this
particular out-neighbor.
The proof for the necessity of measuring all dinks is the exact
dual of the proof for the necessity of excting all dources and
will therefore be omitted.

We illustrate the result of Theorem IV.1 with the 7-node
DAG network pictured in Figure 1. This network has one
source (node 1), two dources (nodes 2 and 5), two sinks (nodes
6 and 7) and one dink (node 4).

We first show why node 5 must be excited. It is a dource
because all its in-neighbors (nodes 3 and 4) are connected to
out-neighbor 7. We write the equations (10) that relate the



out-neighbor to the dource and to its two in-neighbors.

G75 = T75

G74 = T74 − T75G54

G73 = T73 − T74G43 − T75G53

We observe that, even if all quantities other than T75 on
the right hand side were known (i.e. T74, T73, G54, G43, G53),
it would be impossible to identify the transfer functions
G75, G74 and G73 without knowing T75, which requires
exciting node 5. We add that, if an edge G76 was added, the
first equation would be replaced by G75 = T75−G76T65, and
the conclusion would thus be identical.

We now illustrate why node 4 must be measured. It is a
dink because it has an in-neighbor (node 3) that is connected
to all its out-neighbors (nodes 5 and 7). We write the equations
(9) that relate its in-neighbor 3 to the dink and to all its out-
neighbors.

G43 = T43

G53 = T53 −G54T43

G73 = T73 −G74T43 −G75T53

We observe that T43 is required to compute G43, and that
it cannot be computed from the other two equations for the
same reasons as above. Thus, node 4 must be measured for
the identification of G43, G53 and G73.

Notice that a given node can be both a dource and a dink.
In a “full” DAG as in (4), with all Gij 6= 0, all internal nodes
are dources and dinks, which explains the need for exciting
and measuring them all, as shown in [12].

V. CONSTRUCTING A VALID EMP FOR A DAG
In this section, we show how to construct a valid EMP while

trying to keep the cardinality of this EMP low. Recall that this
cardinality is always between n and 2n− f − s.

An easy solution for the construction of a valid EMP
results from Theorem III.1. Indeed, each Gij can be expressed
explicitly as a combination of Tkl. The collection of all
these Tkl indicates which node excitations and which node
measurements will lead to a valid EMP. In order to reduce the
cardinality of this explicit solution, one can, in a second step,
take advantage of the possible replacement of some of these
Tkl by others using the equations Sij = 0 for each Gij that
is known to be zero: see item (1) of Theorem III.1.

For the 7-node DAG of Figure 1 the explicit solution
provided by Theorem III.1 yields the following solution for
the Gij :

G21 = T21

G31 = T31 − T21T32, G32 = T32

G42 = T42 − T32T43, G43 = T43

G53 = T53 − T43T54, G54 = T54

G65 = T65

G73 = T73 − T75T53 − T74T43 + T75T54T43

G74 = T74 − T54T75, G75 = T75

Collecting all the indices that appear as inputs and outputs
of the Tkl yields the valid EMP B = {1, 2, 3, 4, 5} and
C = {2, 3, 4, 5, 6, 7}. It has cardinality 10. Observe that
nodes 2, 3, 4, 5 are both excited and measured. According
to Theorem IV.1, nodes 2 and 5 are dources and node 4 is
a dink. Hence, nodes 2 and 5 must be excited, as well as
node 1, which is a source; while node 4 must be measured,
as well as nodes 6 and 7 which are sinks. Starting from
this initial EMP with cardinality 10, one can then use the
equations of Theorem III.1 and Lemma III.1 (in particular
the equations Sij = 0) to check whether one can eliminate
any one of nodes 3 and 4 from B, or any one of nodes
2, 3, 5 from C. However, such procedure is tedious, and
there appears to be no systematic way to proceed with the
elimination of excitations or measurements. Therefore, we
propose a recursive procedure for the construction of a valid
EMP which is based on Theorem III.1 and Lemma III.1.

Recursive procedure for the construction of a valid EMP.
First build the matrix S, replacing each Slj by −Glj , where
these Glj are computed using equation (10) of Lemma III.1.
For each Glj that is known to be zero, equate the zero element
in Sji to the expression resulting from the same equation (10).

Now construct the preliminary EMP with the excitations
and measurements required by the structure of the DAG:
sources and dources must be excited, dinks and sinks must
be measured. Call it EMP0, thus defining a B0 and a C0. List
the corresponding known Tij , i.e. all Tij for which j ∈ B0

and i ∈ C0.
Now proceed stepwise within the columns of S, say from

column 1 to column n, as explained below.
1) Column 1: the unknown Gj1 appear in the first column

of S. Add to EMP0 whatever excited node or measured node
is required to be able to identify all Gj1. There may be several
choices. Use the remaining Sj1 = 0 equations of column 1 to
compute new elements Tkl. Update EMP0 to EMP1, update
the known Gj1, and update the known Tkl.

2) Column 2: the unknown Gj2 appear in the second column
of S. Add to EMP1 whatever excited node or measured node
is required to be able to identify all Gj2. There may be several
choices. Use the remaining Sj2 = 0 equations of column 2 to
compute new Tkl. Update EMP1 to EMP2, update the known
Gj2, and update the known Tkl.

3) Continue until all columns of S containing elements Glj

have been covered.
Before we illustrate this procedure with our Example, let us

make the following comments.
Comments

• The computation of elements Glj based on column j of
S may require that several elements of that column be
used jointly, leading to the solution of a linear system
of equations. One must check that these equations are
linearly independent.

• The procedure proposed above uses a column by column
approach, going from left to right. Other approaches can
be used, such as covering the columns from right to



TABLE I
CONSTRUCTION OF AN EMP COLUMN-WISE.

column Added E or M EMP update Known Gji Known Tji

0 – E125, M467 – T41, T42, T61, T62, T65, T71, T72, T75

1 M23 E125, M23467 G21, G31, G43 + T32, T43, T63, T73

2 – E125, M23467 G32, G42 + T64, T74

3 – E125, M23467 G53 from S63, G73 –
4 – E125, M23467 G54 from S64, G74 –
5 – E125, M23467 G65, G75 –

left, using a row by row approach, etc. These different
approaches will typically lead to different valid EMPs.

The EMP procedure applied to the DAG of Figure 1.
For brevity of notation, for this example with 7 nodes, we
shall represent an EMP that has B = {1, 2, 4, 5} and C =
{2, 3, 4, 6, 7}, say, by E1245, M23467.

For this example, we know a priori that nodes 1, 2 and
5 must be excited, being a source and two dources, while
nodes 4, 6 and 7 must be measured, being a dink and
two sinks. As a result, the starting EMP, denoted EMP0

above, is E125, M467. With this initial EMP0, the elements
T41, T42, T61, T62, T65, T71, T72, T75 are known.

In Table I describing the procedure, we have listed the a
priori information as being in column 0. We observe that the
elements of column 1 can be identified by the addition of M23,
i.e. the measurement of nodes 2 and 3. It turns out that with
this addition of M23, all other elements Glj can subsequently
be computed, and the procedure ends with a valid EMP defined
as E125, M23467, which has cardinality 8.

An alternative is to add E3 for the identification of the
elements of column 1, and E4 for the identification of the
elements of column 2. This yields the alternative valid EMP
defined as E12345, M467, with the same cardinality 8. A row
by row procedure, from top to bottom, applied to the same
example leads to the valid EMP: E125, M234567, which has
cardinality 9. In comparison, the explicit solution based on the
decomposition of each Glj as a function of the Tkl only, as
explained above, has cardinality 10.

VI. CONCLUSIONS

We have pursued our study of specific substructures of
dynamic networks, with the aim of designing EMPs that
guarantee identifiability for these specific substructures. In
[5] a necessary and sufficient condition was established for
trees, with a corresponding valid (and minimal) EMP. In [12]
necessary and sufficient conditions for network structures with
parallel paths were derived. In [13] it was shown that any
loop with more than 3 nodes can also be identified with a
minimal EMP and the design of such loops was presented.
In the present paper we have focused on networks that have
the structure of a DAG. We have shown that DAGs have
specific properties which facilitate the design of valid EMPs. A
rather surprising result of our analysis has been to show that
two specific and well-defined nodes, which we have called
dources and dinks, have specific excitation and measurement

requirements. Dources, just like sources, must be excited and
dinks, just like sinks, must be measured in order for a DAG
network to be identifiable. With these constraints under our
belt, we have produced a recursive EMP design procedure
that takes advantage of the properties of DAGs.
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