
Neural Networks Robot Controller Trained with Evolution Strategies

Antonio Berlanga I Pedro Isasi

Madrid, SPAIN Madrid, SPAIN
ScaLab, Univ. Carlos 111 de

30 Avda. Universidad
Legants, Madrid 2891 1

ScaLab, Univ. Carlos 111 de

30 Avda. Universidad
Legants, Madrid 2891 1

aberlan@ ia.uc3m.e~ isasi@ia.uc3m.es

Abstract - Neural Networks (NN) can be used as
controllers in autonomous robots. The specific features
of the navigation problem in robotics make the
generation of good training sets for the NN very
difficult. In this paper an evolution strategy (ES) is
introduced to learn the weights of the NN instead of the
learning method of the network. The ES is used to learn
high-performance reactive behavior for navigation and
collisions avoidance. No subjective information about
“how to accomplish the task” has been included in the
fitness function. The learned behaviors are able to solve
the problem in different environments; so, the learning
process has proven the ability to obtain a specialized
behavior. All the behaviors obtained have been tested in
a set of environment and the capability of generalization
is showed for each learned behavior. A simulator based
on mini-robot Khepera has been used to learn each
behavior.

1 Introduction

Autonomous robots are sometimes viewed as reactive
systems; that is, as systems whose actions are completely
determined by current sensorial inputs. This is the base of
the subsumption architecture (Brooks 1991), where finite
state machines are used to implement robot behaviors. Other
systems use fuzzy logic controllers instead (Ishikawa 1995).
The rules of these behaviors could be designed by a human
expert, designed “ad-hoc” for the problem or learned using
different artificial intelligence techniques (Matelltin 1995).
In this work, the control architecture used to evolve the
reaction (adaptation) is based on a neural network.

The neural network controller has several advantages:
NN are resistant to noise, that exists in real environment,
and are able to generalize their ability in new situations, a
NN could easily exploit several ways of learning during its
lifetime. The used of a feed forward network with the input
units gathering sensor information and the output units
directly connected to motors appears in previous works
(Miglino 1995) as an efficient way to learn a simple

Araceli Sanchis JosC M. Molina

Madrid, SPAIN Madrid, SPAIN
ScaLab, Univ. Carlos 111 de

30 Avda. Universidad
Legants, Madrid 289 1 1

ScaLab, Univ. Carlos 111 de

30 Avda. Universidad
Legants, Madrid 289 1 1

masme inf.uc3m.e~ jmolina@ia.uc3m.es

behavior as “ avoid obstacles”. In this work the NN ought to
learn more complex behavior: “navigation”.

In the proposed model, the robot starts without
information about the right associations between
environmental signals and actions responding to those
signals. And from this situation the robot is able to learn
through experience to reach the highest adaptability grade to
the sensors information. The number of inputs (robot
sensors), the range of the sensors, the number of outputs
(number of robot motors) and its description is the only
previous information. These constrain makes the generation
of good training sets for the NN very difficult. Instead of
using a classical learning method to adjust the weights of
the NN, an Evolutionary Strategy has been applied.

The fitness value of each individual in ES is computed
using some objective quality measures related with the
trajectory of the controller. The experiments have been
carried out using a robot simulator with different
environments. Each achieved solutions solve accurately the
specific navigation problem in which has been trained. The
controllers obtained have also the ability to adapt to
environments in which they worse perform.

2 Evolution Strategies

Evolution strategies (ES) developed by Rechenberg
(Rechenberg 1973) and Schwefel (Schewefel 1981), have
been traditionally used for optimization problems with real-
valued vector representations. As Genetic Algorithms
(Goldberg 1989) (GA) the ES are heuristic search
techniques based on the building block hypothesis. Unlike
GA, however, the search is basically focused in the gene
mutation. This is an adaptive mutation based on the likely
the individual represents the problem solution. The
recombination plays also an important role in the search,
mainly in’the adaptive mutation.

0-7803-5536-9/99/%10.00 01999 IEEE 413

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:37 from IEEE Xplore. Restrictions apply.

END

Parent Parent Children Children+Parent
Selection Recombination Mutation survival

Evaluate P
--* (Fitness Function)

Figure. 1 : Schema of an evolution strategy

Figure 1 shows a typical evolution strategy. First, it is
necessary to codify each solution of the problem in a real-
valued vector. Each vector represents a solution and also an
individual. The method consists in evolving solution sets,
called populations, in order to find better solutions.
Selecting pairs of individuals (parents) that produce new
individuals (children) via recombination, which are further
perturbed via mutation performs the evolution of
populations. The best individual (p+l selection) or the best
individuals (p+h selection), in the set composed by parents
and children, are selected to form the next population
(Rechenberg 1989).

An individual is represented by
a = (x ~ ,..., x,, CT,, ..., 0") E % n , that are the n real
values (x i) and their corresponding deviations (oi) used in
the mutation process for the (p+h) ES. The mutation is
represented by equations (1) and (2).

ai'= ai . ~x~(N(o ,Ao)) (1)
x , ' = x, + N (0, U , ') (2)

Where xi' and q' are the mutated values, following a
normal distribution (N(p, 0)).

However, when a (p+l) ES is used the mutation
process follows the 1/5 rule (Rechenberg 1989). In both
cases, the recombination follows the canonical GA
approach (Goldberg 1989).

3 Experimental Environment

The system has been developed using a simulator to prove
different characteristics of the system. The task faced by the
autonomous robot is to reach a goal in a complex
environment avoiding obstacles found in the path. Different
environments have been used to find the connections of the
NN. Finally, a real robot has been used to test the proposed
solution.

A simulator developed in a previous work
(Sommaauga 1996) has been used as complete software for
the simulation of mobile robot. Working with a simulation
offers the possibility to evaluate several systems in different

environments controlling the execution parameters. The
robot simulator characteristics is based on a mini-robot
Khepera (Mondada 1993) has been used, which is a
commercial robot developed at LAM1 (EPFL, Laussanne
Switzerland). The robot characteristics are; 5.5 cm of
diameter in circular shape, 3 cm of height and 70 gr. of
weight. The robot has two wheels controlled by two motors
that let any type of movement. The ES should specify the
wheel velocity that could be read later by an odometer.
Eight infrared sensors supply two kinds of incoming
information: proximity to the obstacles and ambient light.
Instead of using eight sensors individually, to reduce the
amount of information six sensors are used and grouped (as
Figure 2 shown) giving a unique value, the average, from
two input values. Representing the goal by a light source,
the ambient information lets the robot know the angle (the
angle position in the robot of the ambient sensor receiving
more light) and the distance (the amount of light in the
sensor).

c] Proximity Sensors

Figure. 2: Sensors considered in the real robot

The simulated world consists of a rectangular map of
user defined dimensions, where particular objects are
located. In this world it is possible to define a final position
for the robot (the goal to reach), (Figure 3 (a)). In this case,
the robot is represented with three proximity sensors and
two special sensors to measure the distance and the angle to
the goal.

414

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:37 from IEEE Xplore. Restrictions apply.

1

Figure. 3: (a) SimDAI Simulator (Example of one simulated environment). (b) Example of a real experimental environment.

Different simulated worlds that resemble real ones
have been defined before being implemented in the real
world. An example of these environments is shown in
Figure 3 (a) and Figure 3 (b). The controlled developed is
the same in both cases (simulated and real) except the
differences in the treatment of the sensors.

4 Evolving NN connections by means of
Evolution Strategies

It has been proved that by means of connections between
sensors and actuators, a controller is able to solve any
autonomous navigation robotic behavior (Braitenberg
1984). This theoretical approach is based on the possibility
of finding the right connections of a feed-forward NN
without hidden layers for each particular problem. The input
sensors considered in this approach are the ambient and
proximity sensors of Figure 2. The NN outputs are the
wheel velocities. The velocity of each wheel is calculated
by means of a linear combination of the sensor values using
those weights (Figure 4):

Where wy are searched weights, si are sensor input
values and f is a function for constraining the maximum
velocity values of the wheels.

$;Senlofr

W, ; Weight of the wnexion
b*wscn s w r i and wheel J

V,; Velocity of dux1 i

W
Figure. 4: Connections between sensors and actuators in the

Braitenberg representation of a Khepera robot

Weight values depend on problem features. To find
them automatically, an ES is proposed. In this approach
each individual is composed by a 20 dimensional-real
valued vector, representing each one of the above
mentioned weighs and their corresponding variances. The
individual represents one robot behavior consequence of
applying the weights to the equation 3. The evaluation of
behaviors is used as fitness function.

In order to make the problem more realistic no
information about the location of the goal, neither direction
nor distance, has been included in the evaluation function.

5 Experimental Results

Different experiments have been done all of them over the
same set of environments. The environments have been
generated, by changing the goal position, number and
location of obstacles. In a set of preliminary comparisons, it
was found that results obtained with the software model did
not differ significantly from the results obtained with the
physical robot.

415

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:37 from IEEE Xplore. Restrictions apply.

Figure 5 . Some of the environments used to evolve the controller. Dark shapes are the obstacles, the big point is the starting location of the
robot and the small point is the goal. The environments are closed.

An exploratory set of experiments was performed in
simulation to adjust the quality measures used in the fitness
function as well as the parameters of Evolution Strategy. A
(p+h)-ES, p=6, h=6, were used.

The quality measures used to calculate the fitness value
of a controller were the following:

e Number of collisions. (Collisions)
Number of stops. Cycles of the simulation in which
the robot stays in the same location. (Stand)

e .Time needed to reach the goal. (Time)
0 Length of the robot trajectory from the starting

point to the final location. (Path Length)
The global evaluation depends linearly with these

concepts: lO*Collisions + lO*Stand + 20*Time -
1,5*Path_Length. Each evaluated robot behavior ends over
one environment when the goal has been reached or the
time exceed some time out.

Five evolutionary runs of 70 generations each have
been performed, for eight different environments, each one
starting with a different seed for initializing the computer
random functions.

The evolution of the quality measures used to calculate
the fitness value shows a similar behavior over all
environments. All the quality measures evolve in the way to
get the optimal robot behavior. See Figures 6-10.

I 4000 1 I -EO
A 1 -El

E2
_I .- E3 3000

E 2500 - E4
- E5 3 1500 - E6

1000 - E7

E9

S

f 2000

..... . E8
500

0

I 1 11 21 31 41 51

Generatlons

Figure 6. Evolution of the "Path Length" versus generations in
each environment

2000

1600

1200

800

400

0

-EO
-El

E2
E3

- E4
- E5

E6
- E7

E8
E9

1 11 21 31 41 51

Generatlons . .

Figure 7. Evolution of "Time" needed to reach the goal versus
generations in each environment

416

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:37 from IEEE Xplore. Restrictions apply.

1 2000 ,\I
1600

1200

800

400

0

800

400

0
1 11 21 31 41 51

Generations

-EO
-El

E2
E3

- E4
- E5
- E6
- E l

E8
~ E9

2000 7 . I -EO

1600

g 1200 -
$ 800

400

0
1 11 21 31 41 51

Generatlons '

-El
E2
E3

- E4
- E5
- E6
- E7
- E8

1 E9

Figure 8. Evolution of the "Stand" versus generations in each
environment environment

Figure9. Evolution of "Collisions" versus generations in each

60000

50000

40000

E 30000

20000

YI
0

t!
IL

10000

0
1 11 21 31 41 51

Generations

- EO
-El

E2
-- E3
- E4
- E5
- E6
- E7
- E8

E9

Figure 10. Evolution of the fitness value of the population's best controller versus generations in each environment

1 0 -

0 8 -

0 6 -

0 4 -

00 .L..........................-..........................,
1 11 21 31 41 51

Generatlons

- Stand - conlbons Ttme Path Lenpm

7 - -
. , . , . . , . , , "I, . . . 1 , . , . . I . l . . , I . I I I , I

1 11 21 31 41 51

Generations

- Stana - Co.lilions Time Pam Cenpm

Figure I I . Evolution of the quality measures versus generations in Figure 12. Evolution of the quality measures versus generations in
environment 1 environment 8

417

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:37 from IEEE Xplore. Restrictions apply.

Figures 11 and 12 show the evolution of the quality
measures of environments 1 and 8.

Very different behaviors are observed. For
environment 1, which consists in an initial configuration
without close objets, initially exploratory behaviors appear.
The robot covers long distances but without avoiding
obstacles. On the contrary, for environment 8, due to the
proximity of obstacles to the starting point, the controller
will not be able to explore the environment searching for the
goal, until it does not acquire the ability to avoid obstacles.
The environment guides the learning process.

The obtained controllers are valid for the environment
in which they are trained. Figure 13 shows the behavior of a
controller in the environment where it has been trained, as
wel! as in other new environments.

100
90
80
70 E 60

g 50
40

iZ 30
20

-

-
l o 0 ‘ 7

0 1 2 3 4 5 6 7
Environment

I-so -Sl s2 s31

100
90
80

J 70
3 60

f 40
G 30

2 50

20 i, ,I’

10 t’
\ ,I’

0
0 1 2 3 4 5 6 7

Environment

l-S4 S5 S6 S71

Figure 13. The fitness value of the solution (Sn) obtained in
environment n is measured in all environments. The point shows
the fitness value calculated in the training environment

Neural networks trained with an ES adjust precisely
their weights to the training environment. This is an
advantage when we want to obtain a good solution within a
short processing time but a lack for getting generalized
solutions. This behavior is displayed in Figure 14; where the
solution trained in environment 3 is validated in
environments 1.2 and 6.

II -

Figure 14. Solution trained in environment 3 plots its behavior in
environments 3, 1, 2 and 6 respectively

Figure 15. Solution trained in environment 6 plots its behavior in
environments 6, 1, 2 and 3 respectively

418

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:37 from IEEE Xplore. Restrictions apply.

In this case, it can be seen how when tested in
environments 2 and 6 the robot is, in many cases, unable to
reach the goal, having an erratic behavior. However in
environment 1 the behavior is a good one, because of the
resemblance between environments 1 and 3. Similar
behaviors occur with all the controllers learned.

6 Conclusions and further work

The experiments prove the possibility of learning behaviors
in an autonomous robot by means of an ES. The process has
been applied on a simple NN where the directly associations
between sensors and motors allows to solve a navigation
problem. The learning process has specially proved their
capability of learning for specific situations. The achieved
controllers perform very well for the trained problems and
make the process very useful in the search for “ad-hoc’’
solutions. However, they do not perform well when tested
in environments different from the trained ones. Even in
those cases, the efficacy of the learning process makes the
adaptation of the solutions to any environment feasible. The
method can be also extended to other more complex NN.

It is important to remark that the fitness fimctions
doesn’t include any subjective information “how to
accomplish the task” but objective information about “ how
the task has been accomplished”,

As a consequence, the learning process can be
easily modified in order to consider new problems that
could appear such as: surrounding an obstacle, or hiding
from the light. The adaptation to new problems does not
require too much effort because of no inclusion of local
information about the problem in the fitness function.

Bibliography

Brooks (1991) Brooks R. A. “ Intelligence without
Representation” . Artificial Intelligence, 47, 139- 159,
(1991).

Ishikawa (1995) Ishikawa S. “A Method of Autonomous
Mobile Robot Navigation by using Fuzzy Control”.
Advanced Robotics, vol. 9, No. 1,29-52, (1995)

Matellhn (1995) Matellhn V., Molina J.M., Sanz J.,
Fernhndez C. “Learning Fuzzy Reactive Behaviors in
Autonomous Robots”. Proceedings of the Fourth
European Workshop on Learning Robots, Germany,
(1 995).

Miglino (1995) Miglino O., Hautop H., Nolfi S. “Evolving
Mobile Robots in Simulated and Real Environment”.
Artificial Life 2: 417-434 (1995)..

Rechenberg (1973) Rechenberg, I. Evolutionsstrategie:
Optimierung Technischer Systeme nach Prinzipien der
Biologischen Evolution. Frommann-Holzboog,
Stuttgart (1 973).

Schwefel(l98 1) Schwefel, H. P. Numerical Optimization of
Computer Models. New York: John Wiley & Sons
(1981).

Goldberg (1989) Goldberg D., Genetic Algorithms in
Search, Optimization and Machine Learning, Addison-
Wesley, New York, (1989).

Rechenberg (1989) Rechenberg I., Evolution strategy:
Nature’s Way of Optimization. In H. W. Bergmann,
editor, “Optimization: Methods and Applications,
Possibilities and Limitations”, Lecture Notes in
Engineering, pag 106-26, Springer, Bonn (1989).

Mondada (1993) Mondada F. and Franzi P.I. “Mobile
Robot Miniaturization: A Tool for Investigation in
Control Algorithms”. Proceedings of the Second
International Conference on Fuzzy Systems. San
Francisco, USA, (1 993).

Sommaruga (1996) Sommaruga L., Merino I., Matellan V
and Molina J. “A Distributed Simulator for Intelligent
Autonomous Robots”, Fourth International
Symposium on Intelligent Robotic Systems-SIRS96,
Lisboa (Portugal), (1996).

Braitenberg (1984) Braitenberg V. Vehicles: experiments on
synthetic psychology. MIT Press Cambridge,
Massachusets (1 984).

419

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:37 from IEEE Xplore. Restrictions apply.

