
Agile Decision Agent for Service-Oriented E-Commerce Systems

Jiyong Zhang
HCI Group,

Ecole Polytechnique F́ed́erale
de Lausanne (EPFL),
CH-1015, Switzerland

Email: jiyong.zhang@epfl.ch

Pearl Pu
HCI Group,

Ecole Polytechnique F́ed́erale
de Lausanne (EPFL),
CH-1015, Switzerland

Email: pearl.pu@epfl.ch

Boi Faltings
AI Laboratory,

Ecole Polytechnique F́ed́erale
de Lausanne (EPFL),
CH-1015, Switzerland

Email: boi.faltings@epfl.ch

Abstract

In a service-oriented e-commerce environment, it is a
crucial task to help consumers choose desired products effi-
ciently from a huge amount of dynamically configured prod-
uct candidates. Decision agents can be designed to pro-
vide interactive decision aids for end-users by eliciting their
preferences and then recommending matching products. In
reality the users’ preferences may keep changing along with
the dynamic decision environment and may not be fully sat-
isfied. As a result, the decision agent is required to beagile:
it should allow decision making with an incomplete user’s
preference model and should afford users to add, retract
or revise their various preferences with little effort. In this
paper we propose the general design of an agile decision
agent to meet this need. We model users’ preferences with
the soft constraint technique and elicit them by the example
critiquing interaction paradigm.

1 Introduction

A service-oriented e-commerce system could provide a
huge amount of product information by dynamically inte-
grating various external web services together to meet the
consumers’ diverse requirements. For instance, by utiliz-
ing Amazon e-commerce web services1, an online website
can be implemented to allow consumers to access informa-
tion on millions of products provided by Amazon Company.
Thanks to the new merging technology of XML and web
services, a user is now able to access the structured prod-
uct data such as travel plan offers from multiple sources of
web services or their combinations. The product informa-
tion might also be changed dynamically while the user is
making choices. As a result, the user is facing a much more
complicated decision problem than in the static situation.

1see http://www.amazon.com/webservices.

Studies from economics and psychology have shown that
the individuals only havebounded rationalitywhen making
decisions due to their limited knowledge and computational
capacities[20], it is quite unpractical for buyers to evalu-
ate all available products one by one in depth while mak-
ing purchase decisions if no decision aid tool is provided.
Therefore, a crucial task for service-oriented e-commerce
systems, where the products are potentially changing within
the decision processes, is to provide effective product search
and decision aid tools to help buyers choose the preferred
products with a reasonable amount of effort and time. For-
tunately, web services make product data available in struc-
tured form that can be searched by machine.

It has been found that decision agents can help end-users
effectively make shopping decisions in online shopping en-
vironments [7][19]. Currently many existing e-commerce
applicationselicit users’ preferences by asking a series of
fixed questions and then return a set of possible choices
based on the answers. For example, a popular travel plan-
ning website, Travelocity2, asks each user several questions
about the itinerary and airline preferences, and then shows
a list of possible solutions to the user. Such elicitation
processes implicitly assume that users have a pre-existing
and stable set of preferences.

However, this assumption has been challenged by the
studies of actual decision makers’ behavior from behav-
ioral decision theory[13][4] and these studies have pointed
out the adaptive and constructive nature of human decision
making. Specifically, a rigid preference elicitation proce-
dure can cause severe problems in the following situations:

• Users are not aware of all preferences until they see
them violated. For example, a user does not think of
stating a preference for intermediate airports until a so-
lution includes a change of flight in a place that he or
she dislikes.

2see http://www.travelocity.com/.

• Elicitation questions that do not concern the user’s true
objective can force him or her to formulatemeans ob-
jectivescorresponding to the question. This phenom-
enon has been studied by Keeney[9] in his work on
value-focused thinking.

• Preferences are often in contradiction and require the
user to make tradeoffs. Users may add, remove or
change their preferences in an arbitrary order. Again,
this is not supported by a tool with a rigid preference
elicitation procedure.

• In the service-oriented environment, where the product
data are provided from external web services and may
be changed unexpectedly during the decision process,
a strictly system-driven elicitation procedure may lead
a user to express some useless preferences while ne-
glecting some truly useful preferences. For example, a
travel planning system with such rigid manner may ask
a user to select an intermediate airport due to the fact
that no direct flight is available. Later on if the sys-
tem has a new non-stop flight which satisfies the user’s
true preferences better, this new choice may never be
found.

To support these properties of human decision making
and the dynamic nature of service-oriented e-commerce
systems, the decision agent is required to beagile. It should
support incremental construction, revision and tradeoffs of
the user’s preferences. More precisely, we define agility as
the ability to satisfy the following two requirements: 1)al-
low decision making with an incomplete preference model
that only captures those preferences that have actually been
expressed by the user; 2)allow users to add, retract and re-
vise preferences in any order during the decision process.

In this paper, we propose the general approach of de-
signing an agile decision agent to meet the requirements
of service-oriented e-commerce systems. The agility of
the proposed decision agent lies in the following two as-
pects. First, the interaction manner between the agent and
the user is based on the example-critiquing interaction par-
adigm which supports incremental preference construction
and tradeoff. Second, we model user’s preferences with the
soft constraint technique which allows users to add/modify
preferences in any order they desire. To the best of our
knowledge, our work is the first one to address the agility
issue of e-commerce systems.

This paper is organized as follows: in Section 2 we in-
troduce the related work. Section 3 describes the structure
of the service-oriented e-commerce system with the agile
decision agent. The method of constructing an agile pref-
erence model with the soft constraint technique is studied
in the following section. Discussions and conclusions are
given in Section 5 and 6, respectively.

2 Related Work

2.1 Service-Oriented E-Commerce Sys-
tems

Web Services (WS) are encapsulated, platform- and
network-independent operations that are accessible to other
applications or end-users. Web services have an interface
described in a machine-processable format by the web ser-
vices description language (WSDL)[5]. This description al-
lows an application to dynamically determine a web ser-
vice’s operations, parameters, and return values. More im-
portantly, web services provide data in structural form such
as XML and thus provide an ideal approach for develop-
ing e-commerce systems combining various data sources to
satisfy various users’ diverse and complex shopping needs.
However, many researchers currently mainly focus on the
development of the service-oriented infrastructure such as
service discovery and composition while the issue of allevi-
ating the users’ burden of finding the most satisfying prod-
uct from a large product depository is largely neglected. As
we mentioned earlier, an agile decision agent is indispens-
able in such systems to help users find the desired products.

2.2 Methods of Preferences Elicitation
and Representation

One potential method of modeling user’s preferences is
based on multi-attribute utility theory (MAUT)[10]. MAUT
is a powerful and widely used approach for solving de-
cision problems in many domains including e-commerce
applications. For example, Stolze [21] proposed the scor-
ing tree method for building interactive e-commerce sys-
tem based on multi-attribute utility theory (MAUT). How-
ever, The MAUT approach generally requires a specific as-
sumption to limit the complexity of the utility function and
such assumption is often violated in many real applications.
Also, the preference elicitation process of the MAUT ap-
proach requires users to correctly respond to the elicitation
questions and to be consistent with the earlier tradeoffs they
made. The same problem exists with tools that ask people to
compare outcomes and then infer utility functions for these
comparisons.

Boutilier et al. proposed a graphical representation of
preferences, called CP-nets, that reflects conditional depen-
dence and independence of preference statements under a
ceteris paribus (all else being equal) interpretation[2]. CP-
nets have the advantage of being able to efficiently represent
the decision maker’s preferences by the conditional prefer-
ence statements which are rather natural to capture. How-
ever, being a qualitative method, the CP-net approach is un-
able to represent the quantitative information of users’ pref-
erences.

The framework of constraint satisfaction problems
(CSPs) has been widely studied in AI research area for
many years to solve different real-life problems rang-
ing from map coloring, vision, robotics, VLSI design,
etc[12][22]. Besides hard constraints that can never be vi-
olated, a CSP may also include soft constraints. These are
functions that map any potential value assignment to a vari-
able or combination of variables into a numerical value that
indicates the preference that this value or value combination
carries. CSPs with soft constraints provide a natural way
of representing decision problems for which the user needs
only to state the constraints of the problem to be modeled.
Within the soft-CSP framework, each preference is mod-
eled by one soft constraint, and the penalty function is de-
termined as the sum of all the soft constraints. In this way
it is easy for users to add, modify or remove part of their
preferences without affecting the others. In this paper, we
will represent users’ various preferences based on the soft
constraint technique and show how the agility requirements
are satisfied.

3 Design of Agile Decision Agent

In this section, we first introduce the properties of user’s
preferences, and then present the example-critiquing inter-
action paradigm which has been proven effective in eliciting
user’s preferences. Finally we present the general system
architecture of the agile decision agent in e-commerce en-
vironments.

3.1 Properties of User’s Preferences

A user’s preferences can be expressed in various forms.
Based on our observation, we classify the user’s preferences
into the following 3 basic types:

1. unit preference. This kind of preferences only involves
one attribute. An example of such a preference is:“I’d
like to depart at 10AM”, where only the attribute
departure time is involved.

2. conditional preference. An example of such prefer-
ences is “I’d like to depart at 10AM if the departure
airport is Geneva”. This kind of preferences is effec-
tive only if the condition is valid.

3. comparison preference. This kind of preferences has
the form of “I prefer itemA to itemB.” In reality users
are not likely to input such preferences into the system
because product comparison demands much cognitive
effort from the user.

In a real decision problem, the user may have both quan-
titative and qualitative preferences. The preference model

should be able to represent all these types of preferences
that the user may have. There may also have somecom-
pound preferenceswhich involve more than one attribute
or condition. But they can be easily decomposed into the
combination of several basic ones. In this paper we will
only discuss these basic preference types.

Tradeoff is an important aspect of preference construc-
tion as it is here that decision makers refine the details of
their preferences into an accurate model. The representation
of user’s preferences should effectively support these trade-
offs and let user specify both qualitative and quantitative
preferences at the same time. From observing user behav-
iors, we have identified the following 3 tradeoff strategies
used by human decision makers:

• value tradeoff: a user explicitly changes the prefer-
ence values of a set of attributes. In the soft constraint
based framework, the user can change one of the soft
constraints in the preference model, increasing or de-
creasing the penalty of a certain value combination in
comparison with the others.

• weight tradeoff: a user changes the weights of a set of
preferences so that those attributes with higher weight
values take precedence when values are assigned. In a
soft constraint based framework, the user can do this
tradeoff directly.

• outcome tradeoff: a user performs either value or
weight tradeoff after viewing a set of outcomes. In the
soft constraint based framework, the user can provide
additional soft constraints that modify the penalty of
certain choices to make them acceptable.

Supporting these tradeoff strategies requires particular
agility of the preference model that cannot be effectively
supported by rigid elicitation procedures. The method of
using soft constraints to model user’s various preferences
and to support preferences tradeoffs will be given in the next
section.

3.2 Example Critiquing Interaction Para-
digm

Preference construction must be supported by feedback
from the system indicating the influence of the current
model on the outcomes. A good way to implement such
feedback is to structure user interaction as mixed-initiative
systems (MISs). MISs are interactive problem solvers
where human and machine intelligence are combined for
their respective superiority[8]. MISs are therefore good
candidates for such incremental decision systems.

A good way to implement a mixed-initiative decision
support system is theexample critiquinginteraction para-
digm as shown in Figure 1. It displays several examples of

User: inputs initial

preferences

System: shows K

example solutions

based on the current

user’s preferences

User: picks on the

final choice and

stop interaction

User: revises

preferences by

critiquing examples

found the

target choice

Figure 1. The example critiquing interaction
paradigm.

complete solutions and invites users to state their critiques
of these examples. Example critiquing allows users to bet-
ter understand the impact of their preferences. Moreover,
it provides an easy way for the user to add or revise his
or her preferences at any time in any order during the de-
cision making process. The user can input the type ofunit
preferencesandconditional preferencesdirectly through the
user interfaces. The user may also inputcomparison prefer-
encesby selecting the preferred example from a list of can-
didates. Example-critiquing as an interface paradigm has
been proposed by a variety of researchers[3][11][18]. The
detail design method of example critiquing interaction has
been studied in[6] and its performance has been evaluated
in[15].

3.3 System Architecture

Figure 2 shows the general architecture of a service-
oriented e-commerce system with the agile decision agent.
The system can be divided into 3 layers: the web service
infrastructure layer, the decision assistant layer and the user
interface layer. The web service infrastructure layer is the
underlying backbone of the service-oriented system. It con-
tains the external atomic web services and a module of web
service discovery and composition engine, which could ob-
tain a list of items from the web services based on the hard
constraints in the user’s preference model and return them
back to the decision agent.

The decision assistant layer is the key component that
we address in this paper because it is here that we handle a
user’s preferences and dynamically generate a product list
for the user to choose. Specifically, the decision agent con-
sists of the following 3 modules:

• Preference model. The user’s various preferences are
maintained and converted to the proper form for the

product search engine module. The user’s preference
model contains both hard and soft constraints. The de-
tail of this model will be introduced in the next section.

• Preference based product search engine. In this mod-
ule, we use the ranking mechanism provided by the
weighted-CSP framework to generate the ranking list
of all available items that the system may provide at
the current scenario. This module is also responsible
for extracting hard constraints from the user model and
input them to the web services discover and composi-
tion engine to retrieve possible items dynamically dur-
ing the interaction process.

• Results generation. It generates a list of top-K ranked
items with minimal penalty values as feedback to the
user. If some of the attributes violate the user’s pref-
erences, they will be highlighted with a special color
(such as red) so the user can critique them in the next
interaction cycle.

The user interface layer is designed to obtain the users’ pref-
erences and to show item information to users based on
the example critiquing interaction paradigm, which enables
users to construct their preferences incrementally according
to the instant system feedback and thus avoid using fixed
elicitation procedure which may lead to incorrect preference
models. The agent is deployed in the server side of the sys-
tem, and the interaction interface (be implemented by either
HTML or java applet) is shown on internet browsers in the
client side.

4 Agile Preference Modeling

4.1 The Soft-CSP Framework

A classical CSP[12][22] is characterized by a set of vari-
ables that can take values in associated domains and a set of
constraints that define the allowed tuples for the variable or
combination of variables. Solving a constraint satisfaction
problem means finding one, several or all combinations of
complete value assignments such that all the constraints are
satisfied.

A classical CSP only contains hard constraints, that is, a
constraint can be either satisfied or violated. Besides hard
constraints, a CSP may also be extended to include soft con-
straints, which are functions that map any potential value
assignment of a variable or a variable combination into a
numerical value indicating the preference intension on this
value or value combination. A CSP with soft constraints
is calledsoft-CSPand solving a soft-CSP involves finding
assignments that are optimally preferred with respect to the
soft constraints.

WS1

WS2

WSd

Web Service
Discovery/

Composition
Engine

Preference
Model

Agile Decision Agent

Results
Generation

User’s
Preferences

Input

Search
Results
Output

Web
application
interface

(jsp/
servlet)

HTMLPreference
Based

Product
Search
Engine

Laptop

Laptop
Desktop

Internet

Consumer

Consumer
Consumer

Client Side
Server Side

Web Service
Infrastructure Layer

Decision Assistant
Layer

User Interface Layer

WSD/
SOAP
over
XML

External web
services

Hard
constraints

Product
Info

Figure 2. System architecture with the agile decision agent

There are various soft constraint formalisms that differ
in the way the preference values of individual soft con-
straints are combined (combination function). For example,
in weighted constraint satisfaction (weighted-CSP) [17], the
optimal solution minimizes the weighted sum of the penal-
ties of preferences. In fuzzy constraint satisfaction[16], the
optimal solution maximizes the minimum preference value.
Bistareli et al. [1] introduced a semiring-based CSP frame-
work which can describe both classical and soft CSPs. Un-
der this framework, a weighted-CSP can be represented by
a c-semiring〈<, min, +,−∞,∞〉.

4.2 Modeling Preferences as Soft Con-
straints

We apply the constraint satisfaction framework to multi-
attribute decision problems by formulating each criterion as
a separate constraint. The constraint programming frame-
work replaces preferenceelicitation, a process of asking
specific valuation questions, with preferenceconstruction,
where users can manipulate individual criteria as separate
constraints. In particular, it satisfies two important goals of
agile preference models: (1) It allows users to precisely for-
mulate their criteria without being restricted by the vocabu-
lary of a database schema or elicitation tool; (2) Criteria can
be added, removed or changed in any order they choose, as
the model is not sensitive to an ordering among the pref-
erences. In weighted-CSP, the possible items are ordered
according to their penalty values and the item with the min-
imal penalty is regarded as the best choice. We adopt this
mechanism to rank the items that a system may have as we
found not only it can rank the items with only partial prefer-
ences, but also it corresponds best to users’ intuition about
the compensatory nature of tradeoffs.

Here we propose a preference based soft-CSP (PBSCSP)
to model user’s various preferences. Preferences that can-

not be violated are represented as hard constraints to restrict
the range of the possible items that the system may provide.
For instance, if a user states that he or she would like to
take a flight on a specific date for sure, then this informa-
tion will be denoted as a hard constraint and transferred to
the web service composition engine to retrieve all those pos-
sible flights satisfying this requirement. We use soft con-
straints to model the preferences stated by the user that can
be violated for the purpose of tradeoff. We formally define
the PBSCSP as the following.

Definition 1 (Preference-Based soft-CSP(PBSCSP))A
PBSCSP is defined by a tuple〈X, D,Θ〉, where

• X = {x1, x2, ..., xN} is a set of variables or attributes
that the system may have;

• D = {D1, D2, ..., DN} is a set of domains values for
the corresponding attributes;

• Θ is the user’s preference model defined as below.

Definition 2 (User’s Preference Model (PM)) A user’s
preference modelΘ is a set of{C, C̃, W}, where

• C = {C1, C2, ..., CM} is a set of hard constraint func-
tions that represent user’s preferences which must be
satisfied;

• C̃ = {C̃1, C̃2, ..., C̃fM} is a set of soft constraint func-
tions that represent user’s preferences that can poten-
tially be violated for the tradeoff purpose;

• W = {w1, w2, ..., wfM} is a set of weight values for the

corresponding soft constraints.wi(1 6 i 6 M̃) repre-
sents user’s intensity of the preference represented by
soft constraintC̃i.

Based on a PM, we calculate the overall penalty value of
a given itemO as the following:

p(O) =
fM∑

i=1

wiC̃i(O) (1)

The user’s preference model is required to be updated
during the interaction process. When a user states a new
preference, the preference conflict is first detected and any
earlier conflict preferences are removed, and then the PM is
extended by adding the newly stated preference.

4.3 The Interaction Procedure

Figure 3 shows the procedure for integrating example-
critiquing interaction with the agile preference model ap-
plied in service-oriented e-commerce systems. First, the
user’s initial preferences (which mainly contain user’s pri-
mary task goal) is obtained through the user interface and
stored as the user preference model. Then the assistant
agent fetches the available items which satisfy the hard con-
straints in the current user preference model through the
module of web services discovery and composition engine.
After that, the agent ranks the items based on the soft con-
straints in the current user preference model and selects as
the candidate item set the top K items with minimal penalty
values determined by equation 1. The candidate items are
then shown to the user to elicit his or her more preferences.
After getting the user’s choice and the new preferences, the
agent updates the user preference model and then repeats
the interaction procedure until the user accepts the chosen
item.

4.4 Example

As an example to illustrate how PBSCSP works, here we
consider a travel planning system where there are 4 candi-
date items for choosing as shown in Table 1. A user may
state the following 3 initial weighted criteria:

1. (weight = 1): I am willing to pay up to 1200$.:
C̃1 = price− 1200

2. (weight = 100): The flight duration is desired to be 8
hours.:
C̃2 = duration− 8

3. (weight = 50): I prefer intermediate airport Frankfurt
over Zurich over Paris:

C̃3 = (case Interairport :





Frankfurt : −2.0
Zurich : −1.0
Paris : 1.0

)

pm: user’s preference model;
is: item set;cs: candidate set;
cp: current preferences;p: penalty value;

1. procedureExampleCritiquing ()
2. pm= GetUserInitialPreferences ()
3. repeat
4. is = FetchItems (pm)
5. cs= GenerateCandidates (pm, is)
6. choice= UserCritique (cs)
7. cp= GetUserPreferences ()
8. pm= UpdateModel (pm, cp)
9. until UserAccept (choice)

10. function GenerateCandidates (pm, is)
11. cs= {}
12. for each itemOi in is do
13. p(Oi) = CalcPenalty(pm,Oi)
14. end for
15. is′ = Sort By Penalty (is, p)
16. cs= Top K (is′)
17. return cs

18. function UpdateModel(pm, cp)
19. pm= pm- Conflict(pm, cp)
20. pm= pm+ cp
21. return pm

Figure 3. The interaction procedure between
a user and the agile decision agent.

According to equation 1, the total penalty value of a can-
didate is a weighted sum of penalty values for these con-
straints. So the initial ranking assigned to the 4 outcomes
would be:

p(O1) = 300 + 0 + 50× (−1.0) = 250
p(O2) = 100 + 100× 1 + 50× (−2.0) = 100
p(O3) = 200 + 100× 1 + 50× 1.0 = 350
p(O4) = 0 + 100× 4 + 50× (−2.0) = 300

According to the penalty values, the outcomes can be
ranked as:O2 Â O1 Â O4 Â O3. However, in this case all
outcomes are gained a penalty value, so the decision maker
is not likely to pick any of them as a final solution.

Allowing users to state arbitrary criteria as soft con-
straints is a significant user interface challenge. We have
found it sufficient to decide a certain number of useful pa-
rameterized criteria when designing the system and make
these accessible through the user interface. While this lim-
its the preferences that can be stated by a particular user,

Price($) Duration(h) Inter Airport Dep Time
O1 1,500 8 Zurich 12:30PM
O2 1,300 9 Frankfurt 9:30AM
O3 1,400 9 Paris 10:45AM
O4 1,200 12 Frankfurt 10:00AM

Table 1. Example: a list of several flight
choices.

the framework itself places no limit on what criteria can be
used for preferences.

Tradeoffs are required whenever none of the outcomes
achieves a sufficiently high ranking according to the prefer-
ence model. In the above example, the decision maker can
engage in the three kinds of tradeoff mentioned earlier:

1. an example of a value tradeoff would be to change the
desired value ofDuration from 8 to 9. ThusC̃2 is
changed as “̃C2 = duration − 9” and O2 would be
selected in this case.

2. an example of a weight tradeoff would be to change
the weight of intermediate airport preference from 50
to 100. Now choiceO2 has a penalty value of 0 and
could be chosen as the target choice.

3. an example of an outcome tradeoff would be to add
an additional attribute such asDeparture T ime and
then set different penalties for each value.

The required modification of the ranking is achieved by
adding a preference or changing its weight in the combi-
nation model. In the soft constraint user preference model,
these kinds of modifications are easy to carry out and pro-
vide an agile modeling process. Such agility would be very
hard to achieve in models based on classical preference elic-
itation, where the impact of answering a particular query is
hard to evaluate.

Note also that each of these three tradeoff types requires
that the decision maker has a good understanding of the
available outcomes and how they are affected by prefer-
ences. This understanding is provided, at least to some de-
gree, by the example-critiquing framework: by showing ex-
amples that are close to the user’s desires, it increases his or
her understanding of the possibilities in the outcome space
that are relevant to the desires.

5 Discussion

Multi-attribute utility theory (MAUT)[10] is a powerful
tool for modeling preferences and rational decision-making.
Let the symbol% denote the decision maker’s preference
order, e.g. A % B means “A is preferred or indifferent

to B”. According to MAUT, for a given MADP, there ex-
ists a functionU : O → <, called a utility function,
such that for any two possible itemsO1 andO2, we have
O1 % O2 ⇐⇒ U(O1) ≥ U(O2). Basing decisions on an
explicit utility function forces the decision maker to reflect
on the true preferences and can thus be expected to lead to
more rational decisions and satisfying decisions.

The main difficulty with applying MAUT to preference-
based search is how to elicit user preferences. Traditional
methods for preference elicitation ask questions that assess
the relative overall preference for certain attribute values.
For example, when choosing a car, a typical question might
be: ”Which is better: 600 liters of trunk space and 4.5 me-
ters minimum turning radius, or 1000 liters of trunk space
and 5 meters of turning radius?” Answering such a question
is not easy. It requires:

• imagining the different uses of the car, for example
driving to work, buying groceries, and going on a fam-
ily vacation. For the first two, manoeuvrability and
thus the turning radius is important, whereas for the
family vacation, trunk space is required.

• making the proper tradeoffs by considering how im-
portant the attributes are to the different uses, and
which uses are more frequent.

• being consistent with earlier tradeoffs involving these
attributes.

A user who is not very familiar with the domain is unlikely
to be able to satisfy these requirements, and so his answers
are not likely to reflect the correct utility function. Another
problem is that a user may not have the patience to answer
the many questions required by such an elicitation proce-
dure.

On the other hand, in a model based on soft constraints,
the preferences corresponding to the different uses of the
car can be formulated as individual soft constraints. They
can be expressed incrementally as the user becomes aware
of her preferences, and they can easily be modified should
she change her mind. Tradeoffs can be made explicitly at
the level of conflicting preferences rather than separately
for each attribute they involve, and it is thus easier to make
them consistent. The user can choose the desired level of
precision by formulating as many soft constraints as she
likes.

This agility of the preference model supports the prefer-
ence construction process and is thus likely to yield a more
accurate model. The combination of soft constraints into a
single ranking function can be understood as apreference
compiler that constructs the multi-attribute utility function
from the individual criteria while taking into account the
relevant tradeoffs. In separate user studies, we have shown

the effectiveness of the approach in the context of example-
critiquing decision aids in [15] and [14].

6 Conclusions and Future Work

Service-oriented computing provides structured data that
makes it possible to automatically search for the most pre-
ferred item according to a user’s preferences. Agility which
allows consumers to add, retract and revise their preferences
in any order and any time is an indispensable feature in
service-oriented e-commerce systems. The contribution of
this work is that we designed an agile decision agent to meet
the agility requirement in the service-oriented e-commerce
environment. We adopted the example-critiquing interac-
tion paradigm to elicit user’s diverse preferences, and pro-
posed a soft-CSP (PBSCSP) model to represent those pref-
erences and to rank those products dynamically. Though
in this paper we discussed our design mainly in the travel
planning domain, the agile decision agent itself is domain-
independent. In the future, we plan to implement a travel
planning system based on the proposed agile decision agent
to test the agility performance through a set of real user
studies. We will also optimize the overall performance of
the system by more closely integrating the web service com-
position engine module and the decision agent to efficiently
retrieve product information from multiple web services.

Acknowledgments

Funding for this research was provided by Swiss Na-
tional Science Foundation under grant 200020-103490.

References

[1] S. Bistareli, H. Fargier, U. Montanari, F. Rossi, T. Schiex,
and G. Verfaillie. Semiring-based CSPs and valued CSPs:
Basic properties and comparison.CONSTRAINTS: An In-
ternational Journal, 4(3), 1999.

[2] C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and
D. Poole. CP-nets: A tool for representing and reasoning
with conditional ceteris paribus preference statements.Jour-
nal of Artificial Intelligence Research, 21:135–191, 2004.

[3] R. D. Burke, K. J. Hammond, and B. C. Young. The FindMe
approach to assisted browsing.IEEE Expert, 12(4):32–40,
1997.

[4] G. Carenini and D. Poole. Constructed preferences and
value-focused thinking: Implications for ai research on pref-
erence elicitation. InProceedings of the AAAI workshop on
Preferences in AI and CP: Symbolic Approaches, Edmonton,
Canada, 2002. AAAI.

[5] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. W3c web services description language(WSDL)
version 1.1, see http://www.w3.org/tr/2001/note-wsdl-
20010315.

[6] B. Faltings, P. Pu, M. Torrens, and P. Viappiani. Design-
ing example-critiquing interaction. InProceedings of the In-
ternational Conference on Intelligent User Interfaces, pages
22–29, Island of Madeira (Portugal), January 2004. ACM.

[7] G. Haubl and V. Trifts. Consumer decision making in online
shopping environments: The effects of interactive decision
aids.Marketing Science, 19(1):4–21, 2000.

[8] E. Horvitz. Principles of mixed-initiative user interfaces.
In Proceedings of the SIGCHI conference on Human factors
in computing systems(CHI’99), pages 159–166. ACM Press,
1999.

[9] R. Keeney.Value-Focused Thinking: A Path to Creative De-
cision Making. Harvard University Press, Cambridge, 1992.

[10] R. Keeney and H. Raiffa.Decisions with Multiple Objec-
tives: Preferences and Value Tradeoffs.John Wiley and
Sons, New York, 1976.

[11] G. Linden, S. Hanks, and N. Lesh. Interactive assessment
of user preference models: The automated travel assistant.
In Proceedings of the 6th International Conference on User
Modeling (UM97), 1997.

[12] A. Mackworth. Constraint satisfaction.Encyclopedia of Ar-
tificial Intelligence, pages 205–211, 1988.

[13] J. Payne, J. Bettman, and E. Johnson.The Adaptive Decision
Maker. Cambridge University Press, 1993.

[14] P. Pu and L. Chen. Integrating tradeoff support in product
search tools for e-commerce sits. InProceedings of the ACM
Conference on Electronic Commerce (EC’05), pages 269–
278, Vancouver, Canada, 2005.

[15] P. Pu and P. Kumar. Evaluating example-based search tools.
In Proceedings of the ACM Conference on Electronic Com-
merce (EC’04), pages 208–217, New York, USA, 2004.

[16] Z. Ruttkay. Fuzzy constraint satisfaction. InProceedings
of the 3rd IEEE International Conference on Fuzzy Systems,
pages 1263–1268, 1994.

[17] T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint
satisfaction problems: Hard and easy problems. InPro-
ceedings International Joint Conference on Artificial Intel-
ligence(IJCAI’95):, pages 631–639, 1995.

[18] S. Shearin and H. Lieberman. Intelligent profiling by exam-
ple. InProceedings of the Conference on Intelligent User In-
terfaces, pages 145–151. ACM Press New York, NY, USA,
2001.

[19] H. Shimazu. Expertclerk: Navigating shoppers buying
process with the combination of asking and proposing. In
Proceedings of the 17 International Joint Conference on Ar-
tificial Intelligence (IJCAI’01), volume 2, pages 1443–1448,
Seattle, Washington, USA, 2001.

[20] H. A. Simon. A behavioral model of rational choice.Quar-
terly Journal of Economics, 69:99–118, 1955.

[21] M. Stolze. Soft navigation in electronic product catalogs.
International Journal on Digital Libraries, 3(1):60–66, July
2000.

[22] E. Tsang.Foundations of Constraint Satisfaction. Academic
Press, London, UK, 1993.

