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Abstract - Neural Networks (NN) can be used as 
controllers in autonomous robots. The specific features 
of the navigation problem in robotics make the 
generation of good training sets for the NN very 
difficult. In this paper an evolution strategy (ES) is 
introduced to learn the weights of the NN instead of the 
learning method of the network. The ES is used to learn 
high-performance reactive behavior for navigation and 
collisions avoidance. No subjective information about 
“how to accomplish the task” has been included in the 
fitness function. The learned behaviors are able to solve 
the problem in different environments; so, the learning 
process has proven the ability to obtain a specialized 
behavior. All the behaviors obtained have been tested in 
a set of environment and the capability of generalization 
is showed for each learned behavior. A simulator based 
on mini-robot Khepera has been used to learn each 
behavior. 

1 Introduction 

Autonomous robots are sometimes viewed as reactive 
systems; that is, as systems whose actions are completely 
determined by current sensorial inputs. This is the base of 
the subsumption architecture (Brooks 1991), where finite 
state machines are used to implement robot behaviors. Other 
systems use fuzzy logic controllers instead (Ishikawa 1995). 
The rules of these behaviors could be designed by a human 
expert, designed “ad-hoc” for the problem or learned using 
different artificial intelligence techniques (Matelltin 1995). 
In this work, the control architecture used to evolve the 
reaction (adaptation) is based on a neural network. 

The neural network controller has several advantages: 
NN are resistant to noise, that exists in real environment, 
and are able to generalize their ability in new situations, a 
NN could easily exploit several ways of learning during its 
lifetime. The used of a feed forward network with the input 
units gathering sensor information and the output units 
directly connected to motors appears in previous works 
(Miglino 1995) as an efficient way to learn a simple 
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behavior as “ avoid obstacles”. In this work the NN ought to 
learn more complex behavior: “navigation”. 

In the proposed model, the robot starts without 
information about the right associations between 
environmental signals and actions responding to those 
signals. And from this situation the robot is able to learn 
through experience to reach the highest adaptability grade to 
the sensors information. The number of inputs (robot 
sensors), the range of the sensors, the number of outputs 
(number of robot motors) and its description is the only 
previous information. These constrain makes the generation 
of good training sets for the NN very difficult. Instead of 
using a classical learning method to adjust the weights of 
the NN, an Evolutionary Strategy has been applied. 

The fitness value of each individual in ES is computed 
using some objective quality measures related with the 
trajectory of the controller. The experiments have been 
carried out using a robot simulator with different 
environments. Each achieved solutions solve accurately the 
specific navigation problem in which has been trained. The 
controllers obtained have also the ability to adapt to 
environments in which they worse perform. 

2 Evolution Strategies 

Evolution strategies (ES) developed by Rechenberg 
(Rechenberg 1973) and Schwefel (Schewefel 1981), have 
been traditionally used for optimization problems with real- 
valued vector representations. As Genetic Algorithms 
(Goldberg 1989) (GA) the ES are heuristic search 
techniques based on the building block hypothesis. Unlike 
GA, however, the search is basically focused in the gene 
mutation. This is an adaptive mutation based on the likely 
the individual represents the problem solution. The 
recombination plays also an important role in the search, 
mainly in’the adaptive mutation. 
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Figure. 1 : Schema of an evolution strategy 

Figure 1 shows a typical evolution strategy. First, it is 
necessary to codify each solution of the problem in a real- 
valued vector. Each vector represents a solution and also an 
individual. The method consists in evolving solution sets, 
called populations, in order to find better solutions. 
Selecting pairs of individuals (parents) that produce new 
individuals (children) via recombination, which are further 
perturbed via mutation performs the evolution of 
populations. The best individual (p+l selection) or the best 
individuals (p+h selection), in the set composed by parents 
and children, are selected to form the next population 
(Rechenberg 1989). 

An individual is represented by 
a = ( x ~  ,..., x,, CT,, ..., 0") E % n ,  that are the n real 
values (x i )  and their corresponding deviations (oi) used in 
the mutation process for the (p+h) ES. The mutation is 
represented by equations (1) and (2). 

ai'= ai . ~x~(N(o ,Ao) )  (1) 
x , ' =  x, + N (0, U , ' )  (2)  

Where xi' and q' are the mutated values, following a 
normal distribution (N(p, 0)). 

However, when a (p+l) ES is used the mutation 
process follows the 1/5 rule (Rechenberg 1989). In both 
cases, the recombination follows the canonical GA 
approach (Goldberg 1989). 

3 Experimental Environment 

The system has been developed using a simulator to prove 
different characteristics of the system. The task faced by the 
autonomous robot is to reach a goal in a complex 
environment avoiding obstacles found in the path. Different 
environments have been used to find the connections of the 
NN. Finally, a real robot has been used to test the proposed 
solution. 

A simulator developed in a previous work 
(Sommaauga 1996) has been used as complete software for 
the simulation of mobile robot. Working with a simulation 
offers the possibility to evaluate several systems in different 

environments controlling the execution parameters. The 
robot simulator characteristics is based on a mini-robot 
Khepera (Mondada 1993) has been used, which is a 
commercial robot developed at LAM1 (EPFL, Laussanne 
Switzerland). The robot characteristics are; 5.5 cm of 
diameter in circular shape, 3 cm of height and 70 gr. of 
weight. The robot has two wheels controlled by two motors 
that let any type of movement. The ES should specify the 
wheel velocity that could be read later by an odometer. 
Eight infrared sensors supply two kinds of incoming 
information: proximity to the obstacles and ambient light. 
Instead of using eight sensors individually, to reduce the 
amount of information six sensors are used and grouped (as 
Figure 2 shown) giving a unique value, the average, from 
two input values. Representing the goal by a light source, 
the ambient information lets the robot know the angle (the 
angle position in the robot of the ambient sensor receiving 
more light) and the distance (the amount of light in the 
sensor). 

c] Proximity Sensors 

Figure. 2:  Sensors considered in the real robot 

The simulated world consists of a rectangular map of 
user defined dimensions, where particular objects are 
located. In this world it is possible to define a final position 
for the robot (the goal to reach), (Figure 3 (a)). In this case, 
the robot is represented with three proximity sensors and 
two special sensors to measure the distance and the angle to 
the goal. 
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Figure. 3: (a) SimDAI Simulator (Example of one simulated environment). (b) Example of a real experimental environment. 

Different simulated worlds that resemble real ones 
have been defined before being implemented in the real 
world. An example of these environments is shown in 
Figure 3 (a) and Figure 3 (b). The controlled developed is 
the same in both cases (simulated and real) except the 
differences in the treatment of the sensors. 

4 Evolving NN connections by means of 
Evolution Strategies 

It has been proved that by means of connections between 
sensors and actuators, a controller is able to solve any 
autonomous navigation robotic behavior (Braitenberg 
1984). This theoretical approach is based on the possibility 
of finding the right connections of a feed-forward NN 
without hidden layers for each particular problem. The input 
sensors considered in this approach are the ambient and 
proximity sensors of Figure 2. The NN outputs are the 
wheel velocities. The velocity of each wheel is calculated 
by means of a linear combination of the sensor values using 
those weights (Figure 4): 

Where wy are searched weights, si are sensor input 
values and f is a function for constraining the maximum 
velocity values of the wheels. 

$;Senlofr 

W, ; Weight of the wnexion 
b*wscn s w r  i and wheel J 

V,; Velocity of dux1 i 

W 
Figure. 4: Connections between sensors and actuators in the 

Braitenberg representation of a Khepera robot 

Weight values depend on problem features. To find 
them automatically, an ES is proposed. In this approach 
each individual is composed by a 20 dimensional-real 
valued vector, representing each one of the above 
mentioned weighs and their corresponding variances. The 
individual represents one robot behavior consequence of 
applying the weights to the equation 3. The evaluation of 
behaviors is used as fitness function. 

In order to make the problem more realistic no 
information about the location of the goal, neither direction 
nor distance, has been included in the evaluation function. 

5 Experimental Results 

Different experiments have been done all of them over the 
same set of environments. The environments have been 
generated, by changing the goal position, number and 
location of obstacles. In a set of preliminary comparisons, it 
was found that results obtained with the software model did 
not differ significantly from the results obtained with the 
physical robot. 
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Figure 5 .  Some of the environments used to evolve the controller. Dark shapes are the obstacles, the big point is the starting location of the 
robot and the small point is the goal. The environments are closed. 

An exploratory set of experiments was performed in 
simulation to adjust the quality measures used in the fitness 
function as well as the parameters of Evolution Strategy. A 
(p+h)-ES, p=6, h=6, were used. 

The quality measures used to calculate the fitness value 
of a controller were the following: 

e Number of collisions. (Collisions) 
Number of stops. Cycles of the simulation in which 
the robot stays in the same location. (Stand) 

e .Time needed to reach the goal. (Time) 
0 Length of the robot trajectory from the starting 

point to the final location. (Path Length) 
The global evaluation depends linearly with these 

concepts: lO*Collisions + lO*Stand + 20*Time - 
1,5*Path_Length. Each evaluated robot behavior ends over 
one environment when the goal has been reached or the 
time exceed some time out. 

Five evolutionary runs of 70 generations each have 
been performed, for eight different environments, each one 
starting with a different seed for initializing the computer 
random functions. 

The evolution of the quality measures used to calculate 
the fitness value shows a similar behavior over all 
environments. All the quality measures evolve in the way to 
get the optimal robot behavior. See Figures 6-10. 
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Figure 6. Evolution of the "Path Length" versus generations in 
each environment 

2000 

1600 

1200 

800 

400 

0 

-EO 
-El  

E2 
E3 

- E4 
- E5 

E6 
- E7 

E8 
E9 

1 11 21 31 41 51 

Generatlons . .  

Figure 7. Evolution of "Time" needed to reach the goal versus 
generations in each environment 
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Figure 8. Evolution of the "Stand" versus generations in each 
environment environment 

Figure9. Evolution of "Collisions" versus generations in each 
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Figure 10. Evolution of the fitness value of the population's best controller versus generations in each environment 
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Figures 11 and 12 show the evolution of the quality 
measures of environments 1 and 8. 

Very different behaviors are observed. For 
environment 1, which consists in an initial configuration 
without close objets, initially exploratory behaviors appear. 
The robot covers long distances but without avoiding 
obstacles. On the contrary, for environment 8, due to the 
proximity of obstacles to the starting point, the controller 
will not be able to explore the environment searching for the 
goal, until it does not acquire the ability to avoid obstacles. 
The environment guides the learning process. 

The obtained controllers are valid for the environment 
in which they are trained. Figure 13 shows the behavior of a 
controller in the environment where it has been trained, as 
wel! as in other new environments. 
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Figure 13. The fitness value of the solution (Sn) obtained in 
environment n is measured in all environments. The point shows 
the fitness value calculated in the training environment 

Neural networks trained with an ES adjust precisely 
their weights to the training environment. This is an 
advantage when we want to obtain a good solution within a 
short processing time but a lack for getting generalized 
solutions. This behavior is displayed in Figure 14; where the 
solution trained in environment 3 is validated in 
environments 1.2 and 6. 

II - 

Figure 14. Solution trained in environment 3 plots its behavior in 
environments 3, 1, 2 and 6 respectively 

Figure 15. Solution trained in environment 6 plots its behavior in 
environments 6, 1, 2 and 3 respectively 
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In this case, it can be seen how when tested in 
environments 2 and 6 the robot is, in many cases, unable to 
reach the goal, having an erratic behavior. However in 
environment 1 the behavior is a good one, because of the 
resemblance between environments 1 and 3. Similar 
behaviors occur with all the controllers learned. 

6 Conclusions and further work 

The experiments prove the possibility of learning behaviors 
in an autonomous robot by means of an ES. The process has 
been applied on a simple NN where the directly associations 
between sensors and motors allows to solve a navigation 
problem. The learning process has specially proved their 
capability of learning for specific situations. The achieved 
controllers perform very well for the trained problems and 
make the process very useful in the search for “ad-hoc’’ 
solutions. However, they do not perform well when tested 
in environments different from the trained ones. Even in 
those cases, the efficacy of the learning process makes the 
adaptation of the solutions to any environment feasible. The 
method can be also extended to other more complex NN. 

It is important to remark that the fitness fimctions 
doesn’t include any subjective information “how to 
accomplish the task” but objective information about “ how 
the task has been accomplished”, 

As a consequence, the learning process can be 
easily modified in order to consider new problems that 
could appear such as: surrounding an obstacle, or hiding 
from the light. The adaptation to new problems does not 
require too much effort because of no inclusion of local 
information about the problem in the fitness function. 
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