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Abstract

The administration of distributed systems is an important practical problem. One of the

significant parts of the problem is the management of software configurations. The size and

complexity of distributed systems have made automation of software management tasks

essential. The time has come to determine how to design systems with intrinsic features that

enable general management.

Experience with general approaches to software management is needed. This thesis

presents a model that revolves around structured, declarative specifications of correct con

figurations. It is possible to use declarative specifications to automatically check the cor

rectness of a system and also to automatically fix various problems. The model relies on an

abstract view of systems as collections of objects with particular attribute values.

A new language is introduced for expressing configuration descriptions abstractly. Sim

ple processing algorithms are given for automatically comparing a system with a descrip

tion, and automatically eliminating discrepancies. A prototype implementation is described,

and various related issues are explored.

The proposed model and language are suitable for practical use, as is demonstrated by

an experiment involving a production system. While further work is needed in a variety of

areas, the feasibility of using declarative specifications according to a general, abstract

model has been established. This approach is not of merely theoretical interest. It can be

applied to common systems in routine use today.
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CHAPTER 1 Introduction

1.1 The Management Problem

Computer systems require administration. A large part of that administration is managing soft

ware configurations. Software is a key component of any modern computing system. Typically,

software provides a great deal of flexibility and can be adapted to many situations. Flexibility

contributes to the power or value of software as a tool, but it comes with a price. In any particu

lar situation, there are many details which must be exactly right in order for software to function

properly. Many people have experienced the frustration of trying to use a system that does not

function as it should “merely” because it is not set up correctly.

Unfortunately, managing software configurations is no small task. In the first place, software is

notoriously complex stuff. A great deal of specialized knowledge is often required to configure

it correctly. Simplicity of administration is not always a priority when systems are designed.

Configurations are also quite fragile, so apparently small adjustments can have large effects.
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Dealing with continual change is also a challenge. Configuration changes must be made as peo

ple come and go, as new software is acquired and old software becomes obsolete, and as the

computing needs of the organization change.

Managing the software for a single computer is enough of a challenge, but many organizations

have computing infrastructures composed of hundreds of machines that function as a loose con

federation. In these situations, it is not only necessary to configure each individual machine cor

rectly, it is also essential to ensure that autonomous machines have compatible configurations.

There is often a need to duplicate configurations as well, in order that multiple machines can be

used for identical functions.

Large sites typically employ skilled, professional system administrators to acquire appropriate

technology, keep everything running properly, and support users.With hundreds of machines to

look after, however, the magnitude of the configuration task excee4s even the capacity of teams

of professionals. Since the problem is the management of advanced computing systems, it is

natural that we turn to automation and software tools for solutions.

1.2 Automating Configuration Management

Routine configuration management consists mostly of repetitive sequences of simple operations

to configure software properly, to ensure that consistency is maintained, and to check that every

thing remains in proper order. These activities are ideal candidates for automation.

Successful use of automation has the potential to offer a number of clear benefits to end-users.

System problems may be reduced by the elimination of some human errors, and the early detec

tion of erroneous configurations generated by human actions or faulty software. Changes in con

figuration, such as the installation of new software, may be able to be completed more rapidly

and more frequently, with less chance of error. More elaborate or varied configurations may be
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able to be supported within an organization. Ultimately, end-users may be able to safely perform

more configuration operations themselves.

The most effective approach to automation for the long run is not to build more and more spe

cific tools to solve particular problems as they are encountered. Instead, we should identify the

general facilities and services that are required, and start building systems which include or sup

port them. Work in this direction has begun, with the emergence of standards like SNMP [ill

and CMIS/CMIP [12][13], and research developments such as RCMS [4]. This thesis takes

another small step along that path, by proposing a general solution to some of the practical con

figuration problems associated with large numbers of workstations.

The thesis deals with a particular slice of configuration management, specifically, the problems

associated with keeping large numbers of machines configured correctly. The emphasis is there

fore placed on aspects of configuration that change infrequently, such as the values of server

parameters, rather than details that change often during normal operation, such as the number of

worker threads in a server process.

1.3 Existing Technology

A variety of tools have been developed to help automate different aspects of configuration man

agement. This thesis addresses the lack ofgenerality of many of those tools.

Many tools lack generality of application. They are frequently designed to deal with only some

aspects of configurations (e.g. files and directories, but not filesystem definitions or processes).

A tool may impose a particular software organization that is appropriate for some sites, but not

for others.
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Generality of function may also be lacking. A particular tool may be designed to either set up

configurations (the most common case), or check configurations, but not both. Those designed

to do setup frequently use procedural specifications (scripts), while checkers generally use

declarative specifications (descriptions).

1.4 Thesis Statement

It is possible to automate configuration management operations ofpractical importance

based on a general model that revolves around declarative specifications. Descriptions

of correct system states may be used both to automatically check the validity of configu

rations, and to automatically generate the appropriate commands to bring the system in

question into a correct state.

1.5 Thesis Contributions

The thesis makes the following significant research contributions:

1. A general model is defined for describing software configurations and auto

mating operations based on such descriptions, in a practical context. The

model emphasizes powerful, declarative, and structured specifications.

2. A new language for expressing descriptions of configurations is introduced.

The Prescription language is declarative, yet at the same time it is designed

so that simple, efficient algorithms can be used to discover a sequence of

operations that may be performed to correct deviations from a specification.

3. A prototype implementation is described. In the course of producing the

implementation, many issues significant to the practical use of the model

and language were discovered.

4. An experimental application of the model to the configuration of real

machines at the University of British Columbia is analyzed. The trials dem

onstrate the feasibility of the new approach and the new language.
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1.6 Thesis Scope

In an area as broad as configuration management, it is not possible for a thesis such as this to

address every issue. Unavoidably, there are significant omissions, some of which are mentioned

here by way of advance warning.

The thesis is not directed towards the replacement of human administrators. In fact, the focus is

on providing administrators with better technology so they can do a better job. The intelligence

and creativity required by the administration task are unlikely to be emulated by software any

time soon. There may be ways in which general search and proof techniques from computa

tional intelligence could be applied to extend this work, but that is outside the scope of the

thesis.

Verification of the internal consistency of configuration descriptions is a very important topic.

Constraints of space and time prevent any reasonable discussion of consistency checking.

The model is demonstrated by application to a realistic, but nonetheless limited, situation. Other

areas of application need to be explored.

Dynamic, automated reconfiguration is not within the scope of the thesis, though it is consistent

with the model. The task referred to here as dynamic reconfiguration is the adjustment of a sys

tem based on problems detected through monitoring or problem reporting. For instance, a rout

ing table for an Internet router might be modified based on detection of the failure of a gateway.

The emphasis here is on more static aspects of configuration.

1.7 Outline

The core of the thesis begins with the definition of the model in Chapter 2. The chapter begins

with a more detailed analysis of the problem than was included in this introduction. Factors of
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size, change, complexity, diversity, repetition, and fragility are all considered briefly. A number

of requirements for a solution are derived. The model itself is then presented, beginning with

definitions.

The Prescription language is introduced in Chapter 3. All the pieces needed to realize the model

are presented. The chapter concludes with a small but complete example demonstrating the

application of the language and model to an imaginary situation.

The implementation and discoveries it engendered are described in Chapter 4. The issues and

problems presented in Section 4.7 are not all specific to the particular implementation described

in the chapter. Most are general, and relate to any implementation of the model.

The final major contribution of the thesis is the experiment and analysis presented in Chapter 5.

Both the model and the implementation are involved in the experiment.

Other important matters are reserved to the later part of the thesis. Some related work is

described briefly in Chapter 6. Conclusions and proposals for further exploration are presented

in Chapter 7. An appendix provides the details of the experimental specification.
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CHAPTER 2 A Model of Distnbuted
Configuration Management

2.1 Problem Features

The complexity of software systems of all kinds has grown to the point where humans have dif

ficulty coping with them. The problems of size and complexity are well recognized in the soft

ware engineering domain, and also arise in the context of distributed systems management.

This thesis deals with configuration management in distributed computing environments. In the

past, a large user community was usually served by a single computer. It has now become com

mon to find networks of independent machines providing the computing resources for organiza

tions. Each machine typically has its own operating system, local disk, and configuration. These

diverse collections of systems are managed by small groups of people, just like the isolated

mainframes used to be.There are a number of features of distributed computing environments

which contribute to the management problem.
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Size

A distributed computing environment features a large number of items which must be properly

configured. A single department may operate hundreds of machines. Each of those machines

may have many files and directories which are local, and many references to resources on the

network. Even if most systems are to be configured identically, they must still be manipulated

individually. The size problem is the basic reason why automation is essential. It is simply not

feasible for administrators to perform every configuration operation manually on each individ

ual machine.

Change

Configurations change constantly. Some changes are planned and significant, such as the intro

duction of a new machine or a new shared filesystem. Others are unplanned and may even be

undesirable. For instance, someone may manually change the configuration of a system in such

a way that the system breaks. The fact of constant change has a few implications for manage

ment automation. Administrators do not have the luxury of getting everything set up correctly

once, and then leaving it alone. Configuration management operations will be performed regu

larly. Also, there is more to the problem than mere setup. Administrators need to verify the con

figuration of systems.

Complexity

Distributed system configurations become very complicated since they involve so many details.

A large amount of arcane knowledge and skill is often required to properly understand and

adjust configurations. The knowledge that is required consists not only of knowledge about how

technology works, but also familiarity with various rules and conventions which are site-spe

cific. The impact of complexity is increased when important details are either undocumented or

implicit, as is often the case.
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Diversity

A number of types of diversity are significant to the problem of management. First, there is

diversity of systems. A single site is likely to have machines from different vendors, running dif

ferent (or at least variant) operating systems. The prevalence of system diversity implies that

automated configuration tools ought to be general. There is also diversity of configurations

within a typical site. This requires administrators to keep track of which machines are config

ured in which ways. Finally, there is diversity across sites. Each computing environment is a lit

tle different in organization, requirements and conventions. Site diversity implies that automated

tools need to be flexible.

Repetition

Distributed software configurations are highly repetitive. Consider the situation of a group of

Unix machines all accessing filesystems over a network. For each (machine, filesystem) pair,

there are a number of configuration details that must be arranged correctly on the machine.

Some of these details are common across all the pairs, however. Simple repetition also occurs

when machines are configured identically in some respect.

Fragility

Software systems are notoriously fragile. Small deviations from a correct state can result in

complete failure. This property is a problem in configuration as well as in programming, and it

implies that every detail is important. In fact, configuration management is all about getting the

details right.

2.2 Requirements

Based on the features just described, a number of objectives, or requirements, for any general

approach to a solution can be identified. Some of the objectives are less than precise, due to the
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nature of the problem. The model presented later in this chapter is designed to meet these

requirements:

1. Automation. A solution must support as much automation as possible.

2. Verification. A solution must support automated verification of the correct

ness of configurations. Verification addresses the problems of fragility and

change management. Automation in this area requires some way to specify

the correct configuration of a machine.

3. Declarative form. A configuration management system should be designed

to use declarative specifications to the greatest extent possible. Declarative

specifications are easier to understand and reason about than scripts or pro

grams, when the objective is specification of states rather than computation.

A declarative form will minimize complexity and simplify automated veri

fication. A declarative form also partially addresses the problem of system

diversity, since it avoids the difficulties of different execution environments

on different machines.

4. Abstraction. A solution needs to be abstract in order to generalize to many

different types of systems. Idiosyncracies of syntax that are particular to

certain systems should be avoided. The use of abstraction can also serve to

limit complexity.

5. Flexibility. Any configuration management system needs to be flexible in

order to cope with the diversity of configurations and diversity of sites. A

specification formalism should be powerful enough to describe any config

uration state. In addition, it should not impose a particular system organiza

tion.

6. Structure. A model must support structure in configuration descriptions.

Appropriate structure can minimize repetition, and help people deal with

the complexity of diverse configurations.

7. Synchronism. An automated system needs to keep systems synchronized

with changing specifications, to avoid the problems associated with change

and fragility.
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8. Transparency. A model must provide for specifications which are as explicit

and self-documenting as possible. Transparency helps reduce complexity.

In addition to the requirements based on problem features, there is one final requirement that

motivates the design of the model presented in this thesis:

9. Practicality. The solution must be appropriate for practical use in managing

non-research distributed systems.

2.3 Definitions

A few terms are central to the new model.

A managed system is a collection of related entities whose configuration is managed with auto

mation. The entities may be hardware or software, but software is the focus of the thesis. The

entities that comprise a managed system are not restricted to a single machine. A managed sys

tem will be assumed to include a network, the machines on the network, and all of the software

entities existing on all of the machines.

A component is any distinguishable piece of a managed system. For instance, files, directories,

entries in tables, ports, sockets, and processes are all components of a managed system contain

ing Unix machines. It is important to note that component always refers to an actual piece of a

managed system, in contrast to the term object, which is defined next.

An object is an abstraction which represents or models a component. As an abstraction, an

object presents certain features of the component it models, but not every feature. In particular,

an object represents the configuration state of a component. Various aspects of the state of a

component are represented by values of attributes of the modelling object. For instance, an

object that models a file will have attributes for size, permissions, and so forth. The object will

not model the operations that can be performed on a component (such as open in the case of a
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file). Any operations that are associated with an object are configuration management opera

tions.

2.4 The New Model

A new approach to a practical configuration management system is presented here, based on the

objectives listed in Section 2.2. At the centre of the new model is the idea that any configuration

state of a managed system may be viewed as the union of the states of a set of objects represent

ing components in the system1. A specification of a configuration consists of a declarative

description of the states of a set of objects. Such specifications are the basis for all automated

configuration management operations. The automated procedures of interest are comparison of

specifications with actual managed systems, identification of discrepancies, determination of

sequences of operations which may be performed to eliminate the discrepancies, and execution

of the operations.

Through the use of objects, the model meets the abstraction and flexibility objectives of Section

2.2. Objects, as defined earlier, are abstractions that can be used to represent many different

kinds of components. A specification language based on objects requires only one uniform syn

tax. Tools built according to this model are inherently flexible because the primary functionality

is based on general abstractions, rather than the peculiarities of certain types of components.

It is not obvious that the new model can satisfy the conflicting requirements of automation, ver

ification, and practicality. The majority of the thesis is devoted to showing that the use of declar

ative specifications does not preclude practical automation.

There are two parts to the model, each of which will be described separately. The specification

part prescribes a particular structure for descriptions of configurations, and addresses the

1. This is the basic idea behind the general model introduced in [4].
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requirements for declarative form, structure, and transparency. The automation part prescribes a

particular approach to software tools, and addresses the requirement for synchronism.

2.4.1 Specification

Specifications of configurations (also called descriptions) have two parts. One part consists of a

set of parameterized descriptions of object states, written in a simple logic language. The other

part consists of a collection of data in a simple relational database. The database entries are ref

erenced in the parameterized descriptions.

The logic language must be amenable to two different types of automated processing. The pro

cess of comparing a managed system with a specification is called verification, and a declarative

language is naturally well suited to it. As mentioned earlier, however, automated procedures

must also be able to generate, and execute, a sequence of operations to bring a managed system

into conformance with a specification. This second process is called repair.

The database part of configuration descriptions is important for structural reasons. A logic lan

guage may supply descriptive adequacy, that is, it may permit any configuration state to be

described. A language alone, however, does not provide enough structure to avoid repetition.

The example of shared filesystems is helpful at this point. On each machine that imports a file

system, a certain configuration must exist. Many details should be common across filesystems,

but there are also details that are unique to each particular filesystem. For example, the mount

point directory might be placed in /nfs and given the name of the filesystem, by convention. In

that case, only the name of the required directory varies between filesystems. The name is an

example of instance data. The mount point directory should be described only once in a specifi

cation, with the filesystem name as a parameter. A simple database table is a convenient form

for the presentation and manipulation of instance data values.
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Flexibility in this two-part specification form is achieved by leaving the definition of database

schema and the creation of descriptions in the logic language up to administrators. The generic

descriptions define the organizational structure and explicitly incorporate local rules and con

ventions. The database contains only the details which vary, separated from the repeated details.

The Prescription language, presented in Chapter 3, is designed to balance the need for declara

tive power with the requirement for practical repair. The language also supports modularity, to

permit structuring and repetition avoidance, and in-line comments, to enhance transparency.

2.4.2 Automation

The basic principle of the model concerning automation is that all automation revolves around

specifications. A variety of specific tools are possible. For example, a tool could be created to

examine part of a managed system and produce a specification that describes the configuration.

In order to maintain synchronism of a distributed system with changing specifications, a config

uration management system must be designed to operate continuously, and not just at infrequent

intervals. For instance, adjustments to a machine configuration must not be delayed until the

machine is next rebooted. The configuration management system must have regular access to

machines in the managed system.

The majority of the software that performs automated processing based on specifications should

be designed to operate on objects through standardized methods, in order to maintain the gener

ality benefits of the abstraction. The implementation of the methods must manipulate real com

ponents, providing a translation between the object abstraction and the component reality. The

issues associated with such a translation are extensively explored in Chapter 4.
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CHAPTER 3 Managing Configurations with the
Prescription Language

This chapter presents the Prescription language, which is designed to be used for describing

software configurations for management automation, consistent with the model introduced in

the previous chapter.

3.1 Introduction

The Prescription language is a tool for realizing the new model. According to that model, all

managed components are abstractly represented as objects with attributes. The entire configura

tion state of a component is assumed to be represented by the values of attributes associated

with an object. A specification consists of entries in some tables plus some logic descriptions of

object states, in terms of the data in the tables. In order to meet the flexibility requirement of the

model, there are actually three functions which the tool set must support:

1. Definition of object classes to model the various types of components

2. Definition of tables which will contain instance data



CHAPTER 3- Managing Configurations with the Prescription Language 16

3. Description of object states

This chapter deals with each of the three functions separately, in order. The chapter concludes

with a short example that combines all the pieces.

The heart of the Prescription language is the set of statements for describing object states. These

statements involve only the object abstraction, since even the contents of tables are modelled by

objects. The situation is not nearly as simple for table and class definitions. Table definitions

must refer to specific files that will hold the data, and class definitions must be related to imple

mentations which map the object abstraction to the component reality. For these functions,

therefore, the details presented in this chapter will be partly dependent on the nature of the pro

totype implementation.

3.2 Syntax

The Prescription language could be implemented using any one of a myriad of syntax styles,

from a Pascal style, to a C style, to a LISP style. A good syntax for the language would be clean,

simple, and relatively terse. The ideal style would be one with those characteristics and some

general appeal to the user community. The style used in this thesis is determined by the imple

mentation.

Here are the main points which are important for understanding the examples:

1. A text consists of sequences of statements, one per line. The backslash (\)

serves as a continuation character, and the semicolon (;) may be used to

separate statements written on the same line.

2. Braces ({ and }) are used for grouping. For this reason, blocks of statements

can be written to appear like blocks in C.

3. The string is the basic data type, and string literals do not need to be quoted

unless they contain whitespace characters. Either double quotes (“) or
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braces may be used to quote strings1.The following two strings are identi

cal:

“Hello World” {Hello World}

4. In order to use the value of a variable, the name of the variable is preceded

by a dollar sign ($). This convention is similar to that used in BASIC.

5. Comments begin with an octothorpe (#) and end at the following line break.

6. The value returned by a function may be used in-line by enclosing the com

mand in square brackets ([and 1).

7. A global variable may be accessed within a local scope if the name of the

variable is given as an argument to the global command, as illustrated

below for the variable Window:

global Window

8. Assignment to a variable is performed by the set command. The following

command assigns the value 14 to the variable abra.

set abra 14

3.3 Classes and Types

Every object is an instance of a particular object class, as in standard object-oriented practice.

Object references may be assigned to variables, so the definition of a class also introduces a type

of the same name as the class2.There are also fundamental types such as Integer.

Each class defines the object abstraction for a particular type of component. An associated

implementation performs the mapping between the abstraction and the managed system. In the

context of the Prescription language, a managed system is defined by the set of object classes

that are defined. The descriptive statements, and the processing algorithms associated with

1. There two quoting forms differ as to the treatment of embedded variable references. The distinction is
not important at this point.
2. The prototype implementation supports very little type checking. For this reason, types will not appear
everywhere they should in the examples. A production implementation would benefit significantly from
static type checking.
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them, are not restricted to describing files and directories. They can be used with any kind of

managed system, as long as the appropriate classes are defined and implemented. This general

ity is the benefit gained from the object abstraction.

The class structure can be described briefly using standard terminology. Single inheritance is

supported, and multiple inheritance is unnecessary. Class methods are supported, but no need

for class objects or meta-objects has been identified. Inheritance is not used for class method

lookup. In order to support the algorithms for processing state descriptions, a class must export

standard interfaces; additional interfaces may be defined by the creator for implementation use.

The standard interfaces will be described later. There is a predefined base class called Object,

with appropriate default implementations of many of the standard interfaces. Container classes

are explicitly distinguished from non-container classes. The details of class structure, apart from

those mentioned above, are not significant.

In addition to the types associated with object classes, there are also fundamental types, as has

been mentioned. The Integer, Real, String, and List types do not have class definitions

or implementations. The Integer and Real types support common operations on numeric

values. The String type is used for regular character strings, supporting operations such as

concatenation. The List type is a simple homogenous aggregate type. A List declaration

must include the type of the elements in the list.

3.3.1 Definitional Statements

A class is defined by a statement with the following form1:

class name parent contents clef-block

1. In these syntax templates, parameters for which actual values must be supplied are set in slanted charac
ters.
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The name parameter is the name of the class. The parent parameter is the name of the parent

class in the inheritance hierarchy. The contents parameter is the type of items contained in

instances of the class. For non-container classes, a null string must be supplied as the con —

tents parameter. The def-block is a block containing the attribute and method definitions

for the class.

Attributes are defined as follows:

attribute name type qualifiers

The name parameter is the name of the attribute, which must be used in attribute references.

The type parameter specifies the type of the attribute value. The qualifiers parameter is

used to identify important characteristics of the attribute. For instance, an attribute might be

marked as immutable.

Methods can be defined by name and formal parameter list. Implementations must be provided

for each defined method, but the mechanism for doing so is an implementation detail, and is

therefore beyond the scope of the Prescription language. It is assumed that conventional per-

class instance data will be supported for each object.

3.3.2 Object and Attribute Reference

Initially, object references are obtained from definition statements. Thus the object for a table

that forms part of a specification is obtained from the table statement, as illustrated in the next

section. Object references may be assigned to variables. An attribute reference consists of an

object reference, a period, and an attribute name, following the syntax of structure-member ref

erence in Pascal or C. For example, the following reference is to the number attribute of the

object contained in variable Q:

number
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Attributes may have values of a fundamental type, or may be object-valued. Due to the second

possibility, multi-part attribute references may be generated, using the syntax of nested structure

reference in Pascal:

$F. son.height

In this case, the value of the son attribute of the object referenced by F is an object having an

attribute height1.

3.3.3 Example

The following is an example of class definition. Two classes are defined. Sample method defini

tions are not provided, as they are beyond the scope of this chapter.

class Carton Object U {
attribute name String immutable
attribute size Real U
attribute colour String {}

class Wagon Object Carton {
attribute name String immutable
attribute first Carton
attribute owner String

The first class (Carton) inherits from Object and has three attributes: name, size, and

C 01 our. It is not a container class, since the null string is supplied as the contents parame

ter. The name is of type String, and is declared to be immutable. The colour is also of type

String, but has no special declarations. The size is of type Real.

The Wagon class is a container class. Any instance of Wagon contains objects of class Car

ton. Note that Wagon also has an object-valued attribute (first, of type Carton).

1. Note that only one dollar sign is required; we do not write $($F.son).height. The dollar sign specifies
variable dereference, not object dereference, which is always performed implicitly. This peculiarity of
syntax is a product of the prototype implementation.
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3.4 Table Definition

The database part of a configuration description consists of a set of tables which form a simple

relational database. For each table in a database, a certain amount of information is required in

order to permit it to be used in a specification. The necessary information is supplied by a defini

tion statement of the following form:

table name filename field-delimiter fields-list key subtables-list

The name parameter supplies the name of the table. The filename is the name of the file

which contains the records in the table, with fields delimited by the field-delimiter

string. The fields-list is a list of field definitions, each consisting of a field name and a declared

type. The key parameter identifies a primary key by listing the names of the fields which com

pose the key, in order. The key parameter may also be empty, in the case of a table with no pri

mary key. The subtables-list identifies tables which are sub-tables, and includes information

describing the relationships. A sub-table is a table which may contain multiple records associ

ated with each record in the primary table. The sub-table information is not essential for config

uration management, but indicates the structure of the database, and can be used by browsing

tools.

Here is a sample table definition:

table MachineGroup mgroup.table I { \
(name String} \
(subgroups List MachineGroup} \
(members List Machine} \

(name} 0

The name of the table is MachineGroup. The file from which records will be read is

mgroup. table. Fields in that file are declared to be delimited by vertical bar characters, as

indicated by the third parameter. The table has three fields, called name, subgroups, and

members. The name field is of type String. The other two fields are both of List types. In
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the case of subgroups, a List of MachineGroup, and in the case of members, a List of

Machine. The file mgroup. table must contain strings representing every field value. When

an field is of an object type, the string used to represent a value is a foreign key identifying a par

ticular object. In this example, there are no sub-tables, so the empty string is supplied as the final

parameter. The MachineGroup table defines a graph of groups (intended to be. a tree in prac

tice).

A table definition causes a number of things to be done implicitly. First, a class is defined for the

table. The name of the class is the name of the table with the string “Table” appended. The new

class inherits from a standard class called simply Table, and is a container class. The objects

contained in an instance of a table class represent individual records in the table. A table

statement, therefore, also causes the definition of a class for those contained objects, with an

attribute corresponding to each field. The name of this new class is the same as the name of the

table. A table statement also causes the creation of an object to represent the table (an

instance of the new table class), and the creation of objects to represent each record in the table.

The object representing the table is generally assigned to a variable. Thus the previous example

definition would normally be written something like the following:

set MGroups [table MachineGroup mgroup.table I ( \
(name String} \
{subgroups List MachineGroup} \
(members List Machine} \

} (name} {} I

As a result of this statement, a class named MachineGroup would be implicitly defined for

objects representing records from the file mgroup. table. A class named Machine

GroupTable would also be implicitly defined as a container class containing objects of class

MachineGroup. An instance of this second class would be created and its reference would be

assigned to the variable MGroups. Finally, the contents of file mgroup. table would be read
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and objects created for each record (each an instance of class MachineGroup). The table

statement plays the role of the new statement in other object-oriented environments.

When a field has an object type, the values actually stored in the table file for that field are for

eign keys. The class created for records in a table automatically translates a foreign key into the

appropriate object when the attribute for such a field is referenced. In some situations, the for

eign key value itself is required, rather than the object. To accommodate these circumstances, a

special variant syntax for attribute reference is provided. The prepending of an @ symbol to an

attribute name specifies that the key value is required, not the object identified by the key value.

This syntax is illustrated by the following example:

$F. son

As the tables are modelled by objects, the descriptive statements that will be introduced shortly

may be used to express specifications of constraints on the tables. Since the tables are consid

ered part of the specification, the prototype implementation does not support any automated

repair of them. Repair could be supported, however.

The definition of the database schema and the creation of records in the database are both the

province of the administrators responsible for the managed system. The format of record storage

and the mechanisms used for editing records are beyond the scope of the specification language,

and are implementation-specific. The prototype uses text files with simple structure, but a com

plete RDBMS is equally possible.

3.5 State Descriptions

This section covers the heart of the Prescription language, namely those statements and features

which are provided for the description of object states. The descriptive statements that will be

presented here are designed to be used for the structural parts of configuration specifications.
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The descriptive statements are inherently declarative, each expressing a description rather than a

directive. Each statement may be easily evaluated against a managed system at a particular point

in time, to determine whether or not the described state holds. Each statement, therefore, has a

truth value when considered relative to a particular managed system.

Although the language is declarative, there are also simple processing algorithms associated

with each kind of descriptive statement. For each statement, there is a procedure for determining

a truth value. In many cases, there is also a repair algorithm. A repair algorithm is a procedure to

efficiently compute a sequence of operations which could be performed to modify the state of

the managed system so that a statement would evaluate to True.

In order to facilitate state descriptions, the object model must be elaborated slightly. Some

objects are collections which contain other objects. The list, or set, of contained objects is an

attribute of the collection object, but it is an attribute of special significance. A number of the

descriptive statements reference the contents of a collection object implicitly.

For practical specifications, facilities for general computation are important. General functions

are used for the generation of values from other values (e.g. string concatenation, simple arith

metic). The set of general functions, and the mechanism for defining new ones are implementa

tion dependent. The only restriction is that general functions must never manipulate the

managed system. If they were to do so, the specifications would no longer be declarative, and

implementation problems would arise.

The Prescription language is analogous to traditional programming languages in a number of

ways. Statements may be grouped in block structures. Modularity is supported through named,

parameterized blocks of statements like traditional procedures. Variables are used in exactly the

same fashion as in conmion imperative languages supporting call-by-value.
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3.5.1 Prescriptions

The unit of definition in the language is the prescription. A prescription is a named block of

statements, with a list of named formal parameters which are used in the block as local vari

ables. A prescription serves as a modular description of part of the configuration of a managed

system.

A prescription plays a role similar to that of a predicate in a logic programming language like

Prolog. If the formal parameters are bound to particular objects, the predicate has a truth value.

There is not, however, any facility for automatic selection of values for unbound variables, as is

provided in Prolog. In operational terms, a prescription plays the role of a procedure in a lan

guage like Pascal. In recognition of the special nature of prescriptions, they are said to be acti

vated, rather than called as procedures.

Prescriptions are defined in a global scope in a fashion very similar to function definition in C.

The following is an example of the definition of a prescription with an empty block as the body:

prescription FirstOne (a b ci {

In this example, the name of the new prescription is Firs tOne, and there are three formal

parameters, named a, b, and c. Prescriptions may be defined to be narrowed by the addition of

the keyword -narrow1after the keyword prescription. Narrowing affects processing in a

way that will be explained as soon as the processing modes have been described.

1. The hyphen is part of the keyword, and marks it as an option switch.
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Prescriptions may be activated in a fashion similar to traditional procedure call. Actual parame

ter values must be supplied for each formal parameter. In the following example, the prescrip

tion SecondOne contains a single statement which is a recursive activation of the prescription.

prescription SecondOne {a b} {
SecondOne $a $b

}

Note that prescription activation follows the syntax of statements, in which arguments are sepa

rated by spaces. While recursion is legal, this particular prescription is nonsensical from a logic

point of view, and could not be processed without error.

3.5.2 Processing Modes

Prescriptions may be processed in two ways, described as separate processing modes. In verify

mode, the sole objective of processing is to determine the truth value of a description at a point

in time. In repair mode, an additional requirement is added; the managed system must be modi

fied to conform to the description if possible.

The central principle of all Prescription processing is minimality. Evaluation of a prescription,

or a statement, terminates as soon as the truth value has been determined. This is the same strat

egy used in the evaluation of expressions in C. Another consequence of minimality is that pro

cessing never results in modifications to the managed system in verify mode. In repair mode,

modifications may be made, but the set of modifications is always minimal. If a prescription

describes the existence of a particular file with certain permissions, and the file exists with dif

ferent permissions, the only change made during repair mode processing will be a change to the

permissions of the file.

The processing mode is normally preserved across prescription activations. Overriding of the

processing mode is possible through narrowing, which is explained in the next section.
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Not every descriptive statement is amenable to automated repair. Some statement forms do not

include enough information to automatically select a repair algorithm. The reason such forms

are tolerated in the language is that they have descriptive value. A statement for which there is a

repair algorithm is designated as repairable. Note that repair may fail for a statement that is for

mally repairable, because the availability of an algorithm does not guarantee that the algorithm

can be successfully applied. In verify mode, all statements can be processed, but in repair mode,

processing of non-repairable statements might generate an error.

3.5.3 Narrowing

In various situations the full descriptive power of the language is required, and automated repair

is either unexpected or undesirable. For example, a constraint may be expected to hold, with

human notification required if it does not. It is desirable to be able to place such constraints in

regular prescriptions that may be subject to repair processing. In these situations, the prescrip

tion author needs a way to selectively disable automated repair. Restriction of the processing

mode to verify mode is called narrowing. A narrowed statement or prescription is always pro

cessed in verify mode, regardless of the mode in effect in the containing block. The restriction to

verify mode is preserved through nesting and prescription activation.

There are two forms of narrowing. Individual statements may be narrowed with explicit syntax,

as described in the next section. Alternatively, a prescription may be defined as narrowed, as

described in Section 3.5.1, which causes every activation of that prescription to be narrowed

automatically.

Although it is of practical importance, narrowing does not affect the logical meaning of state

ments at all. It merely affects repair processing.
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3.5.4 Blocks

As in many programming languages, Prescription statements are grouped in blocks. Unlike

other languages, the blocks themselves have logical semantics. There are three types of blocks:

And blocks, Or blocks, and Narrow blocks.

Blocks are themselves legal statements, and so may be nested inside each other. There are differ

ent syntax possibilities for representing the distinction between block types. Different delimiters

could be used for different types of blocks. In the syntax used here, braces delimit blocks of all

types, and block statements are introduced by a keyword that identifies the type.

Statements are processed in order of occurrence, subject to the principle of minimality described

in Section 3.5.2. The reason for order significance is to make processing easier to understand,

and prescriptions simpler to write. A consequence is that implicit dependencies based on order

may exist between statements.

And Blocks

An And block has the value True if and only if each contained statement has the value True.

Thus an And block represents the logical AND of the statements in the block. The following

example block always has the value True (the true and false statements always have the

values True and False respectively):

and
true
true

The following block has the value False in all cases:

and f
true
false
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Both And and Or blocks are repairable. The body of a prescription is always an implicit And

block. An And block may be empty, in which case it has the value True.

Or Blocks

An Or block has the value True if and only if there is at least one statement in the block which

has the value True. Thus an Or block represents the logical OR of the contained statements. The

following block has the value True in all cases:

or f
false
false
true
false

}

In accordance with the minimality principle, processing of an Or block terminates as soon as the

truth value is determined. This pattern holds in both verify and repair modes. Repair mode pro

cessing involves two phases. First, the block is processed in verify mode, as though narrowed. If

the block has the value False, implying that repair is required, each statement is then processed

in turn in repair mode, until repair is successful for some statement. At that point, processing of

the block terminates. Should repair fail for all statements, the block terminates with the value

False.

Narrow Blocks

A Narrow block is used to specify narrowing. Narrowing is intended to be applied to single

statements1.The following example block has the value False in all cases, but automated repair

will never be attempted on any of the statements.

narrow { and {
true
true

1. For implementation reasons, a block is used. If multiple statements are included in the block it has the
value of logical AND.
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false

3.5.5 If Statements

An ± f statement is defined, for expressing configurations conditionally. The statement has the

following form:

if { expression } then-block ?else-block?1

The expression part is just a standard boolean expression which may be composed of vari

able references, operators and functions. When the expression has the value True, the entire

statement has the logical value of the then—block. Otherwise the statement has the logical

value of the else-block if present, and the value True if not. In the following example, the

if statement has the value True:

if { 1 == 1 } {
true

} else {
false

}

When an if statement is processed, the expression is evaluated first, then the appropriate

block is processed. The if statement is repairable.

3.5.6 Logical Statements

A logical statement describes the state of a particular object by describing the value of one of the

attributes of the object. A logical statement may or may not be repairable, depending upon the

parts that are included. The statement has the following form:

logical ?attribute-reference? ?op? expression

1. In these syntax templates, optional parts are enclosed in question marks.
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The attribute-reference parameter is a reference to an attribute of a particular object,

through a variable. The op parameter is the comparison operator used to relate the attribute

value to the value given by the expression. For example, the following logical statement

states that the value of the count attribute of the object referenced by the variable a is 1:

logical $a.count 1

The value of the logical is the value obtained by applying the op to the attribute value and

expression. When the statement is processed, the expression is evaluated, the attribute

value is obtained, and the appropriate comparison is performed. If repair is required, a suitable

value is determined for assignment to the attribute. In some cases, the value to assign is trivially

obtainable, as in the above example. Other operators make determination of a suitable repair

value more difficult.

The attribute—reference and op parameters are optional. If they are omitted then the

logical is non-repairable, because it does not include any identification of a particular piece of

the managed system that can be modified. In the non-repairable case, the expression must evalu

ate to a logical value, which becomes the truth value of the entire statement. Here is the same

constraint as in the previous example, expressed in non-repairable form:

logical Li {} {$a.count == 1)

Note that empty strings, delimited here by braces, are supplied for the first two parameters.

Logical Statement Operators

A wide variety of operators are possible, but only a few have been implemented in the proto

type. Those that have been implemented are summarized here. Note that the presence of sepa
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rate operators for testing numbers and strings is due to the limited typing system of the

prototype implementation.

Table 1: Logical Statement Operators

Operator Description

== Numeric equality

! = Numeric inequality

< Numeric less-than

> Numeric greater-than

s = String equality

s ! = String inequality

s< String less-than (lexicographic)

s> String greater-than (lexicographic)

contains Membership in collection

eq Deep object equality

For these operators, there are repair algorithms that can be invoked when the value of an

attribute causes the relation to be False. There may not be a repair algorithm for every imagin

able operator. The statement can only support operators for which there is a possibility of repair.

3.5,7 ForaIl Statements

The foral 1 statement describes the configuration of a set of objects. The form of the statement

is as follows:

forall var Lype ?-closure? collection ?constraint? block

The var parameter is the name of a variable, whose type is given by the type parameter. The

collection parameter is an object which contains the objects the statement is about. The

optional constraint is an expression in terms of the variable var, which identifies the par-
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ticular objects from collection that the statement is about. The block contains statements

that describe a configuration of each selected object, in terms of var. The block here is an

implicit And block. The optional —closure flag specifies that the statement is about all objects

in the closure of the collection under containment. Specification of the closure of a collec

tion is useful for hierarchical structures such as Unix directory trees. In the following example,

the statement describes a configuration in which the count attribute of each object in the col

lection identified by variable col has the value 1.

forall v Vooble $col } {
logical $v.count == 1

The value of a forall statement is True if and only if the value of the body is True for every

object satisfying the constraint (if supplied) and contained in the collection (or its

closure, if specified). The type of the variable (Voobl e in this example) serves as an implicit

constraint. A collection may contain objects of different specific classes, although they are all

instances of the same base class. The variable type is used to constrain the statement to objects

of a particular sub-class.

The forall statement is processed by successively binding the objects in the collection

to the variable var (defined in the scope in which the statement resides). If a constraint is

supplied, then it is evaluated for each object, and those for which it evaluates to False are

skipped. Those objects which are not of the specified type are also skipped. If the closure of the

collection is specified, then objects are retrieved from collection objects hierarchically

contained in the specified collection. For each selected object, the body block is pro

cessed. If the block evaluates to False for some object, the truth value of the statement is

known, so processing terminates (unless repair mode is in force and repair is successful). The

foral 1 statement is repairable.
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Optimization using the Constraint

The constraint parameter primarily serves a semantic role, but may be used to increase effi

ciency. Semantically, the constraint is used to select particular objects to which the block is to

apply. In the interest of efficiency, the presence of a selection criterion may permit the statement

to be processed without iteration through all candidate objects. Instead of blindly iterating, it

may be possible to narrow the search space or even retrieve an appropriate sub-collection,

depending on the nature of the collection.

3.5.8 Require Statements

A require statement describes the configuration of an object which must exist in a collection.

The form is as follows:

require var type ?id? ?-closure? collection block

The var, type, collection, and -closure parts are identical to the corresponding parts

of forall. The optional id is a value which uniquely identifies an object from the collec

ti on as the one which the statement asserts must exist. It can be viewed as a key, and could

have multiple parts. The nature of the identifying value is dependent on the collection in

general, but when the closure is specified a particular form must be used. That form is a path

through the hierarchy, with each component identifying an object in a collection at a different

level. In the prototype implementation, such a path is expressed in the syntax of Unix path

names. Thus the following example describes the configuration of a file referenced relative to

the directory identified by variable dir:

require F File /sub/one -closure $dir {
logical $F.perms == 0755
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A require statement has the value True if and only if there is an object in the collection

(or its closure, if specified), identified by i d (if supplied), for which the block has the value

True. In the absence of an id value, there may be multiple objects for which the block has the

value True. As in forall, the block is an implicit And block.

The processing algorithm used with require depends on whether an id value is supplied.

With an object identification, processing begins with a search for the identified object. If it does

not exist, the statement has the value False. If the identified object does exist, then it is bound to

the declared var and the body is processed. Without an object identification, the variable is

successively bound to the objects in the collection, until one is found for which the block eval

uates to True.

A require statement is repairable only if an identification is supplied. The identification indi

cates precisely which object the statement is describing, and so enables automatic determination

of the problem that is the cause of a False value. The two possible problems are:

1. The required object is absent from the collection.

2. The required object is present but is not correctly configured.

In case of the first problem, the repair action is to create the object in the collection with default

values for attributes unrelated to identification. The situation then reduces to the second prob

lem, which is handled by simply processing the body in repair mode.

3.5.9 Disallow Statements

A disallow statement describes objects that must not exist in a collection. The form is as fol

lows:

disallow var iype ?—closure? collection ?constraint? block
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The parts of the statement are all identical to the corresponding parts of the foral 1 statement.

The difference is in the meaning of the statement. For example, the following statement

describes a configuration in which there are no objects in the collection identified by variable

col with size 5:

disallow v Vooble $col {
logical $v.size 5

}

A disallow statement has the value True if and only if there is no object in the collection

(or its closure, if specified) for which the block has the value True. Once again the block is

an implicit And block.

Processing proceeds as with the torah statement, except that the truth value is known as soon

as the first object is found for which the body is True, rather than False.

For repair, the same difficulty arises with disallow as with require; a repair strategy must

be selected. For disallow, however, the same strategy is always used. Offending objects

(those for which the body has the value True) are always destroyed. In a situation where destruc

tion would be inappropriate, the statement should be narrowed and offending objects should be

handled manually.

The meaning of “destruction” in the above description is flexible, because it is dependent on the

implementations of object classes. For instance, destruction might be equivalent to Unix unlink,

which may destroy only a reference to an item, and not the item itself.

3.6 Relationship to First Order Logic

The Prescription language is, in essence, a logic language. It is derived from first order logic.

The differences are due either to the goal of supporting automated repair, or to practical consid
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erations. The relationships between the various descriptive statements of the language and

expressions of first order logic are described here. This section can be safely skipped if the theo

retical details are not of interest.

3.6.1 Blocks

The relationship between Prescription blocks and simple logic constructs is very straightfor

ward. An And block is equivalent to the conjunction of the contained statements, while an Or

block is equivalent to the disjunction of the contained statements.

Notably, there is no Prescription equivalent of simple negation. This is due to the problem of

automating repair. Negation is possible in expressions, and the effect of negation can sometimes

be achieved by selection of the correct logical operator. Also, the disallow statement is

related to negation.

3.6.2 ForalI

The foral 1 statement is equivalent to universal quantification in first order logic. The transla

tion is quite straightforward. A statement of the following form:

forall x XType $col { E(x) } { A(x)

(where E(x) is an expression involving x and A(x) is a statement involving x) is logically equiv

alent to the following expression in first order logic:

V x E $col, ( x ° XType A (E(x)) ) (A’(x))

where o f3 means that x is type conformant to type f3, and X’ indicates the expression in first

order logic which is equivalent to the prescription statement X. Similarly, a statement of the fol

lowing form:

forall x XType -closure $col { E(x) } { A(x) }
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is equivalent to the following expression:

V x C closure($col), ( x XType A (E(x)) ) (A’(x))

where closure (q) is the closure of q under containment.

Note that the fora11 statement is structured to explicitly separate the left side of the implica

tion from the right side.

3.6.3 Require

The require statement is equivalent to existential quantification in first order logic. A state

ment of the form

require x XType id $col { A(x) }

is logically equivalent to

x C $col ( x XType ) A (x — id) A A’(x)

where x — means that x is uniquely identified by I. Similarly, the closure form

require x XType id —closure $col { A(x) }

is equivalent to

3 x C closure($col) I ( x 0 XType ) A (x -— id) A A’(x)

Note that the require statement distinguishes particular parts of the expression (the type and

identity constraints). The distinguished parts provide enough information to enable automatic

selection of the correct repair strategy. The statement may be written without an identifying

value:

require x XType {} $col { A(x) }
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which is logically equivalent to

x e $col I ( x ° XType ) A A(x)

3.6.4 Disallow

The disallow statement is equivalent to negation of existential quantification. Therefore, a

statement of the form

disallow x XType $col { E(x) } { A(x) }

is logically equivalent to

x E $col I ( x ° XType ) A E(x) A A’(x)

The closure form

disallow x XType -closure $col { E(x) } { A(x) }

is equivalent to

—‘ x E closure($col) I ( x ° XType ) A E(x) A A’(x)

3.6.5 Logical

The relationship between a logical statement and an expression in first order logic is very

simple. A logical of the following form

logical $a.b.c A v

(where A is any operator) is logically equivalent to

$a.b.c A v

In the non-repairable form, the statement is simply equivalent to the expression part.
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3.6.6 It

There is also a very simple relationship between an if statement and an expression in first order

logic. A statement in the following form

if { E } f A }

is logically equivalent to the following expression

E A

3.6.7 Derivation

The statements of the Prescription language were actually derived based on first order logic

expressions. Each statement can be considered to express a useful idiom of logic in a manner

intended to facilitate specifying configurations and performing automated repair.

3.7 Support Functions

As indicated in Section 3.5, general computation functions are required. Some of the significant

functions implemented in the prototype are described briefly here.

3.7.1 Membership Testing

It is frequently necessary to test a collection for the presence of a particular object. For this pur

pose, the boolean-valued function in is provided:

in ?-key? val collection

There are two forms of membership testing. Without the —key switch, a simple test for the pres

ence of the object val in the collection is performed. When the -key switch is supplied,

the val parameter is taken to be an object identifier like that used in the require statement.

The function then returns True if and only if there is an object in collection identified by

val.
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3.7.2 String Concatenation

The most common value manipulation is the production of string values by concatenation. In

many implementations, string concatenation would require an explicit function. In the prototype

implementation, no special function is required. For example, the following string is the concat

enation of the value of variable a, a stroke character (/), and the value of variable b:

$a/$b

3.7.3 Special Purpose

A number of special functions are used in the prototype implementation. In another implementa

tion, operators might handle these cases. The functions are summarized in the following table:

Table 2: Miscellaneous Functions

Function Form Description

val aref Returns the value of an object attribute. The
desired value is identified by an attribute reference
aref. This function is only required in certain sit
uations, due to the nature of the implementation.

obj EQ a b Boolean function which tests two objects (refer
enced by a and b) for identity.

globEQ pattern b Function to test a string b for a glob match against
the pattern

strEQ a b Convenience function to test two strings (a and b)
for equality

strNE a b Convenience function to test two strings (a and b)
for inequality
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3.8 Repair Limitations

The Prescription language has considerable descriptive power. Despite the fact that it is

designed to support automated repair, there are many configuration descriptions that can be writ

ten for which repair will not be successful. Each major barrier to repair is presented briefly here.

3.8.1 Explicit Narrowing

As described earlier, it is possible to write pieces of description for which repair is inhibited.

This may be done whether or not the narrowed statements are repairable.

3.8.2 Implicit Narrowing

When a non-repairable statement is encountered during processing, it may be implicitly nar

rowed. This is the case with the require statement when the key value is omitted.

3.8.3 Solver Inadequacy

Repair always proceeds in a simple fashion without backtracking. As a result, there are specifi

cations for which repair will fail to produce a correct result, even though there is a perfectly ade

quate solution. Consider, for example, the following block:

and
logical $B.b < “2 * [val $C.c]”
logical $C.c < “[val $D.d] - 5”

)

Suppose that the block is processed in repair mode when B.b = 25, C.c = 10, and D.d = 10. The

first logical statement will be determined to have the value False, since 25 is not less than 2*10.

The repair action might be the assignment B.b — 19. The second logical statement would then

be processed and determined to have the value False, since 10 is not less than 5. The repair

action might be C.c <— 4. While that action would cause the second statement to have the value
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True, it would simultaneously cause the first statement to have the value False. The repair pro

cess would not detect this problem.

In considering this example, note first that there is an obvious solution which would cause both

statements to have the value True simultaneously (B.b — 7, C.c <— 4). Secondly, observe that in

this particular case, simply reversing the order of the statements in the block would make it pos

sible for the repair algorithm to compute a correct solution.

The problem which this example reveals is the inadequacy of the simple, naive repair algorithm

when dealing with specifications involving certain dependencies. An obvious solution would be

to use a more general solver, one capable of handling such dependencies and finding a solution

if one exists. There are a few reasons why effort was not expended in this direction:

1. Awkward situations like that illustrated in the example do not seem likely to

arise often in practice. The common situations in static system configura

tion are very simple.

2. Inclusion of a more powerful solver would greatly increase the complexity

of an implementation, and could make its operation more difficult for

administrators to understand.

3. A simple repair algorithm has efficiency advantages. It is possible (at least

in theory) to write a specification equivalent in form to 3SAT, for which

finding a solution is an NP-complete problem. Given the previous points,

avoidance of an exponential algorithm is a good idea.

3.8.4 Object Limitations

Direct modification of certain attributes of certain components is not possible. For example,

consider the s ± z e attribute of a file, which we might define to be the size of the file in bytes.

Now suppose that the following description is written:

logical $F.size == 23
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If the size of file F is 23 bytes, all is well. If not, the repair algorithm will easily determine that

the appropriate repair action is the assignment F.size <— 23. The problem is that performing that

repair action is non-trivial. For this example, a simple algorithm can be devised, since there are

steps that can be taken to change the size of a file to any particular value. Unfortunately, it seems

unlikely that an automated algorithm will produce a desirable result in most cases.

Repair will ultimately fail if it involves changing the value of attributes which are not directly

modifiable. The size attribute in the above example is a dependent attribute; its value depends

on other properties of the object. Other attributes might be immutable, that is, not subject to

modification for some intrinsic reason. Using static analysis of specifications, an implementa

tion could warn the user of possible problems with non-modifiable attributes.

3.8.5 Failures

Repair can also fail for unpredictable reasons. A repair operation may simply not work when it

is attempted. For example, an attempt to create a file will fail if the disk space is exhausted.

Without a more elaborate reasoning system, the only solution to such a problem is to report it to

a human.

3.9 Repair Processing Details

A few practical details concerning repair remain to be discussed. The target application for the

language is configuration of production systems. Administrators are only too aware of the prob

lems that result when a system is inadvertently placed in an inconsistent state. Configuration

management tools must be carefully implemented to avoid contributing to the very problems

they are designed to solve. They must also be designed to satisfy the need of administrators to

understand exactly what is being done on their behalf.
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It is important that systems not be left in inconsistent states, as might occur if repair were to fail

part way through processing a description. To avoid this situation, prescriptions should be han

dled atomically. Either a prescription should be True after processing, or the managed system

should be in its original state. There are some problems with implementing atomicity as

described. These problems will receive more attention later in the thesis.

The description of processing revolved around the two modes: verify and repair. In practice, ver

ify mode is of limited utility, since it causes processing to terminate with the first encountered

discrepancy. The difficulty with repair mode is that it involves modifications to the managed

system which an administrator may need to specifically review and approve. The simple solu

tion to these problems is to split repair processing into two phases. In the first phase, the repair

actions to be performed are determined, during processing of the prescriptions. The actions are

recorded in a log. Execution is deferred to the second phase, after processing of statements is

completed. The administrator can review the log between the two phases. Tools could even be

provided to permit manual editing of a log. Unlike the case with verify mode, the log can

include a description of every way in which the managed system fails to match the specification.

The two-phase repair processing approach will be referred to as deferred execution. In

addition to the advantages described above, it helps achieve atomicity, since statement process

ing finishes completely before the first modification is made. Use of deferred execution causes

some implementation difficulties, however. It requires maintenance of a large amount of state

information during the first phase, and special handling to avoid problems with dependencies on

implicit side-effects. These problems are explored later in the thesis. If an implementation were

to be used on an unattended basis, it might not be necessary to implement deferred execution,

since atomicity can be maintained through a roll-back mechanism.
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3.10 Standard Class Interfaces

As previously mentioned, class implementations serve to provide the translation between the

uniform object abstraction used by the processing algorithms and the concrete syntax required to

actually manipulate components. The processing code remains independent of the idiosyncra

cies of particular components (and, indeed, of particular operating systems).

The processing algorithms function by invoking certain methods on objects. Any component of

a managed system can be handled as long as the class for that type of component supports the

methods which are used by the processing algorithms. These methods are invoked during both

verification and repair processing.

The standard interfaces may be organized into several groups by purpose. The following table

describes the methods in each group. Class methods are indicated by “(class)” following the

method name. Every class that is defined must support each of these methods. Default imple

mentations are inherited from Object’.

Table 3: Standard Object Methods by Group

Group Method. Description

Object Management constructor Initialize object

Attributes getAttribute Get the value of an attribute.

getDefault Get the default value of an attribute
for a newly created component.

setAttribute Set the value of an attribute.

1. Collection methods are not required on non-container classes. The default implementations in Object
simply raise an error.
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Table 3: Standard Object Methods by Group (Continued)

Group Method. Description

Classification claim (class) Determine whether the object is an
instance of a specific class, when it is
known to be an instance of a general
class.

Testing isDeepEqual Test an object for equality with
another object using class-specific
evaluation.

Collection Related getCollection (class) Obtain the object which holds all
instances of a class, for classes
whose instances are all generally
held in a single collection object.

initlteration Begin iteration over objects in a col
lection.

getNext Retrieve the next object in the itera
tion.

endlteration Cleanup from iteration over objects
in a collection.

find Locate an object by identifying
value.

prepare Prepare a new object for addition to a
collection.

create Actually create a new object (and
component).

destroy Destroy an existing object (and com
ponent).

ismember Check for presence of an object in a
collection.

Modification commit Commit changes to object.

Debugging printRef Produce human-readable version of
object reference.

As an example, assume that we are interested in managing disk files. We need to define a class,
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say File, to model disk files. In this situation, the actual files are the components. Every instance

of the File class is an object representing a specific disk file. We must provide implementations

of the standard methods to manipulate the real files. For example, when getAttribute is invoked

on a File object for the s ± z e attribute, the implementation must perform the operating system

function to retrieve the size of the file represented by the object. For the Unix operating system,

the implementation would use the stat system call. On another operating system, the implemen

tation would use whatever function that system provides for obtaining the size of a file. The pro

cessing of a statement such as the following (with F referencing an instance of class File) would

include an invocation of getAttribute.

logical $F.size == 150

Should repair be required for this statement, the setAttribute method would be invoked. For log

files, we might define a LogFile class as a subclass of File. We could define the size attribute

for class LogFile to be the number of lines in the file, then the setAttribute implementation

could truncate or expand a file as necessary to reach any specified size.

Every attribute exposes some aspect of the configuration state of components modelled by the

class with which the attribute is associated. A class implementor can define attributes in what

ever way seems appropriate, and provide implementations to get and set attribute values. The

processing algorithms operate using the standard methods, and incorporate no knowledge of

particular components or operating systems.

We could model directories by defining a Directory class1. Since directories contain files, the

Directory class would be a container class for objects of class File. The collection methods

would be implemented on class Directory to operate on files in the directory represented by a

Directory object. For instance, the find method would take a file name as an identifying value,

1. For Unix, at least, Directory would be a subclass of File.
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and search the directory for a file with that name. Upon finding a file with the right name, the

method would create an object to represent that file, and return the object.

The relationship of many of these standard methods to prescription processing is straightfor

ward. There are a few methods whose purpose is not clearly explained by the above table, how

ever. Some of these will be dealt with in the next section, but the rest can be explained

immediately.

The claim method is required to deal with class inheritance hierarchies that model classification

hierarchies. The prime example of this is Unix files. In Unix, a directory can be viewed as a type

of file, as can a symbolic link, a device special file, and so forth. We can model this by defining

a root class File, with child classes Directory, SymLink, etc. A Directory would then be formally

defined to contain objects of class File. Suppose that we then want to write a prescription state

ment such as the following:

forall S SymLink $dir U {
logical $S.mode == 0755

}

When the statement is processed, objects are extracted from dir, but those objects may be

declared to be of class File or Directory in addition to SymLink. The claim interface is used to

determine whether the object is actually of the required SymLink class.

The isDeepEqual method is required to deal with object comparisons that cannot be made with

out knowledge of the particulars of the component. It is used to implement the eq operator of

the logical statement.

The getCollection method is particularly unusual. It is used to translate foreign keys in the fields

of specification tables into the objects they reference. This method is unlikely to be needed for

modelling managed components.
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3.10.1 Implementing Deferred Execution

Supporting the deferred execution strategy, which was introduced in Section 3.9, is a significant

issue for the class implementor. There are two processing phases, and all modifications to man

aged components are deferred until the second phase. This causes a problem of tracking man

aged system state.

Deferring operations requires that the software keep track of the intended state of components

that are slated for modification. To understand why this is so, consider the following statement:

require F File /tmp/example $root {
logical $F.perms == 0755

Suppose that when the above statement is processed, the software determines that file / tmp /

example does not exist and must be created. Using deferred execution, the creation will be

logged, but not performed immediately. Processing will continue with the block in the

require. Now the system must process the logical correctly, despite the fact that it refers

to a file which does not exist (yet).

The problem here is the same one that occurs when one attempts to build a virtual file system

that can diverge temporarily from the underlying stable storage. The solution is the same as

well: the software must maintain enough information to process requests from memory, without

referencing the underlying system directly.

In the context of implementing the Prescription language, there are two ways to organize the

maintenance of state representation:

1. Object state can be maintained entirely by class implementations using

object instance data.

2. Object state changes can be recorded centrally by the main processing code,
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without involvement of the class implementations.

The second of these alternatives is attractive from the point of view of simplifying the class

implementor’s task, and reducing functional duplication between class implementations. For

these reasons, the second alternative is supported in the prototype implementation.

The processing algorithms do not invoke methods directly. Instead, they call special procedures

which may or may not invoke the appropriate method on an object, depending on the recorded

state of the object. Only a few pieces of state information are maintained. There is a general

state indicator, which records whether the component is pre-existing, slated for creation, slated

for destruction, or slated for modification. Lists of objects to be added or deleted are maintained,

to track changes to the membership of collections. Finally, the new value of any modified

attribute is recorded.

By relying upon central record keeping, a class implementor does not need to worry about the

possibility that an attribute value will have been slated to change. The class implementation can

just access the modelled component to respond to every getAttribute request. If the attribute

value does need to change, the new value will be centrally recorded, and subsequent requests for

the value of the attribute will be satisfied without invocation of getAttribute on the object at all.

It turns out that there are a couple of situations in which this strategy fails. These account for

two of the surprising methods in the standard set. First, when an object is created (through pro

cessing of a require statement), it is not possible for the central record to satisfy requests for

the value of attributes, but it is also not appropriate to invoke getAttribute, because the man

aged component does not yet exist. The getDefault method is invoked instead of getAttribute

in this case to retrieve the value that the attribute should have when creation actually completes.

The second situation concerns creation itself. It is important that the class implementation for a
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collection perform the creation of any object to be added to the collection. The prepare method

handles this part of creation.

The complete mechanism described above works well for some classes, but it does not solve

every problem. One issue that remains is the handling of components that cannot be individually

addressed in the managed system. For instance, entries in a simple Unix configuration file can

be modelled by objects. The various fields in an entry can be treated as attributes. A problem

arises in the second phase of repair, when changes are actually being made. The problem occurs

when it is not possible to independently modify the field of one entry without affecting sur

rounding fields or records. In order to implement setAttribute under the scheme described

above, it would be necessary to read the entire file and write it out again, changing the value of

one field in the process. Now imagine what happens when a number of modifications are made

to different records in the same file. The implementation just described would result in the file

being read and written several times. With components like records in a file, which cannot be

independently modified, the best implementation strategy is to make all modifications to a repre

sentation in memory, then simply regenerate the file after all the changes have been recorded.

This approach requires the class implementation to track state changes.

Fortunately, the class implementation can do whatever is appropriate with the instance data, so

there is no fundamental conflict with the mechanisms described previously. There is a need for a

method to be called after all modifications from the log have been completed. The standard

commit method is the one designated to fill that role. A list of every modified object is main

tained. After processing of the log is finished, the commit method is invoked on each object in

the list. A interface is supported to permit the implementation of a class to add an object to the

list of modified objects. This is used, for example, so that the implementation of a class model

ling records in a file can add the object modelling the file itself to the change list.
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In summary, there are two implementation strategies available to the class implementor. Follow

ing the first strategy, the methods all reference the modelled component directly (except for

those like getDefault), and state tracking is ignored. Following the second strategy, the class

implementation maintains a complete model of the component state, and only references the

component directly at construction time and during commit.

The mechanisms introduced here still do not address every problem. Attributes with inter-

dependencies cannot be properly supported. For example, if a change to the value of one

attribute implies a change to the value of another attribute, the situation cannot be modelled with

the available mechanisms. A central record will be made of a modification to one attribute with

out any invocation on the object. To deal with inter-dependencies, more standard methods

would be needed.

3.11 Example

The example presented here is intended to illustrate how all the elements described in this chap

ter fit together. A simple, hypothetical situation is used in order to limit the length and complex

ity of the example.

Consider the management of an electronic mail system. In this system, assume that there is a

folder for each user. Folders may be created in a structure called a file cabinet. This managed

system is modelled by the following classes:

class Message Object {} {
attribute from String immutable
attribute date Date
attribute text String

}

class Folder Object Message t
attribute name String immutable
attribute group String
attribute size Integer
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}

class FileCabinet Object Folder {
attribute name String immutable

}

class System Object FileCabinet 0

From these definitions, we note that the configuration state of a folder consists of a name, a

group, and a size (the number of messages which the folder can contain), plus the set of con

tained messages. The configuration state of a file cabinet consists of a name and a set of con

tained folders. The method definitions are omitted here, because they are essentially

implementation details.

For this managed system, assume the administrators wish to specify the details of the folders

needed by students enrolled in various courses. All student folders will have the same size, and

the administrators naturally want to avoid entering that value many times. The following table is

adequate to hold the varying instance data:

table StudentFolder students.table { \
{name String) \
{course String) \

} {name) {}

Note that there are two fields in every record. The name field holds the student’s name, and

serves as the primary key. The course field holds the designation for the course in which the stu

dent is enrolled (assuming that students are only enrolled in one course at a time, for this exam

ple). Here are some sample records:

Table 4: StudentFolders

name course

John Tan CPSC 124

Mary Alder CPSC 128

Lucy Denter CPSC 126
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Table 4: StudentFolders

name course

Tom Roe CPSC3 19

J0 Terry CPSC415

Now a prescription is required to describe the configurations of objects in the managed system

based on the data in the table. The following simple prescription is adequate in this case:

prescription StudentFolders {T} {
require FC FileCabinet Students $System {

forall E StudentFolder $T {) {
require F Folder $E.name $FC {

logical $F.group s= $E.course

logical $F.size == 100

}
}

}
}

The prescription describes the existence of a file cabinet with the name “Students” containing

one folder for each record in the StudentFolder table. The name which identifies each folder is

the name from the record in the table. The group for each folder is the course designation from

the table record. Finally, the size of each folder is specified to be 100. The table must be supplied

as the parameter T when the prescription is activated. The variable System is assumed to be

bound globally to an object representing the entire managed system.

This simple example demonstrates how a managed system can be defined by a set of class defi

nitions, how a table can be defined to contain the varying details of a specification, and how a

prescription can be written to complete the specification and express the details which do not

vary. The prescription above can be activated in repair mode to automatically configure the

managed system, or to obtain a complete report of the ways in which the managed system devi

ates from the specification.
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CHAPTER 4 Implementation

Implementation of the Prescription language poses a number of challenges. This chapter

describes the details of the prototype, and presents the issues which are significant for any

implementation.

The prototype described here was produced in order to explore implementation issues, and per

mit the experiment presented in the next chapter to be conducted. The implementation was

never intended to be suitable for production use. It is “one to throw away.”

4.1 The Environment

Unix is a natural choice for the prototype operating system environment. The examples consid

ered during the development of the model and language were Unix related, and Unix is the pri

mary computing environment in the Computer Science department at the University of British
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Columbia. Despite the focus on Unix, both the language and the central ideas of the implemen

tation are transferrable to other contexts.

For convenience, the prototype implementation was produced for SunOS 4 systems only. Most

of the code should work on other systems unmodified. The sample class implementations, how

ever, are quite specific to the operating system variant.

The prototype implementation is written exclusively in the interpreted language Tel [1], and

relies on the standard interpreter. There are a few reasons why Tcl is appropriate for this project.

1. Tel provides facilities which permit extension of the interpreter to support

new language features, including new control structures. It is important to

realize that this involves more than a facility for defining new commands or

procedures. Syntactically, the extensions appear as though they were part of

the base language, which is particularly convenient.

2. Tcl has the basic features that are desirable for a prototyping activity. It is a

very high-level language, supporting simple manipulation of strings and

lists. It is interpreted, and it supports automatic storage management.

3. Through common extensions, Tel has support for direct interaction with

Unix and high-level RPC for writing distributed applications.

Since the Tel interpreter plays a significant role in the implementation, the syntax has to con

form to that accepted by the interpreter. Thus, it is actually Tel syntax which has been used up to

this point1.The Tel syntax is acceptable, if less than desirable. The more serious disadvantages

to the use of Tcl have to do with efficiency and the lack of typing. These problems will be

explained later. Despite its limitations, Tel serves the purpose admirably.

1. The origin of the syntax was not explained in the previous chapter to avoid confusion between the Pre
scription language and Tcl.
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4.2 Basic Processing

The implementation relies on the Tcl interpreter, as already noted. A Tcl procedure is defined in

the interpreter to implement each statement in the Prescription language. The prescriptions are

actually executed by the Tcl interpreter.

The basic procedures that are defined to implement the descriptive statements of the language

are and, or, prescription, narrow, logical, torah, disallow, and require. In

addition to these, an activate procedure is defined to initiate processing, various support pro

cedures (documented earlier) are defined, and the definitional procedures related to class and

table definition are provided. A large number of other procedures are part of the implementation

internals.

The blocks that are part of most descriptive statements are merely string arguments to proce

dures, as far as the Tcl interpreter is concerned (recall that braces are string delimiters). This is

exactly how the basic control structures of the Tcl language itself are implemented. Braces

inhibit substitutions. Thus when a statement such as:

frodo
puts “Hi there $mom”

}

is executed, the interpreter passes the contents of the braces as an argument to frodo, without

performing a substitution of the value of variable mom. The implementation of frodo can

invoke the interpreter on the argument, in the variable scope in which the call to frodo was

made. At that point, the interpreter will perform the variable substitution.

In order to implement the Prescription statements in an interpreter, unusual transfer of the flow

of control must be possible. Tcl provides the ability to throw and catch exceptions, which makes

implementation of new control structures possible. The prescription implementation uses three
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special exceptions: one that means a statement had the value False, one that means a statement

had the value True, and one that signals the end of an iteration.

Various pieces of processing state are stored in global variables. Of these, the most important is

the PSmode variable, which holds the indication of which processing mode is active at any

point in time. Also significant is the PSblock variable, which holds an indication of which

block type (Or or And) is active. This information is needed in order to determine what action

should be taken in various cases.

Each procedure that implements a descriptive statement finishes by returning the result of invok

ing a common procedure called value. The value procedure is invoked with an indication of

the value that has been determined for the statement. There are three possibilities: True, False,

and Error. The third case is used when an error is encountered. The value procedure takes one

of three actions based on the value indication it receives, and the current processing state:

1. If Error was indicated, a normal error exception is raised. Such an exception

will propagate all the way to the top level.

2. In some cases, value simply returns, causing processing to continue with

the next Prescription statement.

3. In other cases, value raises one of the special exceptions to alter the flow

of control. The special exceptions are caught and handled further up the call

tree.

In the context of an And block, statements must be processed sequentially until either all have

been processed, or one has the value False. Thus value will simply return on True in an And

context, and throw the False exception on False. In an Or block, processing continues sequen

tially until a statement has the value False, so the return action is different. Simple return occurs

on False (to cause execution to proceed), and the True exception is raised on True.
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The remainder of this section is devoted to brief summaries of how the individual blocks and

statements work.

4.2.1 and

The and procedure is very simple. It saves the old PSblock setting, sets PSblock to And,

and then invokes the interpreter on the block. Any exceptions are caught, so control is guaran

teed to return to and on termination of block execution. The saved PSblock value is then

restored, and value is called to end. When no exception is raised, all statements in the block

must have the value True, so the statement has the value True. Exceptions are simply re-raised.

4.2.2 or

The or procedure is a bit more complicated then and, due to problems of repair. Basically, the

block is processed first in verify mode, regardless of the operative mode. This is necessary so

that procedures in the block do not attempt repair before the need for it has been established. If

the block execution terminates without an exception, all statements must have the value False,

so repair is required if the original mode was repair mode. The mode is reset, and if repair is

required, the block is executed again in repair mode. This will cause each procedure to attempt

repair. In the context of an Or block, a True value for a statement will cause an exception to be

raised. That exception has the effect of terminating block execution.

4.2.3 prescription

The prescription procedure implements prescription definition. Both definition and activa

tion will be described here. When a prescription is defined, a new Tcl procedure is created with

the same name as the prescription. The argument list of the new procedure is just the parameter

list of the prescription. The body of the new procedure consists of a call to a special pre-process

procedure, a call to and with the prescription body, and a call to a special post-process proce
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dure. When a prescription is defined as narrowed (with the -narrow switch) the call to and in

the body is enclosed in a call to narrow. Since a new procedure is defined, activation of the

prescription may be written simply as a normal Tcl command, as has been illustrated previously.

The special procedures called in the body perform mostly administrative and data management

operations. They do not normally alter the flow of control. Note that exceptions generated dur

ing execution of a prescription body propagate to the block that contained the prescription acti

vation.

4.2.4 narrow

The narrow procedure is very simple. It merely saves the current mode indication, sets the

mode to verify, and executes and with the block. Any exceptions are caught so that the mode

can be reset, but exceptions are merely propagated upwards. Thus the narrow procedure does

not directly affect the flow of control.

4.2.5 logical

The logical procedure is straightforward, although there are a couple of independent cases. If

the attribute/operator pair are omitted (by passing empty strings), the expression part is simply

passed to the Tcl expression evaluator. The result determines the value of the statement. In the

prototype implementation, processing of non-repairable logical statements in repair mode gen

erates an error. When all parts of the statement are supplied, the procedure still passes the

expression to the Tcl evaluator, but then obtains the value of the referenced attribute, and corn

pares that value to the value returned by the evaluator. If the result is False then a repair proce

dure is invoked to set the attribute in question to an appropriate value.
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4.2.6 forall

The basic strategy for both forall and disallow statements involves iterating through the

members of the specified collection. For some require statements, iteration is also necessary.

A common internal procedure handles all three iteration situations. Iteration involves the same

basic steps regardless of which type of statement is being processed. Objects are extracted from

the collection one at a time. Each object is bound, in turn, to the given variable name, using a Tcl

command. Each object is evaluated to determine whether it meets two constraints:

1. The type constraint given by the type specification for the variable.

2. The supplied constraint expression (applies only to forall and disal

low)

For each object which meets the constraints, the block is executed. The actions taken, based on

the results of executing the block, vary depending on the type of statement. In the case of

foral 1, a False exception for the block implies a False value for the statement. Otherwise,

iteration continues until there are no more objects, at which point the statement must have the

value True. To handle statements over the closure of collections, each object is checked to deter

mine whether it is a collection containing the same type of objects as the original. Such collec

tion objects are added to a queue of collections from which objects are retrieved. Iteration ends

only when the queue is empty.

The forall procedure does not implement any special repair actions, because repair must

always be performed by procedures contained in the block.

4.2.7 disallow

The disallow procedure calls the iteration procedure whose basic operation is described

above. For disallow, the only special action occurs when an object is found for which the
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body has the value True. In repair mode, an attempt is made to destroy the offending object, and

continue with the iteration. In verify mode, iteration stops immediately because the statement is

known to have the value False. For a disallow block, execution always proceeds in verify

mode, to prevent statements contained in the block from attempting repair operations.

4.2.8 require

There are two cases for require to handle. When no identification value is provided, the state

ment is implicitly narrowed, and processed by iteration using the common iteration procedure

described above. Iteration terminates for require as soon as an object is found for which the

body has the value True. If no such object is found, the statement has the value False.

When an identification value is provided, an entirely different algorithm is used, one that does

not involve iteration over the contents of the collection. Instead of iterating, the identification

value is used to search the collection for a candidate object. If none is found and repair mode is

active, repair is initiated with the creation of a new object having the required identity. When an

object is available (either because it was found in the first place, or because it was created

through a repair operation) it is bound to the variable, and the block is executed. The value of

the block then determines the value of the statement.

4.3 Objects and Data

The base Tcl language uses strings as (almost) the only data type. The Prescription language

requires support for more sophisticated data structures. It was necessary to have Tcl variables

hold references to objects, and then to be able to deal with attribute references involving vari

ables as was illustrated earlier. Sometimes variables also need to hold simple string or numeric

values, which Tcl can intrinsically manage.
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One way to deal with references and data is to use variables exclusively to hold object refer

ences. Objects could be created for each simple value, and the values handled through refer

ences to objects. While this approach has the benefit of consistency, it causes a lot of

inconvenience when simple values are used.

An alternative approach is used in the prototype. Variables may hold both ordinary Tcl values

and object references, and a special structure is used to distinguish object references. Object ref

erences begin and end with a special character sequence that is deemed to be uncommon in ordi

nary values1.

Attribute values are used throughout prescriptions. Consider what happens with a reference such

as the following.

$obj . one, two. three

The Tcl interpreter is capable of performing value substitution for the Tcl variable reference

($ obj in this case). The interpreter leaves the remainder of the string alone. In order to use

attribute values, it is necessary to invoke a procedure which can interpret the string left after

substitution by the Tcl interpreter. The procedure is called va 1. What va 1 does is take a string

consisting of an object reference (distinguished by the special prefix and postfix string) followed

by a period-separated list of attribute names. It dereferences the string by performing getAt —

tribute operations, and returns the final value. For convenience, val will return an ordinary

string unchanged. The typical use involves the in-line procedure invocation mechanism of Tcl,

and is written as follows:

[val $obj.one,two.three]

1. The sequence presently consists of the ASCII vertical tab character, but could be easily changed.
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Many procedures that are part of the implementation expect to receive object or attribute refer

ences as arguments, and deal with them appropriately. It is only necessary to use val explicitly

in situations where an ordinary value must be supplied (e.g. in a Tcl expression).

The format of object references, storage of instance data, and invocation mechanisms are all

described in the next section.

4.3.1 Object System Implementation

The base Tcl language provides no direct support for object-oriented programming. Although

there are extensions which add object-oriented support, a small, custom object system is used in

the prototype implementation. A custom solution has the benefit of supporting the features

which are needed for this application.

A single inheritance class structure is supported, as described earlier. Per-class instance data is

allocated transparently to the class implementations. Remote invocation is supported. These

basic features are all common in object-oriented languages.

One unusual problem in this application is the problem of object recognition. The purpose of the

software abstractions called objects is to represent components of managed systems, such as

files, directories, or processes. The objects, however, are only created as needed. For instance, if

a prescription describes a particular file (with a require statement), an object will be created

to represent that file, although objects may not exist to represent other files in the same directory.

During processing of a prescription, however, the same component may be described multiple

times (e.g. by require and also by Eorall). The system must recognize any component for

which an object has already been created, so that on subsequent reference the existing object is

used (with the proper model state) and a new object is not created. By object recognition, the

system avoids having multiple mutually inconsistent models for a single managed component.
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In order to efficiently solve the recognition problem, objects are referenced by global identifiers

(GIDs) which are derived from the identification information of modelled components. When a

component is referenced, the software can simply generate the GID, then check to see whether

an object already exists for that component. This approach to object references differs from reg

ular practice in object-oriented languages.

In the prototype implementation, an object reference is composed of three parts:

1. Identifier of the class of which the object is an instance.

2. Identifier of the machine on which the object resides.

3. GID for the object.

These three items, along with the class definitions, provide enough information to invoke a

method. It may seem obvious that the class identifier should somehow be stored with the

instance data, and not passed around in references. That would introduce a small problem for the

claim method, which modifies the reference to an object when claiming it. The machine identi

fication could probably be handled differently as well. In the prototype, the three parts of a refer

ence are combined in a Tcl list (which is just a string with a particular format). The generation of

GIDs from components must be performed by the class implementations.

Instance data are stored in a single array on each machine. The array is a Tcl associative array1,

indexed by a combination of GID and class. This arrangement provides, for each object, one

array slot for each class in the object inheritance hierarchy. The slot may contain any string, and

so may be structured as a list to hold multiple items. A specific slot is not arranged for each

declared attribute, as might be expected. This is because the attributes apply to the modelled

component. There is no reason that the mapping between stored instance data and supported

1. The associative array of strings is the only data representation supported in Tcl, apart from strings them
selves. Access to individual slots is implemented efficiently.
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attributes must be 1:1. Instead, a class implementor is free to organize the instance data in what

ever way seems most appropriate. For each object, one instance data slot is reserved for use by

the prescription processing code (the slot associated with Object, the minimal root class). The

reserved slot is used for the central records maintained to deal with deferred execution, as

explained in Section 3.10.1.

Classes are defined by the use of procedures class, method, class_method, and

attribute. In the prototype implementation, the explicit declaration of attributes is entirely

at the discretion of the class implementor. If attributes are explicitly declared, then the process

ing code will use the declarations to check references, otherwise the class implementation must

assume more verification responsibility. Since Tel has all the facilities required of a class imple

mentation language, method code can be included directly in the method definition, as illus

trated by this example.

class FriendlyClass Object {} {
attribute greeting String {}
method greet {name} {

return “Hello there $name”

class_method identify {} {
return “This is the Friendly class!”

}

The explicit declaration of the class of contained objects is another unusual feature of this object

implementation. The prescription processing code uses the contained object information to pro

cess statements that relate to collections (forall, require, disallow).

The method invocation mechanism is a straightforward implementation of dynamic method

lookup. When a method is invoked, hidden parameters self and gid are passed in, to provide

instance information. The invocation code also arranges for local variable idata to be bound

to the appropriate instance data array slot (using a Tel feature). A procedure called super is
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provided to permit the implementation of a method to invoke the superclass implementation of

the same method. The invocation mechanism for class methods is very simple, as there are no

class objects. No inheritance-based search is performed to find a class method; it must be

defined on the specified class or an error is raised.

4.3.2 Deferred Execution

The subject of deferred execution has already been addressed in considerable detail. The central

record keeping code consists of a set of Tcl procedures with the same names as the methods in

the standard set. These procedures are collectively known as the Object layer of the implemen

tation.

4.4 Prototype Classes

In order to handle the desired examples, a number of classes were written as part of the proto

type implementation. This section presents the interesting details of the prototype classes. Note

that these class implementations are very specific to SunOS 4.
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4.4.1 Files

Classes were written to model Unix files, directories, and symbolic links. The inheritance hierar

chy for the classes involved is shown in Figure 1. The primary class is the File class, which

models all Unix files. A number of attributes such as name, fuilPath, size, and group are sup

ported.

All file objects use the same GID format: /File/hostnamelpathname. Since Unix files may have

different names (due to links in the filesystem), this is not an adequate GID format for a produc

tion system. It is convenient for prototyping, since the file path can be extracted.

The only methods which are actually implemented in class File are printRef, getAttribute, get

Default, and setAttribute. For all other standard methods, either the default implementations in

class Object are adequate (regular methods) or the method will never be invoked (class meth

ods).

Figure 1 — File Class Hierarchy



CHAPTER 4- Implementation 70

The FileContents class exists for the contents attribute of File objects. The primary method

implemented in class FileContents is isDeepEqual. Through this method, the contents

attribute may be used to describe one file as a copy of another.

The Directory class is quite substantial, since a Directory object is a collection of File objects.

The claim class method and the various collection related methods are implemented in class

Directory. One of the trickiest issues in the Directory implementation concerns the attribution of

new objects extracted through the getNext method. Normally, such objects are created as

instances of File, but directories are immediately declared to be of class Directory. This is neces

sary in order for the code that handles closures to work correctly. Key values for require

statements (used in invocations of find) are simply file names, so lookup is quite efficient. In

addition, the implementation of iteration supports optimization for a very particular form of con

straint expression involving the globEQ function. This optimization is extremely primitive, to

the point of being slightly incorrect, in a way that will be described in the section on limitations.

The SymLink class models symbolic links. The nature of symbolic links in Unix poses particu

lar modelling difficulties. In most cases, a symbolic link object needs to be treated as the entity

referenced by the link, not as the link itself. On the other hand, a symbolic link has an attribute

which other files do not have, namely the item to which the link points. Due to this classification

problem, the claim method is particularly important for SymLink objects. An object that models

a symbolic link will only be declared to be of class SymLink if it is referenced in a statement

which uses the SymLink type explicitly. The default value of the ref attribute of a SymLink

object is always “/dev/null”. In the prototype implementation, a SymLink is actually created

pointing at the null device initially. In practice, creation should always be followed by a setAt

tribute invocation which sets the link to point somewhere in particular. Setting the ref
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attribute involves destroying the link. Thus some efficiency could be gained by tracking the state

in memory and only adjusting the managed system when commit is invoked.

4.4.2 Fstab and Printcap Classes

Two Unix configuration databases, /etc/fstab and /etc/printcap are modelled by prototype

classes. For each, there is a main class (e.g. FSTAB) that inherits from File, and a record class

(e.g. FileSysRecord) that inherits from Object. The implementation of these four classes follows

the strategy of directly tracking the component states. The constructors for the collection objects

read the file data and store it in memory. Changes are made to the in-memory copy, and the

entire file is rewritten on commit (which is only invoked if modifications were made).

Since the collection classes are subclasses of File (in recognition that the databases are stored in

files), the GIDs follow the format for File GIDs. The GIDs for records are composed from the

hostname of the file, the path of the file, and a key value for the record.

The key values are appropriate to the databases in question. For class FSTAB, an identifying

value must be an ordered pair (servername, filesystemname). For the Printcap class, an identify

ing value must be the name of a printer entry. Neither class supports any optimizations for itera

tion.

4.4.3 Table Classes

Classes for specification tables are an important part of the implementation. Inheritance is used

effectively with tables. There is a Table class and a TableEntry class. Both of these contain com

plete generic implementations. The class created for each specific table, and the class created for

entries of each specific table, are empty subclasses of the two generic classes.
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As noted earlier, the prototype implementation of tables relies on text files with a simple struc

ture. The data for the table is read from the file specified by the filename parameter to the

table definition statement. The expected format is a sequence of records delimited by new-

lines, each containing the same number of fields delimited by the field-delimiter string.

Fields in a table all have declared types. When a value is requested for a field of a fundamental

type (using getAttribute) the value is returned exactly as it is written in the file. Alternatively, a

field type may be the name of another table or class, or a list containing values of some other

specified (non-list) type. If the field type involves a class, the getAttribute code treats the value

recorded in the file as a foreign key identifying an object in the master collection for the speci

fied class. The master collection object is retrieved by invoking the class method getCollection.

When the field value is requested, the referenced object is obtained and returned. This mecha

nism is used primarily in the case of fields which contain foreign keys for records in other tables.

When the special @ syntax is used, reference translation is suppressed and the literal value is

returned.

The table implementation does not support any form of modification to tables through repair

processing, because the tables are considered part of the specification, not part of the managed

system. Prescriptions may be written to discover errors in tables, but automated repair will not

work. It is perfectly reasonable to develop classes for tables as a components of a managed sys

tem, as the Printcap and Fstab classes demonstrate.

4.4.4 Machine Class

Machines are also modelled by a class. A table is required to define the known machines to the

system. The attributes of a machine are the attributes of the entry for the machine in the defini

tion table, plus attributes whose values are particular objects on the machine. For instance, the
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root attribute is the object which models the root directory of the machine. The primary pur

pose of the Machine class is to provide access to objects on a machine. The handling of

machines is explained in more detail in the next section.

4.5 Distribution Facilities

The configuration management problem addressed by this thesis is fundamentally a distributed

problem. The prototype implementation has a basic set of mechanisms for dealing with distrib

uted systems. As language validation was the primary objective, the distribution scheme is rela

tively weak.

One central machine must be designated as the master. It is this machine which must have acces

sible copies of all the Tcl code, as well as direct access to the database files and configuration

descriptions. All other machines (called slaves) require only TCP/IP reachability’ from the mas

ter, and an appropriate Tcl interpreter. No shared filesystems are assumed between machines,

and if available they are unused.

Interaction between machines is supported by the DP extension [2] to the Tcl interpreter. This

extension provides a powerful RPC mechanism by which Tcl commands may be executed on

remote machines and the results returned. Both master and slave machines act as RPC servers.

On slave machines, starting the server is the only local initialization step that must be per

formed. All necessary code is downloaded into the interpreter automatically by the master when

the slave is first accessed. Thus the part of the configuration management system that runs on

every machine as small and generic.

In order to support distribution, a database table must be provided to define machines. The table

may include any attributes desired, but must have name and aliases attributes. A procedure

1. Reachability is assumed to be reflexive.
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called machine is invoked to create Machine objects based on the contents of the table. Ini

tially the objects that model machines are all declared to be of class MachineProxy (a subclass

of Machine).

Access to machines represented by MachineProxy objects is avoided by means of a hack.

Whenever a prescription is activated with a parameter that is a MachineProxy object, the activa

tion is elided, and the prescription is summarily declared to have the value True. This simple

technique permits processing to proceed even when some known machines are inaccessible. The

technique seems to work remarkably well in practice, but would distort the logical evaluation of

some prescriptions unacceptably.The procedures engage and disengage are provided to

enable and disable access to machines respectively.

A Machine object is always created on the machine which it represents. The master simply

keeps references to the Machine objects on hosts around the network. A special class with only

one instance (AllKnownMachines) is provided as a collection.

The processing of prescriptions is fundamentally centralized in the prototype implementation. In

fact, all statement processing actually occurs on the master machine, with the slaves accessed

only to perform operations on objects which are not on the master machine. Objects which

model managed components (as opposed to representing database contents) always reside on the

machine which contains the modelled component.

The prototype implementation follows a strict push model for managing a network of machines.

This helps achieve synchronism, since whenever a change is made to the master configuration

database, all machines can be immediately updated. When a pull model is used, it is more diffi

cult to arrange for machines to be updated in a timely fashion after a configuration change. On

the other hand, there are situations in which a pull model is more appropriate, as in the case of a
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machine returning to normal operation after having been turned off for an extended period.

Using the prototype implementation, a machine could send a request for engagement to the mas

ter, then cause the master to process prescriptions again, but that would affect all active

machines and involve a lot of redundant work.

The push approach described here could easily be adapted to eliminate redundancy. The master

would need to keep track of the state of various machines, with respect to prescriptions that have

been activated. When a slave contacts the master after having been down for awhile, the master

could respond by performing the prescription processing required for that slave.

In the context of a distributed system, a number of standard problems arise. For instance, there is

the problem of a single point of failure at the master. There is also the problem of network parti

tioning. These issues have not been addressed in this work.

Ideally, a production system would be much more distributed in nature than the prototype imple

mentation. The central base of prescriptions and database descriptions should be automatically

factored to produce smaller descriptions of the configuration of each individual machine. The

prescriptions for each slave could then be transferred to it and processed locally as required. A

central processing capability could easily be preserved for those machines which are not suited

to local processing for some reason (e.g. X-terminals). Updates for most machines in this case

would consist of prescription updates, and the master machine would primarily play the role of a

specialized database server. In such a scenario, it is conceivable that the complete description of

a machine configuration would be a combination of descriptions of different types, with some

parts specified locally, others controlled centrally.
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4.6 Administrative Support

A couple of administrative mechanisms support the rest of the implementation. The logging

mechanism has already been mentioned. A simple trace mechanism is also included; it permits

helpful messages to be produced when something goes wrong.

During the first processing phase a log is maintained of the repair operations that are to be per

formed in the second phase. The log is stored as a Tcl list. Each entry consists of a type field, an

identification of the code that generated the entry, a reference to the object which the entry is

about, and data describing the operation. The start and end of processing of each prescription is

recorded in the log in order to identify the context of recorded operations when the log is

reviewed by a human. The prototype implementation contains a minimal facility for printing the

log, along with code to perform the operations recorded in the log. One shortcoming of the log

ging mechanism is that a log entry about an object modification is recorded on the machine on

which the object resides. There is no adequate central mechanism for accessing and manipulat

ing these logs which are spread across various machines.

The tracing facility is provided in order to gather enough information to create informative mes

sages for an administrator when something goes wrong. When an error occurs (or a prescription

is determined to have the value False) it is useful to know what statement was being processed.

The tracing mechanism is called in various places to accumulate a prescription activation trace

(the equivalent of a procedure call stack trace). The stack trace maintained by the Tcl interpreter

is not useful, because it contains too many frames of implementation procedures. The prototype

trace facility is very limited, but is helpful nonetheless.
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4.7 Issues, Limitations, and Problems

This section is devoted to descriptions of a range of discoveries from the implementation exer

cise. Some of the issues and limitations have already been mentioned, but are explained in more

detail here. Many of the topics in this section are general, and not solely applicable to the proto

type implementation. Note that performance issues are not mentioned here, since they are cov

ered in a separate section which follows.

4.7.1 Inter-class Dependencies

In the prototype set of classes, there are frequently strong dependencies between the implemen

tations of different classes. Some of this is natural and seems unavoidable. For instance, all

classes that model files share a common GID format. Other dependencies may reveal architec

tural problems. For instance, the create method of the Directory class performs creation opera

tions for instances of the classes File and SymLink as well as Directory. The general problem

may be the fact that no class methods are invoked to accomplish creation. Methods are only

invoked on the collection object which will contain the new object.

4.7.2 Multiple Architecture Support

The prototype implementation and trial example do not adequately explore the problems of sup

porting multiple architectures. There are two ways in which the language and model should be

well suited to multiple architecture support. In the first place, prescriptions can be easily condi

tionalized based on architecture, using the ± f statement. Furthermore, there is a good possibility

that minor distinctions between similar systems can be hidden behind the object abstraction. For

instance, two variants of Unix might have slightly different forms for the printer definition data

base, but the differences might be at a syntactic level. If so, they can be handled entirely by dif

ferent class implementations. I expect that separate class implementations will be required for
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each system, even though there may be a common abstraction that all the implementations sup

port.

4.7.3 GID Problems

The object recognition problem creates the need to use global object identifiers that are unique,

and that can be generated correctly by looking only at a managed component. The GID form

used in some of the prototype classes is inadequate for a production environment. Recall that the

File class (and descendents) use GIDs based on file name. The problem with that choice has

already been mentioned. A more appropriate GID structure for Unix would be based on the

(host, device, mode) triple. The problem with such a GID form is that mapping from the identi

fying triple, to a name that can be used in operations on the specific item, is non-trivial. The

solution is to maintain the path information in the object instance data, but that introduces the

problem of multiple paths to the same item. The problems related to links and GIDs are dis

cussed in the next section.

4.7.4 Component Classification

The basic problem of component classification arises with symbolic links, as has already been

described, and also arises with hard links and possibly other structures. The managed system has

these subtle features which create possible ambiguities. How are we to model such things? The

prototype solution is not entirely satisfactory. With a better GID scheme, as discussed above, a

better scheme for handling files referenced by symbolic links could be introduced. When refer

enced as a file or directory, a symbolic link should probably be bypassed, and an object gener

ated to model the referenced item. Then there is a problem with classifying an object as to the

collection in which it resides. If an object needs to be recognized as being contained in every

directory from which it can be accessed, every link must be found; such a search is a non-trivial

exercise.
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4.7.5 Implicit Side-effects and Dependencies

Implicit side effects cause problems. Inter-attribute dependencies cannot be handled using the

standard method set, as explained in Section 3.10.1. Another form of implicit side effect occurs

with the description of entries existing in an fstab database. The purpose of such an entry is to

define a filesystem, and often all defined filesystems are mounted when possible. We can

assume, therefore, that modifications to an fstab file are intended to imply changes to the set of

mounted filesystems. If the implication is correct, then the implementation of the commit

method in the appropriate class should perform mount/unmount operations. Here we encounter

another problem with deferred execution. The problem is that the implicit side effect of creating

an entry in the table may be depended upon by prescription statements processed after the state

ment that describes the entry. The Object layer attempts to provide a generic solution to the

deferred execution problem, but it cannot generically handle implicit side-effects like the

mounting of a filesystem. With this particular case, we can observe that mounting a filesystem is

an operation that may be easy to reverse. Thus the implementation could be changed so that the

prepare method on the FSTAB object actually goes ahead and performs the mount operation.

That fixes the problem of the dependency on an implicit side-effect, but complicates the prob

lem of maintaining atomicity. Where the present implementation has only a do-log, the new

implementation would require support for an undo-log as well. Then the mount operation could

be recorded in the log, to be undone should that be necessary to maintain atomicity.

4.7.6 Atomicity, Distinct Machines, and Parallelism

Atomicity and related matters are some of the most problematic issues surrounding the Prescrip

tion language. Atomicity is clearly an important principle, yet it has awkward ramifications as it

has been defined up to this point. The problem is that, in typical situations, errors or inconsisten

cies tend to be propagated upwards to the top level. Consider the situation of a set of prescrip
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tions organized in an activation hierarchy as in Figure 2. If only And blocks are involved, then a

statement determined to have the value False in prescription G will cause G to be declared False,

which will cause D to be declared False, which will cause B to be declared False, which will

finally cause A to be declared False. Perhaps, however, the specification given by D is partly

independent of the specification E, and B serves a grouping purpose. In that case, processing of

B should not stop when the problem with G is detected. Also the failure of G should not neces

sarily cause the repair actions required for F to be skipped (or undone).

Further problems arise when we introduce machine boundaries, since machines are independent

in important ways. Suppose that the bubble labelled a, in Figure 2, surrounds prescriptions

which describe the configuration of one machine, while bubble 1 surrounds prescriptions which

describe a different machine. In this case, we can ask whether a problem with machine a should

prevent processing on machine 3. The problem of dealing with machines that may not be reach

able has already been mentioned. The solution used in the prototype implementation is unsatis

factory.

Figure 2— Activation Hierarchy
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The language lacks features for properly describing the places where atomicity is required,

where machine boundaries must be ignored, and where parallelism is acceptable. Prescriptions

do the job that they were intended to do, but they do not provide enough structure for a complete

configuration management system. If a prescription is analogous to a procedure, then what is

missing is something analogous to a program or a package.

4.7.7 Exclusivity and Change Management

Another tricky issue is the handling of parts of configurations that should be described exclu

sively. The Prescription language is primarily oriented towards inclusive descriptions. If a file is

described as existing in a particular directory, there is no implication that the described file is the

only file in that directory. In many situations, these are the right semantics. In other situations,

the implication may be desirable. For example, consider the case of a prescription that describes

printer definitions based on entries in a database table. The general skeleton of the description

would look like the following:

forall P PrinterDesc $table {} {
require N PrinterRecord [val $P.name] $m.printcap {

)

The require statement describes the inclusion of a printer definition in the printcap table, and

the foral 1 statement therefore describes the inclusion of a definition for each entry in the

table. It does not describe the exclusion of all other entries which might exist, although that may

be desirable. It is possible to write a disallow statement that does describe the exclusion of

all printer definitions that are not based on a table entry. The problem is that such a description is

awkward to write and slow to process. Worse is the situation in which different printer defini

tions are described by different prescriptions. It may become very difficult to write a di sal —
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low statement that is correct. It would be much easier if a particular collection could be marked

as exclusively described.

The problem of exclusivity arises with specification change. Suppose, for instance, that a central

database describes various printers that must be defined on machines, and prescriptions describe

the machine configurations based on the information in the database. For each printer, a printcap

entry must exist along with a spool directory. Now suppose that a printer is retired and not

replaced, so that the name and definition are no longer valid. It should be the case that the defini

tions for the old printer, in the printcap files of various machines, disappear. It should also prob

ably be the case that the spool directories for the old printer are removed. One way to manage

this would be to create disallow statements at the time when the printer is removed. While

adding statements would achieve the desired effect, this strategy would cause descriptions to

grow, over the long term, in a practically unbounded fashion. The disallow statements would

have to remain part of the configuration description until administrators could be sure that they

had been processed on every machine.

The situation just described seems to indicate a need for a simple procedural administration

mechanism. What would be most helpful, however, is a system capable of automatically deter

mining the complete sequence of operations that should be performed to get from one configura

tion state to another. Then an administrator could simply make a central configuration change,

without worrying about describing garbage that should be removed, or specifying commands to

remove the garbage.

The problem of automatically managing change is a significant one in a variety of software con

texts. In configuration management it seems to be a major roadblock on the path towards auto

mation.
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4.7.8 Optimizing Object Selection

The forall and disallow statement types include selection expressions for identifying the

objects from a collection to which a statement applies. Ideally, these expressions should be able

to be used by class implementations to limit the search scope in structured collections such as

the closure of a directory. This is done in a limited way in the prototype implementation. Two

problems arose and are explained here.

The first problem is that the class implementation must be able to extract suitable information

from the expression. Remember that the expression is a normal boolean expression involving

the variable declared in the statement. Extracting the right information is not an easy task in gen

eral. In the prototype, an optimization is applied only when an expression has a particular,

restricted form, from which the right information can be easily removed. If an implementation

used traditional parsing techniques, it might be easier to deal with general expressions. Alterna

tively, it might be better to leave the form of the expression entirely up to the class implementor.

While that approach would simplify optimizations, it would also create a lot of inconsistency.

The second problem in the prototype is that the simple form of optimization that is used (glob

bing through a directory structure), results in objects being “found” in the wrong collection. A

search for a file a/b/c in directory /top is certainly fast, but if the file is found, the processing

code erroneously treats the file as being contained in the /top directory. This is a problem for the

disallow statement, since the file object might be slated for removal, and the state of the

wrong collection object would then be modified.

When closure processing is performed outside the class implementations, this same problem

with selection optimizations arises. An optimization may permit fast isolation of candidate

objects, but they may not all be contained in the collection under examination. The class inter-
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face for iteration needs to be adjusted to properly handle this situation. It should provide a way

for the class implementation to pass back a collection object with each selected object. The main

processing code then needs to avoid closure traversal, and rely on the class to produce the cor

rect objects.

4.7.9 Under-specified Creation

There are various kinds of objects for which creation with default values for most attributes does

not make a whole lot of sense. The prime example of this is the symbolic link. When creation is

determined to be necessary (in processing a require statement), only the identification of the

symbolic link is known. To create a link, however, the referent must be specified. The prototype

implementation creates a link pointing to /dev/nufl, but it is probably better to defer creation

until more information can be accumulated. The commit method is useful for this purpose.

4.7.10 Attribute Changes that Change Identification

Some attributes have significance in object identification. If modification to such attributes is

permitted, awkward problems may arise. For instance, a modification called for during process

ing of the block in a require statement might cause the object in question to fail to match the

identification value in the statement.

It is common to find that the GID of an object depends upon the value of certain attributes. If

those attributes can be modified during repair, the possibility of a Gifi change for an object must

be considered. Some attempt was made to prepare for this in the prototype implementation, but

the ramifications were never fully explored. It may not even be necessary for the GID to change,

as long as there is no possibility that the object in question will be encountered under the new

GID. This may be the situation when the object in question is an entry in a file, and cannot be
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accessed except through the file. If the GID does not change, however, there is a possibility of

GD collision when new objects are created.

4.7.11 Reference Values in Tables

As has already been described, central database tables are expected to contain fields which refer

ence records in other tables. The getAttribute method for the TableEntry class automatically

translates such references to the referent object, unless the special @ syntax is employed. The

find method on the Table class, however, does not correctly deal with object-valued key fields,

so the key value must be used. Lookup by value stored is actually more efficient than lookup by

referenced object would be, but the inconsistency is disconcerting.

4.7.12 Static Analysis

Since the Tcl implementation is interpreted, there is no real opportunity to perform static analy

sis on specifications. This is a significant limitation, as there are a number of potential uses for

static analysis:

1. Static type checking. Type checking for prescriptions would have all the

benefits of type checking in ordinary programming.

2. Static identification of repairability problems.

3. Static factoring of prescriptions to permit distributed and parallel process

ing.

4.7.13 Aliases

It is common, in practical distributed systems, to use multiple names for the same entities, par

ticularly for machines. Use of functionally meaningful names limits the scope of change when a

function is transferred from one machine to another. Extensive use of aliases, however, poses

some problems for a prescription-based management system.
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In the first place, it is important that object recognition is preserved. In the prototype, machines

and printer entries may be looked up by any alias, but the same object is always returned for

names which map to the same entity. When an aliases attribute is modified, the problem of

changing identification, discussed in Section 4.7.10, arises.

Secondly, it is sometimes awkward to organize prescriptions so that the configurations of

machines use the correct aliases, rather than the canonical names. For instance, if a filesystem is

declared to be exported by a machine “mainserver”, the correct Machine object must be refer

enced. The definition of the filesystem on any client, however, should use the alias “mainserver”

regardless of the canonical name of that machine. The @ syntax described in Section 3.3.2 is

useful for solving this problem.

It is not always clear how aliases ought to be handled. Entries in a printcap file, for instance,

include several equivalent names. In the prototype implementation, the first one is taken as

canonical, and the others as aliases. A require statement may identify an entry by any of the

names, but if an entry is to be created, the supplied identification value will become the first

name.

4.7.14 System Inconsistency

There is no guarantee that a managed system is in an appropriate state when prescriptions are

processed. It may, in fact, be seriously damaged. The prototype implementation is not at all

robust when dealing with problems such as file format errors. It is not clear how such problems

should be handled, but it would be nice if a configuration management system could cope with

them.
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4.8 Performance

The implementation described in this chapter was produced as a proof-of-concept demonstra

tion, so performance was not an issue in the design or development. The system is extremely

slow, in fact. There are good reasons why this is so, and why it should not be a significant con

cern.

First, the standard Tcl interpreter is not very efficient. All code, and almost all data, is main

tained internally in strings. No compilation techniques are used. In a typical program, the inter

preter parses and evaluates many code segments many times each. The Tcl language is a

challenge to handle efficiently because of its highly dynamic nature and the extensive use of

calls to C code in the implementation. Nonetheless, there are things that can be done to provide

impressive speed improvements. In tests presented for one compiler effort, speedup factors

between 1.30 (pessimistic) and 12.17 were reported [3]. There is reason to believe that even

more impressive results could be obtained with further work.

The second cause of poor performance is the nature of the prototype implementation. It is writ

ten entirely in Tcl, which means that performance is highly dependent on the interpreter. The

data management operations involve many string manipulations, such as regular expression

tests to check whether a string contains an object reference. Finally, the implementation was

written with much more attention to clean design than to efficient execution. Little optimization

has been done. One way to substantially improve the implementation is to rewrite many pieces

in C. The method invocation mechanism would be a good initial candidate.

The poor performance that has been observed should not be a major cause of concern for a few

reasons. First, the implementation suffers from the obvious problems noted above, for which

there are promising solutions. Also, the Tcl code could be abandoned in favour of a carefully
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constructed implementation in some compiled language. The most important observation is that

the processing of prescriptions is not inherently inefficient, as can be seen by reviewing the

algorithm descriptions in Chapter 3.

The main potential problem for a production implementation is the management of relatively

large amounts of data. Given the capabilities of today’s machines, and the excellent prospects

for distributing the work, even this problem is unlikely to be serious.
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5 Experiment

Any new approach to configuration management, such as the one presented in this thesis, needs

to be validated by application to real-world situations. This chapter is a report on an experimen

tal application of the new model to the configuration of client workstations in the department of

Computer Science at the University of British Columbia.

The experiment tested both parts of the model presented in Chapter 2:

1. The viability of the specification part was tested through the attempt to

apply it to a large, real-world environment.

2. The validity of the automation part was tested by running the prototype

implementation on a significant, real-world specification.

These two parts of the experiment are described separately. The chapter concludes with a unified

analysis of the results.
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5.1 The Specification

To evaluate the model and the Prescription language, a significant, practical problem was

needed. Important aspects of workstation configuration in the Computer Science department are

described in a centralized database that is used by a locally developed software tool. This exist

ing description provided an ideal test case. For the experiment, the same configuration informa

tion was expressed using tables and prescriptions. Not every detail was precisely duplicated,

rather an alternate specification was produced with the same effect as the original.

The first step in the translation was a careful analysis of the configuration information, to isolate

abstractions and identify the appropriate units of description. Based on this analysis, a set of

tables was synthesized.

An example of an abstraction discovered is the logicalfilesystem. A large part of the centralized

configuration description is devoted to filesystems that are imported via NFS1 on client

machines. In a number of cases, filesystems are organized into groups. All the members of a

group are imported together. One member may contain a root directory for the group, containing

symbolic links that reference parts of the other members through standardized mount points.

With the Prescription model, this abstraction may be directly supported, through a table that

defines logical filesystems in terms of individual filesystems and other data.

The second step was filling the tables with the information that describes the details of machine

configurations. In the process, various limitations of the schema were discovered and elimi

nated.

Finally, a number of prescriptions were written, describing the configuration of the managed

system in terms of the data in the tables. The prescriptions provide the interpretation of the

1. Network File System
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tables, and specify details which are common across entries. The most interesting features of the

final specification are summarized in the sections which follow.

The description consists of 14 tables (excluding the table which defines machines) and 16 pre

scriptions. For more detail than can be included here, refer to Appendix A.

5.tl Printers

The description of printers demonstrates relationship between tables and prescriptions. The

Printer table holds entries which describe the various instances of printers. The table is defined

by the following fragment (which assigns the table object returned by procedure table to the

variable Printers):

set Printers [table Printer printer.table I { \
name String} \
tserver Machine} \
{aliases List String} \
{type String} \
{note String} \
{maxSize Integer} \

} {name} }

Here are a few sample entries from the table:

Table 5: Printers

name server aliases type note maxSize

hp306 hp306 { HP 4si (in CC306) } *c.hp4s... HP 4si Room
i,CC306 CC306

1w 106 1w 106 garibaldi laserwriter {NEC NEC Silent- Room
Silentwriter (in CC 106) 1) *c Writer 106
nec,CC 106

cicsrlw lwcicsr lp lwc default { Silentwriter (in 10000
CC289) } *c.nec,CC289
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Table 5: Printers

name server aliases type note maxSize

1w238 1w238 clinker clink *c..nec,CC238 NEC Silent- Draft
Writer Room

312

The following prescription describes the configuration of a client machine which will have

access to a printer defined in the table above.

# PrinterDef - describes a remote printer definition that
# must be present on a machine
#
# Parameters:
# m : Machine
# pd : Printer (from table)
#

prescription PrinterDef {m pd} {
global All
narrow { or {

require M Machine [val $pd.server.name] $All U
require M MachineProxy [val $pd.server.name] $All U
}

}

if { [strEQ $pd.server.name $m.name] }
# Printer should be locally defined on its server

} else {
# A PrinterEntry must exist
require P PrinterRecord [val $pd.name] $m.printcap {

logical $P.name s= $pd.name
logical $P.aliases s= $pd.aliases
logical $P.lp s=
logical $P.rm s= $pd.server
logical $P.rp s= $pd.name
if { [strEQ $pd.maxSize “1 )

logical $P.mx == 0

} else {
logical $P.mx == $pd.maxSize

logical $P.sd s= /usr/spool/print/[val $pd.name]
logical $P.ty s= $pd.type
logical $P.note s= $pd.note

# The specified spooi directory must exist
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global root daemon
dir $m $P.sd $daemon $daemon 02755

}
}

The prescription describes two things. First, it describes the printcap entry, which defines the

printer to the client machine. Second, it describes a spooi directory which must exist. Note that

the prescription specifies values for some fields of the printcap entry that do not change from

printer to printer (in this organization). Also, some values are derived from values given in the

table. For instance, the spool directory path is derived from a standard root and the name of the

printer. Administrators do not have to enter a spool directory for each printer they define, and

they have assurance of consistent naming. Another important feature of the prescription is the

fact that it can be safely applied to a machine which happens to be the server for the printer.

The PrinterDef prescription relies on a prescription called dir, defined as follows:

#
# dir - describes a directory that must exist

# Parameters:
# m : Machine on which dir must exist
# path : String pathname of directory
# owner : Integer owner uid
# group : Integer group gid
* mode : Integer permission mode
prescription dir {m path owner group mode} {

require D Directory $path -closure $m.root {
logical $D.owner $owner
logical $D.perms == $mode
logical $D.group == $group

}
}

A separate prescription is used because directory existence is specified in a number of contexts,

and the prescription can be easily re-used. This is a simple example of the value of modularity.
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5.t2 Filesystems

The descriptions of filesystems and related items are considerably more complicated than the

descriptions of printers.

A table describes individual filesystems that may be imported via NFS. The table records, for

each filesystem, a name, a server, the path of the filesystem on the server, indications of whether

soft mounting and quotas are required, a canonical name under which the filesystem should be

accessible on the client (optional), a mountPoint (optional), and an indication of whether the

namespace of the server should be made canonical.

A few prescriptions are involved in the description of importing a single filesystem. Most of the

configuration does not apply on the machine which is the server for the filesystem, but

namespace canonicalization does. To canonicalize a namespace, symbolic links must be used. If

a canonical name is given for a filesystem, a link with that name is specified to point to the

mount point of the filesystem. Supplementary tables contain entries that describe arbitrary links

to be made into the filesystem, and sets of links to particular directories based upOn the architec

ture of the importing machine. The fstab entry that is required for the filesystem is described, as

is the existence of the mount point directory. If the mount point is unspecified in the table, then a

prescription defines one according to a simple formula, in the same way that a printer spool

directory is defined. The mount options are partially determined by the values given for the soft

mount and quota fields in the table. The original configuration description includes alternate

server aliases to be used by clients on particular subnets. These details are accommodated in a

supplementary table that contains the name to be used for various server/subnet pairs.

As described earlier, the abstraction of logical filesystems is supported by a table that describes

filesystem groups. Each group has a name, a list of filesystems that are part of the group, an
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(optional) indication of the filesystem that holds the root directory, an (optional) path to that

directory within the filesystem containing it, and an (optional) canonical name by which the root

directory should be accessible.

The prescriptions describe the import of a logical filesystem in terms of the import of each of the

parts, plus the existence of an appropriate symbolic link for the root directory, if there is a root

directory.

5.1.3 Services, Groups, and Assignments

To complete the specification, there are tables defining groups of machines, groups of services,

and the assignment of services to machines and groups of machines. Both groups of machines

and groups of services can contain other groups of the same type, so there is a lot of organiza

tional flexibility.

A service group is composed of other service groups, printers, individual filesystems, and logi

cal filesystems. In addition, a service group may be limited to a particular architecture. There are

also supplementary tables which describe directories, symbolic links, and file copies that must

exist when a service group is assigned to a machine.

Here is the top-level prescription describing the entire configuration, based on the tables and the

other prescriptions which are defined:

* main - describes state of entire distributed system
#
# The use of the name ‘main’ is arbitrary.
* The appropriate state is described in various tables.
* This prescription consists of assertions about the
# system in relation to the data in various tables
prescription main {} {

global ServiceAssign
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forall S ServiceAssignment $ServiceAssign {}
# Each service is assigned to the specified group of machines

AssignToGroup $S.group $S.service

* Each service is assigned to the specified individual machines
forall M Machine $S.individual {} {

AssignServices [Machine $M] $S.service

}

global MachineAssign

* Each machine has the specified individual services assigned

forall M MachineAssignment $MachineAssign {}
forall S ServiceGroup $M.services U

AssignServices [Machine $M.machinel $S

}
forall L FilesystemGroup $M.logicals U

ImportGroup [Machine $M.machinej $L

forall F Filesystem $M.filesystems {}
Guardedlmport [Machine $M.machine] $F

)

}

The configuration of most machines is derived from the groups in which the machines are

placed. The prescriptions for printer and filesystem definition have special cases for servers. The

reason for these is that a server may be part of any group, so it may end up being assigned a ser

vice which it provides. A server should not be configured to import a service from itself. The

prescriptions handle servers automatically, so special measures do not need to be taken to

exclude them from certain groups or assignments.

5.2 The Processing

In the second part of the experiment, pieces of the specification described above were tested

using production workstations and the prototype implementation.

Initially, trials were conducted with small, distinct bits of specification. For example, the dir

prescription presented earlier was activated with various combinations of values for the parame
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ters. Consider the following example, in which the prescription is used to verify the existence of

the directory /usrfbin, with standard permissions and ownership:

mytcl>activate { dir $san /usr/bin $root $staff 02755 }
True

In this example, the variable san contains an object representing a machine. The variables

root and staff hold the ids of the root user and staff group. The string “mytci>” is the

interactive prompt of the interpreter. The word True is the response of the implementation indi-

cating the truth value that was determined. With a slight change, the statement becomes False:

mytcl>activate f dir $san /usr/bin/ $root $daemon 02755 }
False

Logical false for <Directory>san.cs.ubc.ca: /usr/bin>.group
value=<2000>
op=<==>
compareVal<l>

Prescription Activation Stack:

0: Prescription “activate” : <Top level>
1: Prescription “dir” : (Machine <san.cs.ubc.ca>} /usr/bin/ 0 1 02755
Statement and {

require D Directory $path -closure $m.root (
logical $D.owner == $owner
logical $D.perms == $mode
logical $D.group == $group

}
Statement and {

logical $D.owner == $owner
logical $D.perms == $mode
logical $D.group == $group

}

In this case, the implementation produces additional information to help pinpoint the discrep

ancy between the specification and the managed system.
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Gradually, more and more extensive specifications were processed. The trials revealed various

problems and implementation bugs which were addressed along the way. Finally, two major tri

als were conducted, as described in the following two sections.

5.2.1 Setup Trial

The code for the Machine class was modified slightly to treat a test directory (Itmp/RJ) as the

root directory of a machine. The experimental directory tree was populated with just a few basic

files and directories, on one slave machine. For instance, an /etc/fstab file was created, contain

ing only comments and the definitions of local filesystems. The prescription main was then

activated for repair mode processing on a master machine distinct from the test slave. The test

was designed to simulate a situation in which a new machine is configured. The resulting log

contained 999 individual repair actions. Here are the first few records from the log:

Create new object <Directory>ice.cs.ubc.ca: /tmp/R//nfs>

Create new object <Directory>ice.cs.ubc.ca: /tmp/R//nfs/facuityl>
Set <Directory>ice.cs.ubc .ca: /tmp/R//nfs/facultyl> attribute <group> to
<0>
Create new object <FileSysRecord <facultyl,/facultyl> in /tmp/R/etc/
fstab>

Set <FileSysRecord <facultyl,/facultyl> in /tmp/R/etc/fstab> attribute
<dir> to </nfs/facultyl>
Set <FileSysRecord <facultyl,/facultyl> in /tmp/R/etc/fstab> attribute
<type> to <nfs>

Set <FileSysRecord <facultyl,/facultyl> in /tmp/R/etc/fstab> attribute
<options> to <rw>

Set <FileSysRecord <facultyl,/facultyl> in /tmp/R/etc/fstab> attribute
<options> to <rw intr>
Set <FileSysRecord <facultyl,/facultyl> in /tmp/R/etc/fstab> attribute
<options> to <rw intr bg>
Create new object <SymLink>ice.cs.ubc.ca: /tmp/R//facultyl>
Set <SyrnLink>ice.cs.ubc.ca:/tmp/R//facultyl> attribute <ref> to </nfs/
facultyl>

These particular records cover the operations required for the machine to import the faculty 1

filesystem, which is a part of the faculty filesystem group. Note that five of the operations

involve the fstab entry that is required for the filesystem. The references to paths beginning with
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“/nfs” appear because the table data and prescriptions were not updated to use /tmpIRJ as the

root directory.

Finally, the recorded operations were executed to carry out the repair. The implementation skips

operations which require privilege, but the necessary directories, links, and file copies were cre

ated. Also the fstab and printcap files were updated with the required definitions. Comments that

existed in the files prior to repair were not preserved, because the implementation does not sup

port comments.

5.2.2 Verification Trial

The prescription main was activated for repair mode processing on a master machine with two

engaged slave machines. Due to the fact that there were differences between the experimental

specification and the configuration of the machines, a number of repair actions were logged for

both machines. The logs clearly identified the ways in which the actual configurations deviated

from the specification. Execution of the operations specified in the logs would have repaired the

machines to match the experimental specification. Many of the deviations were due to the fact

that the experimental specification uses a slightly different convention for naming mount points

then is used in the original configuration description.

5.3 Evaluation

The experiment was successful. A specification was produced for a substantial, real-world sys

tem. The prototype implementation processed the specification in multiple ways. The experi

ment was certainly not exhaustive, but did test the essential features of the model that is

presented in this thesis.

The evaluation is not complete with the conclusion that the experiment was a success. A number

of more interesting observations can be made. To begin, we can compare the new approach to
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the existing technology. The configuration description that was used as a basis for the experi

ment is input to a locally developed tool called TANIS [10]. The TANIS program is a shell script

which configures a machine based upon the configuration description, which is distributed via

NIS1.The description has a simple form, and includes the complete text of entries to be placed

in fstab and printcap databases. TANIS is a good example of a simple tool developed by system

administrators to meet local needs.

The TANIS and Prescription specifications are comparable in size. The TANIS specification

consists of nearly 1200 records, with a total size of about 55K including no comments2.Over

900 records (around 47K) are devoted to describing individual pieces of configuration, as

opposed to structure and assignment. Excluding machine names, the TANIS specification

includes definitions of nearly 200 names to identify pieces of specification, and groups of ser

vices. The experimental Prescription specification contains a total of 1164 non-blank records,

with 433 of those spread across 13 tables, and 597 in definitions and prescriptions. When com

ments are removed, the grand total drops to 934 records. The tables contain around 20K of data,

and the definitions and prescriptions add around 18K including comments. The Prescription

specification includes definitions of slightly more than 200 names. Note that the size values are

dependent on the details of the syntactic forms.

The two specifications are largely equivalent, but they do not match exactly. Many specifica

tions of directory attributes that are part of the TANIS description were not explicitly duplicated.

Also, a few pieces of the TANIS description which are inconsistent or obsolete were not trans

lated.

1. Network Information System.
2. The size information given here does not include machine information or machine group information
for either specification.
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Comparative evaluations between the two systems can also be made on a number of qualitative

points. Those that tend to favour the Prescription approach are presented first, followed by those

that favour the existing TANIS form.

5.3.1 Prescription Advantages

No Repetition of Detail

A TANIS description necessarily involves substantial repetition of common details, due to the

fact that the complete text of table entries is included. For example, in the original description

there are 112 occurrences of the string “rw,bg,intr” in filesystem definitions, and 233 occur

rences of “root.wheel 755” in directory descriptions. In the Prescription model, common details

are placed in prescriptions, where they do not need to be written multiple times, so each of “rw”,

“bg”, and “intr” appear only once and the equivalent of “root.wheel 755” appears only 4 times.

Special Case Support

Special handling for servers in the Prescription case has already been mentioned. In the TANIS

description, servers must be protected from importing their own services, by explicit subtrac

tions (of which there are some 54). This places a burden on those who maintain the description,

because they must remember to adjust subtractions when they make other changes. In the Pre

scription case, the protection problem can be solved once and for all when the prescriptions are

written.

Abstraction

With TANIS, structural abstractions are mostly implicit. For example, each link required for

architecture-specific namespace adjustment must be specified explicitly, although they always

occur in standardized groups. The Prescription model supports abstractions more explicitly. For
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the case of architecture-specific links, it is possible to specify only the source location of a group

in each instance, while a prescription describes the individual links for a group in general.

Consistency Maintenance

With TANIS, all consistency constraints must be manually preserved. Due to the lack of abstrac

tion support mentioned above, common features must be duplicated for each instance of some

thing. For example, if a decision is made to name printer spool directories a certain way, based

on the printer name, an administrator must remember to do this correctly every time a printer is

added. The Prescription model, however, is designed to permit common details to be encapsu

lated in prescriptions which change infrequently. The details of instances are specified sepa

rately. In the printer example, the spool directory name is derived from the printer name in a

prescription, and printers can be added without any consideration of spool directory name at all.

Thus it is easier to maintain specifications in the first place. Also, a Prescription implementation

will inherently permit automated checking of instance data consistency, which TANIS does not.

Understandability

TANIS descriptions are difficult to understand due to a lack of internal documentation, the fact

that organization and relationships are mostly implicit and maintained by convention, and the

fact that there is minimal typing. The Prescription approach supports comments in prescriptions,

tables that meaningfully organize instance data, explicit inter-table relationships, and greater

typing. On the other hand, prescriptions define things in much more abstract terms than the

entries in a TANIS database, and the mapping from the specification to the syntax of the system

is much less transparent.

Architecture Independence

Many parts of a TANIS specification are expressed using the precise syntax of the managed sys

tem. In the Prescription model, an abstract form is used. As a result, a Prescription specification

should be more portable than a TANIS one.
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5.3.2 TANIS Advantages

Aggregation Convenience

In the Prescription specification, records and fields in tables are typed, so a service cannot be

defined to include multiple types of things without having intermediate names for each of the

pieces. TANIS has almost no concept of typing, so it is easy to define a single name which just

happens to have filesystem, printer, and directory definitions associated with it. The Prescription

form is more structured, and therefore is more inconvenient. On the other hand, the Prescription

approach does enforce consistency.

Unconstrained Flexibility

With TANIS, the form imposes no restrictions so there is always complete flexibility. With the

Prescription model, once the tables and prescriptions are established, the flexibility is strictly

limited. New situations that were not envisioned when the tables were defined may require

schema modification. For example, suppose that tables were originally designed based on a

decision that spool directories should always have the same ownership and permissions. If the

decision changed, a table structure would need to be modified, various prescriptions would need

to change, and entries for all existing printers would need to be updated. With TANIS, the deci

sion to use consistent permissions would be a convention only, and a change to accommodate a

new situation would not impact older parts of the specification.
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CHAPTER 6 Related Work

The problem of software configuration management has been studied in a variety of contexts.

This chapter presents just a few systems which are particularly related to the work in this thesis.

Almost all of the systems described here are very practical, in keeping with the focus of this the

sis.

6.1 RCMS

The Raven Configuration Management System (RCMS) [4] is a system developed at UBC as

part of an exploration of configuration management in general. RCMS supports management of

collections of objects in the Raven [5] object-oriented system. Specifications of correct configu

rations are given as assertions in the first-order predicate calculus. The predicate calculus is a

powerful, declarative formalism. Since the descriptive language is so powerful, it is hard for an

automated system to determine what actions should be taken when the specifications are vio

lated. A user of the RCMS must write short repair programs to accompany specifications. A col
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lection of managed objects is monitored by RCMS, and a repair program is executed whenever

the monitoring detects a violation of a specification.

The RCMS work was an major inspiration for this thesis. The basic notion of describing config

urations declaratively in terms of objects comes directly from RCMS. The model presented in

this thesis, however, addresses the specific problem of practical workstation configuration.

Unlike RCMS, the target environment is not a uniform object-oriented distributed system, repair

is entirely automated, and specifications are more highly structured, involving two parts.

6.2 Moira

The Moira system [6), from the Athena project at MIT, is directed at the problem of automating

maintenance of the many pieces of data which parameterize configurations of typical worksta

tions. Data about various services is maintained in a central database. The Moira software is

capable of generating the operational files required by the various services, in the correct for

mats, from the central database. The system also handles distribution of files to client machines.

Moira demonstrates that the management of data does not have to be limited by the idiosyn

cratic formats required by operating systems. The idea of structured specifications including

database tables was inspired by Moira. In Moira, however, the transfer of data from the database

into various configuration files is performed by special programs. The use of prescriptions per

mits a more general system to be developed.

Moira provides automation with abstraction and structure, but does not help with verification

and is less than transparent. It does not support much automated consistency/correctness check

ing. Without such checks, Moira may distribute erroneous data which prevents the system from

working to deliver corrections. This problem demonstrates the value of consistency checks in

specifications.
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6.3 Depot

The Depot system [7] is designed to maintain third party and locally developed software in

large, heterogeneous environments. The goal is integration of separately maintained packages

into a common directory hierarchy without increasing dependence on central servers. Configu

rations may be specified in a number of ways:

1. Listing specific collections and paths to their location.

2. Providing search paths where the first instance of each collection within a

path will be used.

3. Placing collections in a special directory

4. Using a combination of the above methods

Depot is capable of performing some consistency checking according to simple fixed rules

based on the application. Support is also provided for moving collections of software around,

which is a significant practical matter which is not addressed in this thesis. The claim is made

that simple mirroring of directory hierarchies, plus simple options, are easy for both administra

tors and developers to understand [7, p. 157].

Depot is a good example of a tool which primarily addresses the problem of replicating a config

uration on a large number of systems. Unfortunately, it is narrow in scope, with a very

limited specification language. It does not provide any assistance with verification, and does not

feature abstraction.

6.4 Hobgoblin

The hobgoblin [8] system is a file and directory auditor. The tool was created to automatically

check conformance of systems to abstract models. The abstract model is expressed by listing

files and directories and their properties. Operators are provided to state that a particular file or
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directory must exist, may exist, or must not exist. In addition to existence, the language permits

specification of properties of files through “attribute checkers”. The attributes which may be

specified are mode, owner, group, size, symlink reference, and dates. The list may be expanded

through addition of external checkers. There is explicit support for describing contents of direc

tories exclusively, and nesting is supported in descriptions. Finally, there is a “delta” language,

for expressing a specification as a variation of another specification. An interpreter is capable of

checking systems for conformance with hobgoblin specifications.

The hobgoblin system demonstrates a practical use of declarative descriptions for verification.

Unfortunately, hobgoblin has two limitations which prevent its use for more general administra

tion. First, the specification language only handles things of one kind (files). Second, the tool is

designed only for checking conformance to specification. It cannot be used to set up a system.

The designers have clearly considered removing the second limitation, as they mention a notion

of “enforcers” which would modify files to achieve conformance to specification.

The Prescription language is similar in descriptive power to the language used by hobgoblin, but

is more general, and permits automated repair as well as verification.

6.5 Doit

The doit solution [9] is a network software management tool designed to automate the manage

ment of software configurations on large numbers of machines. Unlike hobgoblin, doit is

intended to set up machines, not check them for correctness. The specification language is pro

cedural. Three types of actions may be performed: addition of software, deletion of software,

and execution of arbitrary commands. There are variants of each type of action which cause

rebooting of a host after some number of steps are performed. The system uses revision levels to

keep track of what has been done on a particular machine. Each action has an associated revi
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sion level. There are also special levels for actions that should be performed at the start or end of

each run. Configurations for doit are assigned to groups of machines. The groups are declara

tively specified using set logic.

The problem with a procedural form of specification is that it generally precludes any checking.

Records of the state of each machine become very important in this case, and troubleshooting

may be difficult. The model presented in this thesis relies on declarative specifications to sim

plify checking. Doit lacks the verification, abstraction and synchronism features of the model,

but does have better facilities for record-keeping and software installation.

6.6 TANIS

The locally developed system called TANIS (Tagged Attribute Network Information Service)

[101 was described in Chapter 5. TANIS is a lot like doit. A “service definition” can consist of a

few forms of specification: description of a directory to be created, description of a

symbolic link to be created, entry for a filesystem table, entry for a printer table, description of a

file that should be copied, etc. Note that most of these are declarative, although no TANIS soft

ware is presently capable of checking conformance. Variables may be incorporated in specifica

tions to achieve machine-independence.

TANIS provides flexible automation, but is limited in scope, and lacks any abstraction. It also

lacks the structure for avoiding repetition, and does not provide any synchronism. A more com

plete comparison of the TANIS and Prescription specification forms is provided in Section 5.3.
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CHAPTER 7 Conclusions

This thesis has explored a general approach to automating some aspects of configuration man

agement, in typical distributed computing environments. The thesis has demonstrated that a gen

eral framework is suitable as the basis for automating tasks of practical importance.

Declarative description is an ideal form of input for automated management tools. Descriptions

are the natural way to express configuration information. They are well suited to the tasks of

verification, monitoring, and analysis. At the same time, the use of descriptions does not neces

sarily preclude efficient automated repair, as has been demonstrated.

7.1 Review of Contributions

The thesis presented a model for automating practical configuration management, a novel lan

guage for describing configurations, a prototype implementation, and a significant experiment

that validates the work. Each of these specific contributions is reviewed here.
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7.1.1 A Model of Configuration Management

A general model was proposed, based upon features of the problem. The model is practical, but

is also abstract and flexible through the use of objects to model components. Its primary charac

teristic is reliance on declarative forms of specification for both verification and repair purposes.

It features a structured specification model, in which common, structural pieces of description

are written in a logic language, and varying details are expressed separately in a database.

7.1.2 The Prescription Language

The Prescription language was introduced as the vehicle for structural specification in the new

model. The language provides a reasonably simple declarative formalism, carefully designed to

balance the competing requirements of verification and repair. It offers modularity and other

features of traditional imperative programming languages.

7.1.3 A Prototype Implementation

The implementation proved that the Prescription language can be implemented. Production of

the implementation produced a number of insights into the challenges of automated configura

tion management using an object abstraction.

7.1.4 An Experiment

The experiment demonstrated the successful application of the model and language to some of

the practical problems of configuring a real computing environment. The configuration of a

large group of machines was described using a simple database and a set of prescriptions. The

prototype implementation successfully performed automated verification and repair based on

the resulting specification.
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7.2 Future Work

The work in this thesis is really just a preliminary step towards the goal of general automation of

configuration management. Ultimately, distributed systems should be built with intrinsic man

agement facilities. Much more work needs to be done in order to completely identify the set of

facilities which will be required. There a number of obvious avenues that could be pursued

based upon the work in this thesis.

7.2.1 Addressing Open Problems

A number of the issues and problems introduced in Section 4.7 deserve further research. The

proposed scheme for dealing with dependencies on implicit side-effects has not been imple

mented or tested, and the whole issue of implicit side-effects requires further study. The han

dling of atomicity and machine boundaries certainly needs work. A production implementation,

based on compiler technology and featuring static analysis of specifications, would be useful.

7.2.2 Stretching the Model

The model needs to be stretched through application to different sorts of problems. One problem

of particular interest is the software installation/de-installation problem. It should be possible to

write prescriptions describing a configuration of a managed system in which a piece of software

is properly installed. Such a set of prescriptions would ideally encapsulate all the installation

information that is required, so that installation can be done (at least partially) by automated

repair. It is likely that the model of this thesis is not adequate, as it stands, for solving the instal

lation problem.

It would also be interesting to use declarative specifications to describe user environments,

involving such things as the contents of environment variables.
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The absence of a larger context for prescriptions was mentioned in Section 4.7.6 and deserves

elaboration. Some structure is needed for groups of related prescriptions. Such a structure could

incorporate means of identifying which prescriptions should be used in different situations. For

instance, in a set of prescriptions describing a software package, there might be one describing

what the package requires from the operating system, one describing the properly installed state,

one describing the properly de-installed state, one describing the conect operational state at any

time during use, and one describing the user environment required for the package. Other pre

scriptions might be for internal use of those described above. All would rely upon a common

collection of site-specific data.

7.2.3 Improving Repair

Various approaches could be taken to increase the power and utility of automated repair. For

instance, it might be useful to permit repair hints in specifications. Hints could be used to indi

cate which of a set of possible repair strategies is the appropriate one in a given situation. The

Prescription language supports implicit hints: the choice of statement includes an implicit hint

about the repair strategy to be used. Subclassing is one way of providing different repair algo

rithms for different situations.

Another possible way to extend automated repair would be to add a more powerful solver. This

idea was discussed in Section 3.8.3. Use of a search-oriented solution engine would introduce

considerable complexity and reduce efficiency, but it might be possible to limit the negative

impact.

For some situations, fully automated repair is simply not feasible. Thus it may be helpful to per

mit repair scripts to be composed to complement declarative specifications. Adding procedural
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repair would be a significant adjustment to the model. Care is needed to avoid undermining the

value of declarative specifications.

7.2.4 Adding DynamiclTemporal Support

The Prescription language has no support for temporal assertions. This is one limitation which

might cause problems for more dynamic configuration management situations. Automated

repair in dynamic situations with temporal specifications is likely to be quite problematic.

7.2.5 Adding Consistency Checking

It is possible to specify a variety of consistency constraints using the Prescription language, and

to have them checked by the prototype implementation. For instance, it is possible to express

constraints on the data in tables, and have the implementation identify cases where the con

straints are violated.

The thesis does not address the problem of automatic detection of inconsistencies between parts

of a complete specification. For instance, it is possible to write a prescription that simulta

neously requires a file to have two different permission settings. Such a prescription is unlikely

to occur in practice, but there are more subtle variations of the same problem. Prescriptions from

different sources might be combined to describe a system, and there might be conflicts between

them. A good example of this would be the case of prescriptions describing installation of two

different software packages. A configuration management system needs to be capable of detect

ing such conflicts automatically.

7.2.6 Improving Support for Change

The model that was presented does not adequately address the difficulties associated with varia

tions in configuration over time. This limitation was explained in Section 4.7.7 in some detail.
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As noted there, the problem of dealing with change appears to be a problem that will be very

significant for automated configuration management. At a minimum, a configuration manage

ment system needs capabilities for recording what is done, and undoing it. Ideally, a system

should be able to automatically determine what operations need to be performed to move from

one configuration state to another, including cleanup operations.

7.2.7 Adding Security

The model that has been presented does not address security, authentication, or authorization. In

practice, basic security is an important issue. A more significant research problem is the fact that

in many real-world environments, the authority to determine the configuration of a machine may

be shared by different people or groups. Some may have the right to control only certain aspects

of system configuration.



115

Glossary

activated - The state of a prescription which is being processed by a configuration man
agement system.

class - The definitional unit corresponding to a type of component. Every object is an
instance of some class.

collection - A component (or an object which models one) which collects other compo
nents. For example, a directory is a collection because it collects files. The con
tents of collections in a managed system are an important part of the configuration
state of the managed system.

component - Any distinguishable piece of a managed system, whether hardware or
software.

data object - An collection of data with associated operations. This term has the mean
ing normally associated with the term object, in object-oriented programming.

deferred execution - The implementation scheme in which repair processing is split into
two phases, separated in time. In the first phase, the sequence of operations to be
performed is determined and recorded. In the second phase, the sequence is actu
ally executed. In between the phases, the record (or do-log) may be reviewed and!
or modified.

dependent attribute - An attribute, of an object, whose value is dependent on the values
of other attributes, and cannot therefore be modified without impacting the values
of other attributes.

descriptive adequacy - The property of a specification formalism that holds if the for
malism is able to be used to describe any configuration state which the managed
system may attain.

do-log - A record of operations yet to be performed.

exclusivity - The property of a specification that holds if the specification describes the
configuration of a component completely, whether implicitly or explicitly.

global identifier - A value which uniquely identifies a component of a managed system
(and also the object that represents it).
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immutable attribute - An attribute, of an object, whose value is not modifiable during
repair processing due to some property of the object andlor modelled component.

inclusivity - The property of a specification that holds if the specification describes the
configuration of a component incompletely, so that multiple configurations may
conform to the specification.

instance data - Data about a particular instance of something, such as a name. Also used
to refer to the data stored for an object and accessible to the object implementation.

logical filesystem - An abstraction providing the appearance of a single, unified filesys
tern through multiple actual filesystems and symbolic links.

managed system - A collection of items, composing a system, managed by an automated
tool or collection of tools. A managed system can include both hardware and soft
ware items.

master machine - The central machine that is designated to process prescriptions.

narrowed - The condition of a statement which is to be processed in verify mode, regard
less of the prevailing mode. The term is also applied to prescriptions which are
defined such that every activation will be narrowed.

narrowing - The processing step of restricting the mode to verify mode in the course of
processing a narrowed statement.

object - An abstraction representing a component of a managed system. An object has
attributes whose values represent different aspects of the configuration state of the
represented component.

Object layer - The set of procedures that implement the centralized record-keeping
which supports deferred execution.

object recognition - The process of determining whether or not an object already exists
to represent some component.

prescription - a named, parameterized piece of specification in the Prescription language.
A prescription is the unit of definition in the language, and is similar to a predicate
or procedure.

repair - The process of modifying a managed system so that it has a specified configura
tion. Repair includes identification of discrepancies between the system and the
specification, determination of a sequence of operations that can be performed to
eliminate the discrepancies, and the execution of that sequence of operations.

repairable - The property of a Prescription statement that holds if the statement is suit
able for automated repair.
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repair mode - A Prescription processing mode in which the configuration management
system will proceed with repair as discrepancies between a specification and a
managed system are identified.

slave machine - Any machine, other than the master, which is part of a managed system
and must be accessed during prescription processing.

truth value - A boolean value which represents the conformance of a managed system to
the specification given by a Prescription statement, at a particular point in time.

undo-log - A record of operations which have been performed but which may need to be
reversed.

verification - The process of comparing a configuration specification against a managed
system to determine whether the managed system has the specified configuration.

verify mode - A Prescription processing mode in which no repair is attempted.
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Appendix A

Specification Details

Most of the prescriptions produced for the specification experiment were not included in Chap

ter 5 in the interest of brevity. The definitions and prescriptions are included in their entirety

here. The following trivial modifications have been made from the version used in the experi

ment:

1. Comments have been modified slightly.

2. Statements designed to produce output during processing have been

removed.

3. Spacing has been modified slightly.

Apart from these differences, the code presented here is identical to that which was actually pro

cessed by the prototype implementation.

Note that the ArchDirs prescription was never processed (the activation in ImportSup

plemental is commented out). This is because of the problem that the prescription depends

on implicit side effects, as described in Section 4.7.5.

The contents of the various tables are an important part of the total specification. Those contents

are not included in this thesis because they would not be helpful to anyone unfamiliar with the

department configuration, and they would consume a lot of space. A few entries from one table

are included in this appendix, to illustrate the relationship between the table definitions and the

contents of the files.
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Al Experimental Specification Definitions

# Initial Setup: load class definitions, etc.
#

import file.tcl
import fstab.tcl
import printcap. tcl

# Define the machines
#
set Machines [table MachineDesc machine.table I ( \

(name String} \
(aliases List String) \
{arch String) \
(subnet Integer) \

} (name) {)]
set All [machine $Machines]

# Define tables
4
set MGroups [table MachineGroup mgroup.table I { \

(name String) \
{subgroups List MachineGroup) \
(members List Machine) \

(name) ()

set ServiceAssign [table ServiceAssignment assign.table I ( \
(service ServiceGroup) \
(group MachineGroup) \
{individual List Machine) \

) (} ()

set SGroups [table ServiceGroup sgroup.table I ( \
(name String) \
(subgroups List ServiceGroup} \
(arch String) \
(printers List Printer) \
{filesystems List Filesystem) \
{logicals List FilesystemGroup} \

) (name) ((ServiceLink (name service)) \
(ServiceFileCopy (name service)) (ServiceDir (name service)))

set Exclusions [table MachineExciude exclude.table I { \
(machine Machine) \
{noimport List Filesystem) \
{noimportgroup List FilesystemGroup} \
(reject List ServiceGroup) \

) (machine) () I
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set MachineAssign [table MachineAssignrnent massign.table I ( \
(machine Machine) \
(services List ServiceGroup) \
(filesystems List Filesystem) \
(logicals List FilesystemGroup) \

} (machine) () I

set Alternates [table ServerAlternate server-alt.table I ( \
(server Machine) \
(subnet Integer) \
(alternate String} \

(server subnet) {} I

set FGroups [table FilesystemGroup fgroup.table ( \
( name String) \
(parts List Filesystem} \
(root Filesystem} \
(rootName String} \
{rootCname String) \

} (name} (} I

set FS [table Filesystem fs.table ( \
(name String) \
(server Machine) \
(fs String) \
(soft Boolean} \
{quota Boolean} \
{cname String) \
(mountPoint String) \
{canonicalize Boolean) \

{name} {{FilesystemLink (name fs}} (FilesystemArch (name fs)))

set FSLinks [table FilesystemLink flink.table I { \
{fs Filesystem) \
(source String) \
(link String) \

} {} {) I

set FSArch [table FilesysternArch arch.table ( \
(fs Filesystem} \
(source String) \
(link String) \
{subdirs Boolean} \

) {) (}

set Printers [table Printer printer.table I ( \
(name String} \
(server Machine) \
(aliases List String} \
{type String) \
(note String) \
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{maxSize Integer) \
} (name) U I

set SLinks [table ServiceLink slink.table I ( \
(service ServiceGroup) \
(source String) \
(link String) \

) {} (I I

set FileCopies [table ServiceFileCopy copy.table I { \
(service ServiceGroup} \
(name String) \
(source String) \
(dest String) \

) (} () I

set Dirs [table ServiceDir dir.table { \
(service ServiceGroup} \
(dir String) \

) (} (} I

# Global constants

set root 0
set daemon 1
set wheel 0

#
# Prescriptions

#
# main - describes state of entire distributed system

* The use of the name ‘main’ is arbitrary.
# The appropriate state is described in various tables.
# This prescription consists of assertions about the
* system in relation to the data in various tables

prescription main () (
global ServiceAssign
forall S ServiceAssigrunent $ServiceAssign {}

# Each service is assigned to the specified group of machines
AssignToGroup $S.group $S.service

# Each service is assigned to the specified individual
machines

forall M Machine $S.individual {) (
AssignServices [Machine $M] $S.service

}
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global MachineAssign
# Each machine has the specified individual services assigned
forall M MachineAssignment $MachineAssign {}

forall S ServiceGroup $M.services {}
AssignServices [Machine $M.machine] $S

}
forall L FilesystemGroup $M.logicals {} f

ImportGroup [Machine $M.machine] $L

forall F Filesystem $M.filesystems {}
Guardedlmport [Machine $M.machine] $F

}
}

I

# AssignToGroup - Describes the assignment of
# a group of services to a group of machines
#
* Parameters:
* mg : MachineGroup (from table)
* sg : SérviceGroup (from table)

prescription AssignToGroup {mg sg} {

# The group of services is assigned to machines in
* subgroups of the group of machines
forall M MachineGroup $mg.subgroups {} t

AssignToGroup $M $sg

I

# The service group is assigned to individual machines
forall I Machine $mg.members {} {

Assignlndividual [Machine $1] $sg

}

#
* Assignlndividual - Describes the assignment of a
# group of services to an individual machine
#
# Parameters:
* m : Machine - the machine to which assignment is made
# sg : ServiceGroup - entry in table

# This prescription accomodates two special cases:
* 1) A group of services may be defined for machines of a particular
* architecture only. If this is the case, the ‘arch’ attribute
* will contain the name of the architecture. Otherwise, the
* attribute will be empty, and the services are to be applied
# to all machines.
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# 2) A group of services may not be desired on a particular machine
# even though the machine might normally qualify for the services.
# This exceptional case is described by an entry for the machine
# in the Exclusions table, with the ServiceGroup listed in the
# ‘reject’ attribute.

prescription Assignlndividual {m sg} {

# When ServiceGroup is architecture specific, it only
# applies to machines of the correct type

if { [string length [val $sg.archj I == 0
[strEQ $sg.arch $m.arch] } {

global Exclusions
if { [in -key $m.name $Exclusions] } {

forall E MachineExciude $Exclusions \
f[strEQ $E.machine.name $m.name) && [in $sg $E.reject]}

AssignServices $m $sg

I
} else {

AssignServices $m $sg

I

}

# AssignServices - describes the assignment of the services
4t that are part of a service group, to a particular machine
#
# Parameters:
# m : Machine
# sg : ServiceGroup (from table)
#
# Individual services which compose a service group are listed in
# attributes of the ServiceGroup, by type. For instance, there is
# an attribute ‘printers’ whose value is the list of printer services
# that are part of the group. The group is actually defined in a
table,
# where the value of an attribute like ‘printers’ is a list of keys
of
# records describing printer services.

# For some service group requirements, the approach described above
# does not work well, because the requirement is not a separated
service
# which could be independently assigned. For these cases, separate
# tables describe the requirement, by service group name.

prescription AssignServices {m sg} {
# Subgroups of the ServiceGroup must be assigned
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forall G ServiceGroup $sg.subgroups {}
Assignlndividual $m $G

# Printers

forall P Printer $sg.printers {} {
PrinterDef $m $P

* Filesystems

forall F Filesystem $sg.filesystems {} {
Guardedlmport $m $F

* Logical Filesystems
forall F FilesystemGroup $sg.logicals {}

ImportGroup $m $F

# Symbolic Links associated with the service group must exist

global SLinks
forall L ServiceLink $SLinks { [objEQ $L.service $sg] }
SymLink $m $L.source $L.link

}

# Arbitrary directories associated with the service group must

exist

global Dirs
forall D ServiceDir $Dirs { [objEQ $D.service $sgj } f

dir $m $D.dir

* File copies required for the service group must exist

global FileCopies
forall F ServiceFileCopy $FileCopies { [objEQ $F.service $sg] }

FileCopy $m $F.name $F.source $F.dest

}
}

* FileCopy - describes a file that is required to exist
* on a machine, and to have the same contents as a file

* of the same name in another directory on the machine.

* Parameters:

* m : Machine - machine on which file must exist

* name : name of file

* source : name of dir in which source file exists
# dest : name of dir in which copy is required to exist

prescription FileCopy {m name source dest) {
* Clearly the source file must exist
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narrow { require S File $source/$name -closure $m.root U }

# The directory for the copy must exist
global root daemon
dir $m $dest $root $daemon 0755

# The copy file itself must exist
require S File $source/$name -closure $m.root {

require D File $dest/$name -closure $m.root
logical $D.contents eq $S.contents
logical $D.perms $S.perms
logical $D.owner == $S.owner
logical $D.group == $S.group

}
}

}

# SymLink - describes a symbolic link that must exist

# Parameters:
# m : Machine on which link must exist
# source : name to which link points
# dest : name of link

prescription SymLink {m source dest} {
require L SymLink $dest -closure $m.root {

logical $L.ref s= $source

}
}

# dir - describes a directory that must exist
#
# Parameters:
# m : Machine on which dir must exist
# path : String pathname of directory
# owner : Integer owner uid
* group : Integer group gid
* mode : Integer permission mode
prescription dir {m path owner group mode} {

require D Directory $path -closure $m.root {
logical $D.owner == $owner
logical $D.perms == $mode
logical $D.group == $group

}
}

# PrinterDef - describes a remote printer definition that
* must be present on a machine

* Parameters:
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# m : Machine
* pd : Printer (from table)
*

prescription PrinterDef {m pd} {
global All
narrow { or {

require M Machine [val $pd.server.name] $All {}
require M MachineProxy [val $pd.server.name] $All U
}

if { [strEQ $pd.server.name $m.name]
# Printer should be locally defined on its server

} else {
* A PrinterEntry must exist
require P PrinterRecord [val $pd.name] $m.printcap {

logical $P.name 5= $pd.name
logical $P.aliases 5= $pd.aliases
logical $P.lp s=
logical $P.rm s= $pd.server
logical $P.rp s= $pd.name
if { [strEQ $pd.maxSize “1 } t

logical $P.mx == 0

} else {
logical $P.mx == $pd.maxSize

}
logical $P.sd s= /usr/spool/print/[val $pd.name]
logical $P.ty s= $pd.type
logical $P.note 5= $pd.note

# The specified spool directory must exist
global root daernon
dir $m $P.sd $daemon $daemon 02755

}
}

4
4 ImportGroup - describes the importing of a group of
# filesystems by an individual machine

# Parameters:
# m : Machine
# fg : FilesystemGroup (from table)
#

prescription ImportGroup {m fg} {
* Each part must be imported individually, if not explicitly
# excepted for this machine
global Exclusions
if { [in -key $m.narne $Exclusions] } {
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forall E MachineExciude $Exclusions {[objEQ $E.machine $m]}
if { [in $fg $E.noimportgroup]

SafelmportGroup $m $fg
}

}
} else {

SafelmportGroup $m $fg
}

}

#
# SafelmportGroup - describes the importing of a group
# of filesystems by an individual machine from which
# they are not excluded.
#
# Parameters:
# m : Machine
# fg : FilesystemGroup (from table)

prescription SafelmportGroup {m fg} {

# Every filesystem in the group must be imported
forall F Filesystem $fg.parts {}

Guardedlmport $m $F

}

# Master root dir must exist if specified
if { ! [isNIL $fg.root] }

if { [strEQ $fg.root.server.name $m.name]}
# This machine is server for the filesystem containing root
# dir
if { [val $fg.root.canonicalize] }

* Server name space should be adjusted
SymLink $m [val $fg.root.fs]/[val $fg.rootName] \

$ fg. rootCname

}
} else {

# This machine is a regular client
if { [strNE $fg.root.mountPoint “1 } {

SymLink $m [val $fg.root.mountPoint]/[val $fg.rootName] \
$ fg. rootCname

} else {
SymLink $m /nfs/[val $fg.root.name]/[val $fg.rootName] \

$ fg. rootCname

}
}

}
}

#
# Guardedlmport - describes import of a single filesystem



129

# on a single machine if not excluded.
#
# Parameters:
# m : Machine
# f : Filesystem (from table)

prescription Guardedlmport {m f} {
global Exclusions
if { [in -key $m.name $Exclusions] } {

forall E MachineExclude $Exclusions f [objEQ $E.machine $m]

{
if { ! [in $f $E.noimport]

ImportSingle $m $f

}
}

} else f
ImportSingle $m $f

}

# ImportSirigle - describes import of a single filesystem
* on a single machine.

# Parameters:
# m : Machine
# f : Filesystem (from table)
#

prescription ImportSingle {m f} {
if { [strEQ $f.server.name $m.name] } {

# Importing is not done on server, but namespace adjustment
* may be
if f [val $f.canonicalize]

ImportSupplemental $m $f $f.fs 1

}
} else

if f [strNE $f.mountPoint ‘“‘1 } {
NFSlmport $m $f.tserver $f.fs $f.mountPoint $f.soft

$f . quota
ImportSupplemental $m $f $f.mountPoint 0

} else {
# Mounts below /nfs
NFSlmport $m $f.@server $f.fs /nfs/[val $f.name] $f.soft \\

$f . quota
ImportSupplemental $m $f /nfs/[val $f.name] 0

}

}

#
# ImportSupplemental - describes the state associated
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# with import of a filesystem

# Parameters:
# m : Machine
# f : Filesystem (from table)
# mount : String name of mount point for filesystem
# server : Integer - 1 if m is server, 0 otherwise
#
# The supplemental state involves various symbolic links.

prescription ImportSupplemental {m f mount server} {
# Symlink for name space required
# if cname is “, this link is not required
if { [strNE $f.cnarne “1 && \

$server II [strNE $f.cname $f.fs] )
SymLink $m $mount $f.cname

)

# Other symbolic links
global FSLinks
forall L FilesystemLink $FSLinks { [objEQ $L.fs $fj

SymLink $m $mount/[val $L.source] $L.link

}

# Architecture specific setup: the generic, bin, lib dirs
global FSArch
forall L FilesystemArch $FSArch { [objEQ $L.fs $f I } {

# ArchDirs $m $mount $L

}
}

#
# NFSlmport - describes import of a filesystem via NFS
#
# Parameters:

m : Machine
# server : Machine that is server server
# fs : String name of filesystem on server
# mountPoint : String name of mount point
# soft : Integer - 1 if soft mount required
# quota : Integer - 1 if quotas must be enabled
#

prescription NFSlmport {m serverName fs mountPoint soft quota}
global All
narrow { logical {} {} [in -key $serverName $All] }

# Mount point directory required
global root wheel
dir $m $mountPoint $root $wheel 0755

# Handle possibility of alternate servers for particular subnets
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global Alternates
if { [in -key [list [val $serverName] [val $m.subnetl] \

$Alternates] }
require A ServerAlternate \

[list [val $serverName) [val $m.subnet]] $Alternates {
fs $m $A.alternate $fs $mountPoint $soft $quota

}
} else {

fs $m [val $serverName] $fs $mountPoint $soft $quota

}

# fs - describes a filesystem that must be defined on
# a machine
#
# Parameters:
# m : Machine
# server : String name of server
# fs : String name of filesystem on server
# mountPoint : String mount point
# soft : Integer - 1 if soft mount required
# quota : Integer - 1 if quotas must be enabled
#

prescription fs {m server fs mountPoint soft quota} {
narrow t logical {} [in $server $m.aliases] }

require F FileSysRecord [list $server $fsj $m.f stab {
# Same regardless of hard or soft mount:
logical $F.dir s= $mountPoint
logical $F.type s= nfs
logical $F.options contains rw
logical $F.options contains intr

# Vary by mount type:
if { $soft

logical $F.options contains retry=2
logical $F.options contains timeo=20

} else t
logical $F.options contains bg

I

if {! $quota}
logical $F.options contains noquota

# ArchDirs - Describe symlinks that must exist for architecture
# specific directories.
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#
# Parameters:
# m : Machine
# root : String root of architecture specific dirs
# a : FilesystemArch (from table)

prescription ArchDirs {m root a} {
set path $root/[val $a.source]
forall D Directory -closure $m.root \

[globEQ “$path” $D.fullPath]
if f [in -key $m.arch $D.contents] } {

# Architecture specific dirs are here: links are
appropriate

if { [val $a.subdirs] } {
# Link specific subdirs below the arch-specific dir
global root daemon
dir $m $a.link $root $daemon 0755
SymLink $m [val $D.fullPath]/[val $m.archj/bin \

[val $a.link]/bin
SymLink $m [val $D.fullPath]/[val $m.arch]/lib \

[val $a.link]/lib

set path [val $m.arch]
forall D2 Directory $D { [globEQ “$path” $D2.fullPathj }

if [in —key obj $D2] } {
SymLink $m [val $D.fullPath]/[val $m.arch]/obj \

[val $a.link]/obj

}

if { [in -key share $D] } t
SymLink $m [val $D.fullPath]/share [val $a.link/share]

} else {
SymLink $m [val $D.fullPath)/generic \

[val $a. link] /generic

}
} else {

# Link the arch-specific dir itself
SymLink $m $D.fullPath $a.link

}

}
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A..2 Sample Table Entries

Here are a few sample entries from the Printer table, as they appear in the file

printer, table:

hp3061hp3061{HP 4si (in CC306)} *c_hp4sj,CC3061Hp 4silRoom CC3061
1w1O61wl06gariba1di laserwriter fNEC Silentwriter (in CC106) 1} \
*c_nec,CC1O6INEC SilentWriterlRoom 1061
cicsrlwllwcicsrllp lwc default {Silentwriter (in CC289)} \
*c_nec,cc2891 1110000
lw238llw238lclinker clink *c_nec,CC2381NEC SilentWriterlDraft Room\
3121

In this case, backslash characters are inserted to indicate where a single line of the file has

been broken for presentation. The backslashes do not actually appear in the file.




