
An End–End Approach to Wireless Web Access

Vladimir Korolev and Anupam Joshi
Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County
Baltimore, MD 21250

fvkorol1,ajoshig@cs.umbc.edu

Abstract

In this work we propose a lightweight scheme for negoti-
ating client’s capabilities in the context of end-end content
adaptation for wireless web access. Our method is much
less complex then W3C’s proposed CC/PP framework. We
suggest that for the purposes of content negotiation all (mo-
bile) clients could be grouped into a few relatively large cat-
egories. With this assumption we simplify the CC/PP pro-
tocol and implement it as an Apache module. This paper
describes the simple CC/PP protocol, issues related to its
implementation, and performance measurements.

1. Introduction

With the advent of dynamic and executable content, in-
tegration of security mechanisms, and emerging metadata
standards, it is clear that the Web is transforming into the
basis of a globally distributed computing and information
access system. Further, wireless access to the web from
mobile/palmtop devices is increasingly attractive to many
users, since it enables new applications in areas like m-
commerce, public information services, education, tele-
medicine, battlefield awareness etc. For example business
users with palmtop/laptop type devices (aka Road Warriors)
constitute a large and growing segment of users. Their work
typically involves accessing and modifying corporate infor-
mation repositories with multimedia data over low band-
width connections typified by wireless or phone-line access.
More often than not, the applications they use are web en-
abled and use the browser as a “thin” client.

As was discovered fairly early on[15, 16, 17], the web
(more specifically, the HTTP protocol) is designed to work

This research was supported in part by the DARPA DAML program
under contract F30602-97-1-0215, by National Science foundation grants
NSF IIS-9875433 and NSF CCR-0070802, by an IBM Faculty Develop-
ment Award.

in wired, high bandwidth environments, and does not oper-
ate particularly well when the access point is a mobile host.
The reasons behind this such as low/variable bandwidth,
disconnections, etc.[16, 9] are quite well known. Further,
the mobile host is typically resource poor. Even though the
very high end laptop machines can now deliver performance
comparable to low-end to moderate desktops, most “thin
and light” sub-notebooks and PDA/PCS type devices are
constrained in terms of CPU, power, memory, disk, display
capabilities etc. This creates a capability mismatchbetween
the multimedia rich data that the web servers have on one
hand, and the capability of the client to handle/display that
data and the capability of the wireless network to deliver it
in an acceptable time on the other.

These bandwidth and resource related problems are
sometimes thought of as transient, since wireless network
speeds as well as the resources available on mobile plat-
forms are steadily increasing. It should be noted though
that the speeds on wired networks and the resources (mem-
ory, CPU speed, etc.) on static hosts are increasing just as
fast, if not faster. As has been amply demonstrated over
the last decade, software catches up and uses all available
hardware resources – Existing applications will evolve, and
novel applications will be created, to use these enhanced ca-
pabilities. So while the absolute performance measures of
mobile systems will undoubtedly improve, the bandwidth
gapand resource gapwill remain[14].

There exists a large body of work which handles the
problem of capability mismatchfor multimedia content in
wireless web access. The solution, typically, has been to
use a client-proxy-server model. The proxy transcodes mul-
timedia formats, most often images, according to some pre-
defined rules, usually in some manner that trades quality
for bandwidth. We present many such systems in the re-
lated work section. However, as PDA or thin-light note-
books become more popular, the proxy’s functionality will
increase. For example, some proxies now seek to deal with
videos as well as images. This includes work done at Berke-
ley, as well as our own recent work[2]. We have also ex-

amined other questions that relate especially to PDA type
mobile clients, such as what to do with active content and
HTML fonts / styles which the PDAs typically cannot han-
dle. There are also proxy approaches that re-render the
HTML in a format appropriate for the PDA before trans-
mitting. This added functionality of the proxy increases the
computational resources it requires.

We have argued[14] that a purely proxy based solution
will become increasingly non scalable, especially with the
number of users connecting wirelessly expected to grow.
We note that limited functionality proxy systems have been
developed recently that are quite scalable. A good exam-
ple is Inktomi’s traffic server, or the proxy developed by the
Daedalus project at Berkeley for dial in connections. How-
ever, with the advent of palmtop type devices, the transfor-
mation needed by the client, and hence the computational
resources needed by the proxy to affect it, increase signif-
icantly. While workstation clusters supporting proxies can
possibly be deployed to provide computational resources, it
is not clear that this proxy onlyapproach provides the best
solution to the problem. The role of proxies has been re-
cently questioned elsewhere as well – there is some debate
as to whether proxy based solutions are really needed to
provide networking services to mobile clients. Moreover,
the proxy based approach typically assumes that the data
is being served by a host on the wired side. This means
that a proxy can be run on some host with lots of MIPS on
the wired side which is on the path from the server to the
mobile client. Most often, this is at the mobile support sta-
tion. Clearly, in ad-hoc networks that will be engendered by
Bluetooth like devices, such an assumption would be falla-
cious.

The alternative is to make the server itself provide data
in a format that is most suited for mobile access. This rep-
resents an instance of an end-end approach. End-end ap-
proaches are well known in networking and systems liter-
ature. In the web context, dual versions (graphics heavy
vs. text only) of web pages kept at servers represent an
end-end approach. To the best of our knowledge, Seshan
[24] were one of the first to present the notion that the Web
clients could use network performance parameters to down-
load documents from a server at different “fidelities”, and
explicitly mentioned that this was something beyond text
only pages. Implicit in their paper was the idea that the
server would indeed have different fidelities to present to
the client. In prior work[14], we have shown how a varia-
tion of the HTTP/1.1 content negotiation could be used to
create an end–end system for web access from mobile hosts.
However, that approach is awkward since it requires the cre-
ation and proliferation of new mime subtypes. Moreover,
it also assumes that content in different versions is always
pre-created.

However, recent standards from the W3C, in particu-

lar Composite Capability / Preference Profile (CC/PP) and
XSLT, provide us with an efficient and robust mechanism
with which to build and end–end system for mobile web
access. In this paper, we point out problems with the ex-
isting CC/PP approach in the context of mobile access, and
present a variation called Simple CC/PP. We implement this
approach as an Apache module and provide experimental
results of its efficacy.

2. Background & Related Work

2.1. Proxy based Transcoding approaches

In the past a considerable amount of work has been done
in the area of the web access from mobile clients. Due
to space limitations, we present here some of the larger
efforts in enabling web access from mobile computers.
Other related work done earlier includes the TeleWeb sys-
tem of Schilit , the notion of stream transducers advanced
by Brooks [5], location specific personalization[25], IBM’s
WebExpress[7], and Rover[13].

Significant work in this area has been done by the
Daedalus group at Berkeley. In GloMop [18, 10], the proxy
performs distillation of the document received from the
server before sending it to the client. Distillation is defined
here as a highly lossy, real-time, datatype-specific compres-
sion that preserves most of the semantic content of the doc-
ument. For instance, GloMop performs transcoding of mo-
tion JPEG to sub-sampled H.261 for video data. A more
formal model for proxy functionality (TACC), along with
an overview of their system, is described in [4]. More re-
cently, this group has used a similar approach to create a
split browser[11] for the Palm pilot PDA. Note however that
their approach is essentially proxy based.

The Mowgli system [21] consists of two mediators lo-
cated on the mobile host and the mobile-connection host
which use the Mowgli HTTP protocol to communicate with
each other, reducing the number of round-trips between the
client and server. Mowgli reduces the data transfer over the
wireless link in three ways: data compression, caching, and
intelligent filtering.

The notion of web intermediaries to affect transcoding
and personalization related functionalities is also the focus
of IBM’s WBI[1] system.

In the work of Noble [8], the proxy is developed in the
context of what the authors term agile, application aware
adaptation. Basically, they allow an application to regis-
ter with the OS its expectations about a resource and the
variability it can tolerate. The Odyssey system monitors re-
sources, and informs the applications via upcalls when the
resource value strays outside the bounds decided by the ap-
plication. The application can then adapt its behavior. For
web browsing in particular, a module called Cellophane on

2

the client transforms HTTP requests from Netscape into file
operations on Odyssey web objects and selects fidelity lev-
els for images which are forwarded to a distillation server.
However, this approach is specific to the Odyssey file sys-
tem and requires a modified version of the Net BSD kernel.
This also requires the addition of a module on the client.

2.2. XSL and XSLT

A few years ago W3C proposed XML as a new method
for information representation. XML stands for eXtensi-
ble Markup Language [3]. The main features of XML is
the ability for a user to define her own tags and the re-
quirement that each XML document must be well formed
in terms of XML grammar. The later requirement simpli-
fies writing the programs that deal with marked-up docu-
ments. Although it is possible to write such programs for
HTML documents as well, the task is much more compli-
cated because of considerable number of non conforming
documents on the web, which are usually fine for display-
ing in the browser, but are very problematic when parsed by
computer programs. Typical examples of non conformity
include overlapping tag groups and not closed tags. Using
XML a web master can mark up her documents based on
the nature of the information contained in the document.
For example a page in a catalog will have tags for item’s
price, catalog number, item description and so on. Sepa-
rately from documents the web master must create an XSL
(XML Stylesheet language) style sheet. XSL style sheet
specify how different tags should be rendered. Such ap-
proach creates a cleaner separation between the content of
a document and its presentations. When a user requests a
particular document one of the two things could happen.
The document could be combined with the style sheet on
the server side and resulting HTML file sent to the user,
alternatively in case the user’s browser is capable of ren-
dering XML/XSL documents directly, both the requested
XML document and the XSL style sheet are be sent to the
user’s browser and then combined and rendered at the user
side. In the context of providing Web based services to the
mobile devices, this allows us to have different style sheets
for different kinds of devices a rich and colorful style with
interactive content can be used for desktop devices and min-
imally adorned style can be used for mobile devices such as
PDA.

2.3. CC/PP Protocol

Recently W3C consortium has proposed a new proto-
col which is supposed to solve a problem of delivering web
based services to mobile clients. The new protocol is called
Composite Capability/ Preference Profiles. CC/PP allows
the client to specify its profile, and for the proxy e.g. WAP

gatewayto tailor the content based on it. The two parts of
CC/PP solution are the CC/PP Exchange Protocoland the
CC/PP Description Framework. CC/PP Exchange Protocol
is used for delivering descriptions of client’s capabilities to
the server over standard HTTP protocol. CC/PP Description
Framework is a way of describing these capabilities.

CC/PP Exchange Protocol [12] works on top of
HTTP/1.1 protocol using standard HTTP Extensions proto-
col [22]. The use of HTTP Extensions protocol assures that
there will be no interference with other possible HTTP ex-
tensions and that CC/PP data that was attached to the HTTP
request will be delivered to the other end without any dam-
age even if gateways and proxy servers exist on the way.
An example of extended HTTP request that uses HTTPExt
protocol is shown on Figure 3.

CC/PP Description framework [23] is an RDF [20] based
document specification which allows to describe various ca-
pabilities of the client’s hardware as well as user customiza-
tion profiles. CC/PP allows composing of capabilities from
multiple sources. Each capability description must be pub-
licly accessible via a unique URI, which is used as a ca-
pability identifier. Capability descriptions are used to de-
scribe all software and hardware aspects of the client’s de-
vice, such as CPU model and speed, amount of installed
memory, screen resolution and depth, version of the oper-
ating system and the client’s software, and user preferences
such as whether sound is turned on or off. It is expected that
a “standard” description of the client would be provided by
the manufacturer.

CC/PP Exchange protocol specification describes an
elaborate system of caches so that capability descriptions
don’t have to be transfered from the repository for every
incoming HTTP request. There are provisions in the speci-
fication for a user to send only those parts of the description
they altered therefore differ from the standard description
that was provided by the manufacturer of the client’s de-
vice.

However, there are certain problems that arise with the
use of the proposed CC/PP solution. In a mobile environ-
ment the first problem is that CC/PP Description Frame-
work tries to describe every possible configuration of the
client machine including all little details. Such fine grained
descriptiveness seems of the very limited use given that it
complicates the development of the web services, because
the web server will have to fetch all the necessary descrip-
tions that are specified by the client, apply the required pro-
file differences “DIFFS” and maintain profile caches in or-
der to reduce the performance hit created by downloading
of the descriptions. In addition to that the web server has
to analyze the received descriptions and provide the suit-
able content. Given the large number of variables in the
CC/PP descriptions the corresponding number of transfor-
mations of any particular document is very large. This not

3

only makes the transformation process very complex, it also
makes caching of the transformed document less attractive
in terms of performance. On the server side most details
of this descriptions would likely end up being ignored, or
would lead to extremely complex and hard to maintain web
sites.

The fine granularity of CC/PP descriptions also con-
tributes to the complexity of the client’s software, because
the web browser must be aware of all possible configuration
changes on the client, and create the necessary “DIFFS” to
standard configuration which requires relatively expensive
computation of MD5 signatures for the original profiles.
Given that this protocol is supposed to be used on mobile
devices that have very limited resources, such complexity is
at least inconvenient.

Finally, having a separate description for every single
model of client device even if those devices are essentially
the same in terms of their capabilities and connectivity (e.g.
Dell’s notebook vs. Compaq Notebook, 3COM’s Palm Pilot
vs. Handspring’s Visor) will generate a lot of extra traf-
fic and will require a lot of storage in the caches for fetch-
ing and storing duplicate capability descriptions, which is
not desirable in wireless networks. In addition to that there
is a considerable processing overhead on the server associ-
ated with merging the standard capability description of the
client device with user supplied differences.

3. Problems with CC/PP

In this work, we present an alternative implementation
of the CC/PP description framework which addresses the
aforementioned problems. In our framework each device
is classified, without loss of generality, to belong in one
of four different categories. These are: Desktop or high
end notebook with the broadband connection, Notebook on
the road with dial up/wireless connection, Hand held com-
puter with CDPD modem, or WAP device. These categories
cover a vast majority of possible client resource and con-
nectivity combinations. However, adding a few more cate-
gories if needed, or using a different set of categories, still
does not affect the underlying idea behind our framework.
The case we make is that a small fixed number of categories
can cover a vast majority of client resource and connectivity
combinations.

Such categorization allows for straightforward web site
maintenance. A small number of versions of tailored con-
tent need be kept on the web site, and very simple transcod-
ing rules are sufficient for generated content.

Tailored, pre created, content should be used in cases
when the content is very different for different categories
of clients. For example, the broadband version of the site
might use elaborate scripts or plug-ins that are either im-
possible to transform to lower fidelity representations us-

ing universal rules (e.g. scripts), or cannot be so trans-
formed in near real time (e.g. selecting key frames from
a video). Another example would be images that contain
high quality three dimensional corporate logos. Such im-
ages usually look very poor when transformed to lower res-
olution or color depth using dithering or similar technique,
and should better be redrawn in flat two dimensional ver-
sions. Other transforms, such as converting markup from
XML to HTML or WML can be done on the fly. This con-
tent should be generated the first time a request comes for it
and then cached.

Since the number of possible device capability descrip-
tions is very small, those capability descriptions could be
very well represented with a single URI. Note that URI it-
self describes the capabilities of the device not the data lo-
cated at that URI, so there is no need for generating extra
HTTP requests for fetching the capabilities and there is no
need for complicated and resource consuming capability de-
scription caches. However for of being compatible with the
W3C specifications the actual capability descriptions can be
placed at the locations specified by those URIs.

We found that CC/PP Exchange Protocol is adequate for
our purposes so we adopted it as is for our implementation.
However, due to simplified capability description approach
many of the features of Exchange Protocol such as handling
of DIFFs to profiles, support for different versions of the
CC/PP descriptions and profile cache infrastructures are not
needed and therefore they were not implemented.

4. Implementation

We implemented “Simple CC/PP” as an add-in module
for the popular Apache Web Server. We choose Apache be-
cause of its widespread use, high performance and the ease
of implementing add-in modules. Add-in modules have a
number of advantages over popular CGI approach. Unlike
CGI scripts add-in modules are integral part of the Web
server process, therefore there is no need for time consum-
ing processes execution for every incoming HTTP request.
Another advantage of add-in modules which is extensively
used in our implementation is the ability to control the be-
havior of the Web server in all stages of HTTP request pro-
cessing.

The “Simple CC/PP” module presented in this work was
implemented in Perl language using Apache’s mod perl
module [26] which provides the interface between internal
workings of Apache and a perl interpreter which is embed-
ded into mod perl module. Perl was chosen for relatively
high speed of execution, excellent abilities of pattern match-
ing and automatic memory management.

We considered to use Java servlet for implementing the
simple CC/PP module, but decided not to do so because of
very poor execution speed of Java for applications that are

4

very dependent on the I/O performance. The study done by
Kernighan and Van Wyk [19] shows at on average a typical
I/O bound Java application is about hundred times slower
then C or Perl version of the same program. Such ineffi-
ciency is caused by the design of Java I/O libraries. In addi-
tion to that the typical string manipulation program in Java
is also very poor. The same study done by Kernighan and
Van Wyk shows that Java version of a typical string manip-
ulation program is about ten times slower then Perl’s coun-
terpart. Since the performance of input/output and string
manipulation operations is very important for this applica-
tion we chose not to use Java.

4.1. Web site setup

To use the “Simple CC/PP” module the Web server has
to be set up in a certain way. First the web master has to de-
cide which content will be tailored and which content will
be generated. A document should belong to tailored content
section if there are separate pre-made representations avail-
able for each type of the client. For example a map could
be drawn in full color for desk tops, grayscale for laptops to
minimize the use of bandwidth, and made black and white
and reduced in size and/or resolution for PDAs. If docu-
ment does not need custom modifications then it should be
placed into generated content section. A good example of a
generated content document is a phone directory of a small
group, which is made flashy and colorful for laptops and
desk tops and simple plain table for PDAs. Such page could
be encoded as XML document with two different XSL style
sheets one for desktop and laptop clients and one for PDAs.

After it’s clear which documents would go into tailored
content category the web master should create a root di-
rectory for the tailored content documents and also create
subdirectories for each type of tailored content. One pos-
sible tailored content tree is shown on Figure 1, this setup
contains three different tailored content subdirectories one
for Desktop computers, one for Laptops on a wireless link
and the one for PDAs. The Desktop subdirectory contains
interactive and multimedia rich content with javascript ap-
plets and true-color animated images, the subdirectory for
laptops contains the content that is optimized for transfer-
ring over slow wireless links in particular the color depth
and the resolution of the images is reduced, animated im-
ages are downgraded to simple static images most of the ap-
plets and heavyweight scripts are dropped. And finally the
PDA directory contains very minimal HTML files that are
convenient to see on the small PDA screens, all the images
are either dropped or reduced to bare minimum black and
white low resolution files. All of these three tailored con-
tent directories are placed under /usr/web/tailored
directory which is the root directory of tailored content tree.

The setup of generated content section is even easier then

index.html

banner.png

logo.jpg

Desktop Laptop PDA

index.html

banner. jpg

logo.jpg

index.html

banner. jpg

logo.jpg

index.html

banner. jpg

logo.jpg

html fi le with
javascript, applets
 rich colors

High resolution true
color animated image.

High resolution true
color image.

html fi le with
minimal javascript,
r ich colors

static image fi le
optimized for low
transmission speeds

Low resolution
indexed color image

minimal html f i le
optimized for small
screen dimensions

empty 1x1 pixel image

black and white low
resolut ion image

/web/Tailored/

Figure 1. Example of Tailored content tree

tailored content section. First the web master should mark
up all the documents that belong to the generated content
section in XML. Then she must create XSL style sheets for
each type of the supported device. The style sheets should
follow the same guidelines as the tailored content files: me-
dia and color rich for the desktops, bandwidth optimized
for the laptops and screen size and bandwidth optimized for
PDAs.

In order for the “Simple CC/PP” to function properly
the Apache web server must have mod perl module and
XSLT content generation package [6]. The mod perl
module provides embeds the PERL interpreter and provides
all the necessary server API support for perl modules. The
XSLT content generation package provides the support for
handling XML/XSL documents and delivering them back
to the client.

4.2. Module internals

The “Simple CC/PP” module is usually set-up to han-
dle all requests that refer to the documents under “/CCPP”
directory of the web server. All the documents under this
directory are said to belong to the “virtual CC/PP space”.
All the work done by the “Simple CC/PP” module happens
during content generation phase of the HTTP request pro-
cessing. At the beginning of this phase the request headers
have been successfully processed, all necessary authentica-
tion have been performed and the module that is supposed
to generate a content is identified. So the work that’s re-
quired to do by our module is to check for the presence of
HTTP-Ext related headers and if such headers are present
then try to extract “Simple CC/PP” related information from
them. If “Simple CC/PP” related information is present
in the HTTP-Ext headers the module replaces the virtual
CCPP portion of the incoming URI to refer to the document

5

that is specific to this particular device. In the case when
“Simple CC/PP” information is not present in the request
headers, the module changes the URI to refer to the desktop
variant of the document.

After URI has been changed to refer to the document that
is appropriate to be displayed on the device that sent this
particular request the “Simple CC/PP” module performs an
internal redirection of the request. The internal redirection
is similar to the standard HTTP redirection but it is per-
formed entirely inside of the web server process so that
no extra communication between client and a server takes
place. Moreover the client is not even aware that redirec-
tion even took place. From the client’s perspective the URI
of the documented returned by the server is the same as the
URI of the requested document.

The “Simple CC/PP” module uses the following logic to
select the proper URI for redirection. After receiving the
URI and the type of the client’s device it replaces the por-
tion of URI that refers to virtual CC/PP subdirectory with
the subdirectory that is refers to tailored version of a doc-
ument for this device and then checks if such version of
the document does exist. If the tailored version of the docu-
ment indeed exists the module selects the rewritten URI as a
target for internal redirection. Otherwise it checks if it pos-
sible to generate the requested document from XML/XSL
files. If it is possible then it construct the URI which refers
to XSLT servlet and contains the references to document
template and XSL style sheet file that is appropriate for the
client’s device. The resulting URI is used as a target for
internal redirection. After module finally decided on the
appropriate target URI it instructs the web server to retrieve
the document referred by the target URI, perform all nec-
essary actions like running scripts, processing server side
includes and executing proper servlets, and then return the
document back to the user as if it was the located docu-
ment in the virtual CCPP space. Note that the client is not
aware of the true location of the requested document, this
implies that all the absolute references to the documents in
both tailored content sections and XML document sections
must refer to the documents as if they were part of the vir-
tual CCPP space. If neither tailored version of the document
nor XML/XSL template exist then the module instructs the
web server to generate “404 Not found” response.

5. Results

To test the “Simple CC/PP” module we used three dif-
ferent client programs: Netscape Communicator 4.5 with
a custom proxy that inserts “Simple CC/PP” related head-
ers into incoming request and forwards it to the appropri-
ate server, an open source version of Netscape’s browser
(Mozilla) modified to send “Simple CC/PP” profiles with
each request and Netscape Communicator 4.5 talking di-

"Simple CC/PP" Module Space

Wireless Service

Desktop

PDA

Laptop

http:/ /www.site.com/CCPP/index.html
Cl ient Type = PDA

http:/ /www.site.com/Tailored/PDA/index.html

Figure 2. Example Request of tailored data for
PDA

GET / HTTP/1.1
Content-Length: 421
Opt: "http://www.w3.org/1999/06/24-
CCPPexchange"; ns=15
15-Profile="http://www.cs.umbc.edu/SCCPP/PDA"
.......

Figure 3. Example of Extended HTTP request
with the PDA profile

rectly to the web server for insuring a correct behavior of
the module in the absence of “Simple CC/PP” related infor-
mation.

For tailored content we used UMBC’s web site in three
different versions. For resource and connectivity rich clients
we used unmodified site with a lot high resolution images,
and extensive interactive javascript content. For connectiv-
ity poor clients but resource rich clients such as laptops
we replaced all color images on the web site with their
grayscale counterparts. And for PDA’s which are resource
and connectivity poor stripped all the images from the web
site together with interactive content. The relative sizes of
different versions of the web site and their relative transfer
times are shown in the table 1.

For the purposes of performance testing we used sev-
eral custom perl scripts that send a continuous stream of
HTTP requests to the server, receive documents sent by the
web server and then simply discard received documents.
The documents were discarded without any processing be-
cause we are interested only in the delays caused by the
network transmission and processing of the request by the
web server. The transmission times shown in the table are

6

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

S
ec

on
ds

No CC/PP
With CC/PP

Figure 4. Request time with and without
CC/PP (Plain HTML)

given for the plain request, without CCPP module. These
measures represent the case when both client and server ma-
chines are connected to the same local network.

Site Size Transfer time
Unaltered 1,956 kb 9.74 sec
Laptop 1,892 kb 8.50 sec
PDA 850 kb 3.34 sec

Table 1. Relative sizes and transfer times for
different versions of test web site

To measure the performance overhead created by our
“Simple CC/PP” module we used aforementioned perl
script that sends out continuous stream of HTTP requests
together with perl’s Benchmark module. The Bench-
mark module provides mechanism to measure running
time of the perl script. We performed two series of mea-
surements. In the first series we measured the time it takes
to download all the objects on the main page of our web site
directly from the web server without the use of CC/PP pro-
tocol (CC/PP headers were present, but CC/PP module did
not handle the request.) In the next series we performed the
same experiment, but this time CC/PP module participated
in handling of the request.

The web server was running on a Linux machine with
Pentium 200MHZ CPU and 128 of ram. We choose such
low power machine for the server so that performance over-
head associated with extra processing could be observed
more easily. The client script was running on the Sili-
con Graphics O2 machine with 200MHZ R5000 CPU and

0 10 20 30 40 50 60 70 80
10

0

10
1

10
2

10
3

10
4

S
ec

on
ds

No CC/PP
CC/PP and XSLT

Figure 5. Request time with and without
CC/PP (XML Documents)

128MB of RAM. Each test in the series was made of three
hundred chunks. Each chunk contained hundred requests
for the main page of the website. We run both series of tests
at the same time by running one chunk at a time for each
series alternatively. This was done in order to minimize in-
accuracies caused by spurious network traffic and system
CPU activity. Also before we run these tests, we executed
several chunks of each test without recording the time. This
was done in order to reduce inaccuracy created by various
caches like file system cache, DNS cache, ARP cache etc.
We chose not to record this data because it is very hard
to insure that all the caches are empty, unless all the tests
are executed in tightly controlled environment. As an extra
precaution we disabled the child spawning behavior of the
Apache web server in order to minimize time measurement
error created by the overhead of spawning extra process.

The results of the test are shown on Figure 4. The X
axis of the graph represents the chunk number of the test.
And the Y axis of the graph represents the time in seconds
it took for the chunk to complete. The graph shows that
it take approximately three times longer for CCPP request
to complete compared to the request without CCPP head-
ers. This is so because each CCPP request is essentially
two requests one request is the request from the client to the
web server that ends up in “Simple CC/PP” module. And
the other request is the request send from “Simple CC/PP”
module to the web server which generates the actual docu-
ment that is sent to the client. Since it took about 31 hours
for the whole test to complete and the testing was done on
the shared Ethernet segment, all the tests were suspectible to
errors caused by various factors such as network traffic cre-

7

ated by other users and CPU activity created by the network
traffic etc. Since the testing started on Friday afternoon, by
the time 2=3 of the tests was completed it was a Saturday
night and most of the system activity has dropped severely.
This could be seen on the graph that the running times of the
test has severely. Also it should be noted that activity drop
created more severe impact on the CC/PP requests then on
the then on the non CC/PP request. This can be explained
by the fact that handling of CC/PP request requires more
CPU time then handling of plain requests and that activity
affected the available CPU cycles on the web server more
then the network traffic.

In addition to measuring time overhead created by the
handling of CC/PP request, we performed measurements
of time overhead created by the processing of XML doc-
uments. Since we did not have access to an actual website
that uses XML/XSL we used a small number of non web
related XML files from the Centaurus project, as well as
a simple XSL transform stylesheet from that formats any
given XML document using and performs some color high-
lighting of different elements of XML documents. This
stylesheet comes as a part of XSLT package.

As in the first set of tests we had two series of request.
For the first series of tests we requested two XML docu-
ments using straightforward HTTP without CCPP protocol.
For the second series of tests we requested the same docu-
ments using extended HTTP protocol with CC/PP headers.
All the requests in the second series were handled by the
“Simple CC/PP” module and XSLT servlet. The same perl
scripts that were used for measuring the time overhead cre-
ated by “Simple CC/PP” module were also used for in this
set of tests as well. The machines for the client and the
server and the measuring techniques were also identical to
the those in the first series of tests. Because in this series
of tests we were interested only in the time overhead cre-
ated by the XML to HTML transformation, all the caching
behavior of the “Simple CC/PP” module was disabled. The
results of the tests are shown on the Figure 5. Because of the
significant overhead created by the XML to HTML trans-
formation the logarithmic scale was used. Also due to the
fact that it takes so much longer for the request that involves
XML to HTML transformation to complete we limited the
number of tests in the series to 80 instead of three hundred
as it was in the first set.

The low performance of the XML to HTML transfor-
mation is caused by several factors. One of them is the
performance of Java programs in general, which was dis-
cussed in section 4. Second factor is the method of XML to
HTML transformation which requires the all XML files and
stylesheets to be loaded into memory before transformation
can begin.

Although such low performance might seem as not ac-
ceptable from the first sight, it should be noted that the

all these tests were done on the very low performance web
server. Moreover, this extra overhead is a tradeoff which is
more than compensated by the gain in time taken to transfer
the smaller document on the slow wireless networks (espe-
cially in CDPD and WAP), and the reduced consumption of
battery power by the client in receiving and processing the
simplified data. Of course, in certain cases described above
if XML to HTML or WML transformation were not done,
the client wouldn’t be able to display the document at all.

References

[1] R. Barrett, P. Maglio, and D. Kellem. A confederation of
agents that personalize the web. In First Intl. Conf. on Au-
tonomous Agents, Marina Del Ray, CA, 1997.

[2] H. Bharadvaj, A. Joshi, and S. Auephanwiriyakyl. An active
transcoding proxy to support mobile web access. In Proc.
IEEE Sumposium on Reliable Distributed Systems, October
1998.

[3] T. Bray and C. Sperberg-McQueen. Extensible Markup Lan-
guage (XML). (W3C Note, 14 November), 1996.

[4] E. Brewer, R. Katz, Y. Chawathe, A. Fox, S. Gribble,
T. Hodes, G. Nguyen, T. Henderson, E. Amir, H. Balakrish-
nan, A. Fox, V. Padmanabhan, and S. Seshan. A network ar-
chitecture for heterogeneous mobile computing. IEEE Per-
sonal Communications Magazine, 5(5):8–24, 1998.

[5] C. Brooks, M. S. Mazer, S. Meeks, and
J. Miller. Application-specific proxy servers
as http stream transducers. In Proc. WWW-
4, Boston, http://www.w3.org/pub/Conferences/
WWW4/Papers/56Application-Specific, May 1996.

[6] J. Clark. XSL Transformations (XSLT) Version 1.0. W3C
Recommendation 16 November, 1999.

[7] I. Corporation. Ringing in wireless
services: Web access without wires.
http://www.ibm.com/Stories/1997/08/wireless4.html.

[8] B. D. N. et. al. Agile application-aware adaptation for mo-
bility. In Proceedings of the 16th ACM Symposium on Op-
erating System Principles.

[9] G. Forman and J. Zahorjan. The challenges of mobile com-
puting. IEEE Computer, 27:38–47, April 1994.

[10] A. Fox and E. A. Brewer. Reducing www latency and band-
width requirements by real-time distillations. In Proc. Fifth
International World Wide Web Conference, May 1996.

[11] A. Fox, I. Goldberg, S. Gribble, D. Lee, A. Polito, and
E. Brewer. Experience with top gun wingman: A proxy-
based graphical web browser for the usr palmpilot. In Proc.
IFIP International Conference on Distributed Systems Plat-
forms and Open Distributed Processing (Middleware ’98),
1998.

[12] O. Hidetaka and J. Hjelm. CC/PP exhange protocol based on
HTTP Extension Framework. (W3C Note, 27 July), 1999.

[13] A. D. Joseph, A. F. deLespinasse, J. A. Tauber, D. K. Gif-
ford, and M. F. Kaashoek. Rover: A Toolkit for Mobile
Information Access. In Proc. 15th Symposium on Operating
Systems Principles. ACM, December 1995.

8

[14] A. Joshi. On proxy agents, mobility and web access.
ACM/Baltzer Journal of Mobile Networks and Applications,
5(4), 2000.

[15] A. Joshi, R. Weerasinghe, S. P. McDermott, B. K. Tan,
G. Benhardt, and S.Weerawarna. Mowser: Mobile platforms
and web browsers. Bulletin of the IEEE Technical Com-
mittee on Operating Systems and Application Environments,
8(1), 1996.

[16] A. Joshi, S. Weerawarna, and E. N. Houstis. On discon-
nected browsing of distributed information. In Proceedings
of the seventh International workshop on Research Issues on
Data Engineering, pages 101–107. IEEE Press, 1997.

[17] R. Katz. Adaptation and Mobility in Wireless Information
Systems. IEEE Personal Communications, 1(1):6–17, 1994.

[18] R. H. Katz, E. A. Brewer, E. Amir, H. Balakrishnan, A. Fox,
S. Gribble, T. Hodes, D. Jiang, G. T. Nguyen, V. Padmanab-
han, and M. Stemm. The bay area research wireless access
network (barwan). In Proceedings Spring COMPCON Con-
ference, 1996.

[19] B. W. Kernighan and C. J. V. Wyk. Timing trials, or the tri-
als of timing: Experiments with scripting and user-interface
languages. Software Practice and Experience, 28(8):819–
843, July 1998.

[20] O. Lassila. Introduction to RDF Metadata. (W3C Note, 13
November), 1997.

[21] M. Liljeberg, M. Kojo, and K. Raatikainen. Enhanced
services for world-wide web in mobile wan environ-
ment. http://www.cs.Helsinki.FI/research/mowgli/mowgli-
papers.html, 1996.

[22] S. L. N. Nielsen, P. Leach. HTTP Extension Framework.
(RFC2774), 2000.

[23] F. Reynolds, J. Hjelm, S. Dawkins, and S. Singhal. Com-
posite Capability/Preference Profiles (CC/PP): A user side
framework for content negotiantion. (W3C Note, 24 June),
1999.

[24] S. Seshan, M. Stemm, and R. Katz. Spand: Shared passive
network performance discovery. In Proc. 1st Usenix Sym-
posium on Internet Technologies and Systems (USITS ’97,
1997.

[25] M. Spritzer and M. Theimer. Scalable, secure, mobile com-
puting with location information. Comm. ACM, 36:27–27,
1993.

[26] L. Stein and D. MacEachern. Writing Apache Modules with
Perl and C. O’Reilly and associates, Sebastopol, CA, USA,
1999.

9

