
.

A

1

a
#

Sm@5’9- 034?C

Performance Analysis of Evolutionary Pattern Search
with Generalized Mutation Steps

William Hart* EMX=VEDKeith Huntert . .

FE~ ! 8 ~gg

Abstract o STI
Evolutionary pattern search algorithms (EPSAS) are a class of evolutionary algo-

rithms (EAs) that have convergence guarantees on a broad class of nonconvex continu-
ous problems. In previous work we have analyzed the empirical performance of EPSAS.
This paper revisits that analysis and extends it to a more general model of mutation.
We experimentally evaluate how the choice of the set of mutation offsets affects op-
timization performance for EPSAS. Additionally, we compare EPSAS to self-adaptive
EAs with respect to robustness and rate of optimization. All experiments employ a
suite of test functions representing a range of modality and number of multiple minima.

Introduction .

Evolutionary pattern search algorithms (EPSAS) are distinguished from other evolutionary
algorithms (EAs) by the convergence theory which proves that they almost surely converge
to a stationary point of any continuously differentiable function [8, 6, 5]. Convergence
proofs have been developed for evolutionary strategies for convex functions [2, I]. However,
the convergence theory for evolutionary pattern search provides the first assurance of a

stationary-point convergence for multimodal, nonconvex problems.

EPSAS are also distinguished from most other EAs applied to continuous search problems
by the manner in which mutation is applied. EPS.AS perform mutation by adding a scaled
integer vector to an individual, and these mutation vectors are selected from a finite set of
possible mutation offsets. By contrast, standard methods like evolutionary programming [4]
and evolutionary strategies [11] add a vector of offsets that is normally distributed in each
dimension.

The initial analysis of EPSAS [6, 5] considered a set of mutation offsets defined by the
unit vectors along each coordinate axis, e~ and –ei. More recently, we have extended the

analysis of EPSAS to allow a broader class of mutation offsets [8]. Specifically, the set of
mutation offsets is simply required to form a positive basis of the search domain.

In addition to extending the class of EPSAS, this analysis allows the step length parameter
for mutation to be reduced after n + 1 mutation steps instead of the 2n mutation steps
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required by the formir convergence theory. Since this analysis is asymptotic, these new
EPSAS may not necessarily converge more quickly. Howeverj our prior work with EPSAS [7]
suggests that the performance of EPSAS can be limited by the rate at which they reduce the
mutation step length.

In this paper we present an experimental analysis that evaluates the relative importance
of several algorithmic factors for EPSAS: the set of mutation offsets, the use of a crossover
operator, the expansion factor for the mutation. step length, and the manner in which muta-
tion is stochastically selected. Our experiments confirm that EPSAS converge more quickly
when fewer mutation steps need to be considered before reducing the mutation step length.
Using crossover uniformly produced superior solutions at the cost of requiring substantially
more function evaluations to terminate. Finally, our experiments compare the performance
of EPSAS with EP, and they show that EPSAS are competitive with EPs.

2

2.1

Background

Self-Adaptive Evolutionary Algorithms

Evolutionary programs (EP) and evolutionary strategies (ES) are standard paradigms for
applying evolutionary methods to continuous optimization problems [4, 11]. EP and ES are
similar in many respects. These EAs do not always rely on recombination to perform a
global search of the search domain. In both classes of EAs, mutation is performed by adding
normally distributed random variables to each dimension of an individual. Furthermore,
the standard deviation of these normal deviates is typically modified by a self-adaptive
mechanism. This mechanism can be viewed as a separate encoding of the mutation standard
deviation along with the search parameters.

Figure 1 shows pseudo-code for a canonical EP or ES that uses self-adaptation. JV(O,1)
is a normally distributed variable with standard deviation 1, and IV(O,a) is a vector of
normally distributed random variables with standard deviation ~i. The function selection
selects individuals from the previous population (possibly creating a multiset) that are used
to perform additional search, and the function compose forms the next population using
the newly generated points and the previous population. This code uses a log-normal update
to ai, which Saravanan, Fogel and Nelson [10] confirm is generally preferable to the additive

(G)

–1
update that has been proposed for EPs. This update uses the constants ~ = 2 n

and # = (/%)-’ [10]. The stopping rules used for EP and ES methods typicallv rely.
on measures of the rate of improvement or population statistics that evaluate whether the
population has converged to a single point [4, 11].

2.2 Evolutionary Pattern Search Algorithms (EPSA)

Figure 2 shows pseudo-code for a class of simple EPSAS. These methods share many of
the common features of standard EAs like EP and ES. Mild conditions are placed upon the
selection and compose functions to ensure that (a) the best point in the population has a
nonzero chance of being selected in each generation and (b) the best point in the population is
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(1) Given initial step length vectors {a?,..., a~}
(2) Select an initial population XO= {z?,..., z\}, z! c Rm
(3) Determine the fitness of each individual
(4) x; = argmin{~(z~),. ... j(z~)} and Y; = ~(zS)
(5) Repeat t = 1,2,...

(6) X = selection
(7) Fori=l:lV
(8) v = IV(O,1)
(9) For j =l:n
(lo) c~+l(j) = al(j) * exp(~’v + ~~(0, 1))
(11) fi~(j) = t~(j) + I(O, o~+l(j))

(12) X~+l = compose(X~, X)
(13) z;= argmin{~(z~_l), ~(z~), ..., ~(z~)} and Y; = ~(zl)
(14) Until some stopping criterion is satisfied “

Figure 1: A canonical EP or ES using self-adaptation.
L

always kept in subsequent populations. The crossover function is also restricted to generate
a point such that crossover(z, g) ~ {ZI, Y1}x {ZZ,YZ}x.. . x {~n, Vn}j which is consistent with
most standard crossover operators (e.g. two-point crossover). The call to uint (j) uniformly
generates an integer from 1 to j.

EPSAS differ from self-adaptive EAs like the EP in Figure 1 in that the step length
parameter is controlled explicitly. EPSAS use a single step -length parameter for all dimen-
sions. The step length parameter may be expanded if an improving step is generated from
a mutation step off of the current best point. Also, the step length may be contracted if all
mutation steps about the current best point have worse fitness than the current best point.

This method of explicitly controlling the step length for mutation enables a stationary
point convergence theory for EPSAS. This convergence theory guarantees that for a contin-
uously differentiable function the sequence of best solutions in each generation, {z;}, has
the property that

where ~~(z) is the gradient of i at x [6, 5]. Although this is a local convergence theory,
experience with direct search methods suggests that EPSAS can be successfully applied to
a wide range of optimization problems [9, 13, 14]. Our previous empirical evaluation of
EPSAS [7] indicates that they can perform a nonlocal optimization of the search domain.

We can replace step 13 in Figure 2 with

(13.a) For i = 1: N
(13.b) y = &
(13.c) For j = 1: k
(13.d) If (unifo < p) then
(13.e) ‘.=&i +Atosj “’
(13.f) If (3~E 1: k St. ii== v + Sj) ~j = 1 . .
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:1) Given A. , ~
‘2) Given S = {sl,.. ., s~], where Si c Zn and S forms a POSitiVebaSiSO
(3j Let P = {0~

(4) select an initial population XO= {z~,..., zj}, Z: GQ~
(5) x:= argmin{j(z~), ..., ~(z~)} and y; = i(z~)
(6) Repeat t = 0,1,...
(7) Z = selection(X~)
(8) Fori=l:N
(9) If (unifo < X) then
(lo) iii = crOSSOver(ZuintIN], z~i~t(~))

(11) Else
(12) “ = ~.i~t(jV)
(13.a) For?= 1: N
(13.b) If (unifo <p) then
(13.C) j = uint(k)”
(13.d) If (~~== Z~-l) ~j = 1

(la.e) & =&+ At “Sj

(14) X,+*= compose(Xt, X)
(15) x;= argmin{~(Z~_l), ~(z~), ..., ~(~i)} and K = ~(Z)
(16) If (j(z;) < ~(z;-l))
(17) v = {0}’
(18) If (3S c S s.t. Z; = Z;.-l + s) & = &-I *‘2

(N) ElseIf (Ivl== k)
b: {O}k(20) v

(21) = At-1/2
(22) Else
(23) At = At_l
(24) Until (A, < Al~)

Figure 2: A simple EPSA using multinominal mutation.

This performs a random selection of the mutation steps, potentially applying multiple mu-
tation steps. This is roughly equivalent to the binomial mutation [7] that is commonly used
in genetic algorithms (see Section 3). Suppose that S = &td = {el, —cl, ..., e~, —en}. The

method used to implement mutation in Figure 2 is equivalent to the mdtinomial mutation
operator described by Hart [7], which mutates a single dimension at a time.

3 EPSA Design

Although the definition of EPSAS is broad enough to encompass a wide range of algorithmic
options, the. convergence analysis for these methods provides little insight into what types
of algorithmic designs will provide the best empirical performance. In Hart [7] we examined
algorithmic factors likely to impact the empirical performance EPSAS, like the choice of the
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(a) (b)

Figure 3: Illustrations of sets of mutation offsets: (a) standard mutation offsets and (b)
regular simplex mutation offsets.

mutation operator and the effect of crossover.

In this work we address two additional factors. First we evaluate the utility “ofallowing
the step length to be expanded or contracted. In our previous experimental analysis the step
length was only contracted, but the convergence theory allows for step length expansion
as well. We consider a simple step length expansion policy: if a mutation step from the
best point yields an improvement then expand the step length. Expansion allows an EPSA
to follow a descent direction more rapidly. However, this may also limit the rate at which
an EPSA converges to a stationary point. Consequently, it is unclear whether the this
algorithmic factor is beneficial.

Secondly we consider the set of mutation steps used in the EPSA. The generalized con-
vergence theory requires that the set of mutation offsets form a positive basis of the search
domain. The positive span of a set of vectors {al,..., a.} is the cone {a E R-’ ] a =
clal +... +~a,jq z O Vi}. The set {al,..., ar} is positive independent if none of the ai’s
is a positive combination of the others. A positive basis is a positive independent set whose
positive span is Rn. A positive basis has at least n + 1 vectors and at most 2n vectors.

Figure 3 illustrates two sets of mutation offsets. Figure 3a depicts the standard mutation
offsets. This set of offsets uses S = &d = {cl, —cl, ..., e., –en}. Hence, the mutation steps
are parallel to coordinate axes. Sstd contains 2n mutation offsets, so it forms a ma..imal
positive basis. Figure 3b depicts a set of mutation offsets that form a minimal positive basis.
The n + 1 mutation offsets are defined by vectors from the centroid of a regular simplex
to each of its corners. This set of mutation offsets consists of ayes that are separated by
an angle of 120 degrees. The regular simplex is an equilateral triangle in two dimensions, a
tetrahedron in three dimensions, and so on. In n dimensions regular simplez mutation ojjlsets

can be derived using the method defined by Spendley, Hext, and Himsworth [12].
Finally, we consider the impact of the manner in which mutation offsets are chosen. We

have previously identified two different ways of randomly selecting mutation offsets. The
multinomial method selects a single mutation offset uniformly at random. For the standard
set of mutation offsets, this corresponds to mutating a single dimension. For the regular set
of mutation offsets, this corresponds to adding a vector to the point.

The binomial method randomly selects each mutation offset with a fixed probability, and
the final mutation offset is the vector sum of these mutation offsets. For the standard set
of mutation offsets this requires checks to prevent the selection of pairs of mutation offsets
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that add to zero., More,generally, abinomial mutation operator must avoid selecting a set
of mutation offsets that add to a zero vector. In the case of the regular simplex mutation
offsets, this can only happen if all the offsets are selected.

The manner in which offsets are chosen may affect the EPSA’S ability to follow a descent
direction. Because the binomial method generates a larger number of mutation offsets, using
it will result in a less focused search. Because the multinominal method facilitates a more
focused search, it is reasonable to expect that it leads to a more localized search. We have
previously shown that use of the multinominal method increases the rate at which mutation
steps are adapted, which was confirmed by the faster convergence observed in preliminary
experiments [7]. We revisit the selection of mutated components in this work in order to
study the interaction between the set of mutation offsets employed and this factor.

4 Experimental Evaluation

4.1 Methods

Experiments were run with the EPSA varying 4 different algorithmic factors. These factors
were (1) a crossover rate of O%or 80%, (2) standard or regular simplex mutation offsets, (3)
step length expansion allowed or not allowed, and (4) binomial or multinominal selection of
mutated components. For both EP and EPSA tests, we used a population size of 50, and
for each problem the number of trials was 50. When the EPSAS use multinominal mutation,
the mutation operator is always applied, and when the EPSAS use binomial mutation, the
mutation operator is applied at a rate 10Yo.Thus the expected number of mutations is the
same for both methods. The mutation rate for multinominal mutation The initial step length
for EPS.ASwas set to 20, and they were terminated when the mutation step length fell below
a threshold of 10–8.

We setup the EP step length parameters to correspond to the step lengths for the EPS.4.
Specifically, we selected the initial vectors a: so that the expected distance of mutation was
equal to 20. Consider the jth point in the initial population. An EP/ES performs mutation
in each dimension by adding the vector of offsets IV(O,o), and in the initial population the
vector CTis typically initialized to a vector of constant values, so c;(i) = t?.

Now the sum of the squares of n normally distributed random variables is a chi-squared
variate [3], so

n n

ZN(0,5)’ = ‘2fs ~ IV(O, 1)2 = 52X2(7Z).
i= 1 i=l

The positive square root of the chi-squared variate X’(n) has expectation 2112r[(n+l)/2]/I’[n/2],
where 17is the gamma function [3]. Thus we have

For large n, this expectations approaches @ D. For the value n = 10, the expectation is
approximately 3.0846.
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Thus we set ,6 = 6.485 to make the expected initial step length for EP equal to 20.
For the EP we also bounded the ~i values below by 10-8/~, which keeps the step length

above 10-8, This makes the comparison between EPSA and EP fair by not allowingthe
EP to shrink its step length below the step length of the EPSA. The EP was terminated

after 700000 function evaluations, and performance comparisons between EPSA and EP were
made based upon the termination point for EPSA.

We used five well-understood test functions were used in our experiments. We used the
standard test functions: Griewank, Ackley, Rastrigin and a simple quadratic. These test
functions were resealed so their domain was [–100, 100] and 10-dimensional versions of these
problems were used. Experiments were also run with a function F24, which is a quadratic
that has been resealed along each coordinate axis: F24(z) = 10 x~=l (i + 1)2X?.This problem
is also used over the domain [–100, 100]lO.

Our experimental analysis considers two performance metrics for EPSA: the number
of function evaluations until they terminate and the value of the best solution found. To
provide a consistent method of comparison across different test functions, we ranked these
performance metrics for different combinations of algorithmic factors. For example: to
evaluate the impact of mutation offsets and mutation selection methods, we considered all
combinations of the other algorithmic factors. For each combination of factors we ranked
the results of all combinations of mutation offsets and mutation selection methods. These
relative ranks provide a metric for evaluating the impact of only those factors that are being
compared.

4.2 Results

4.2.1 Effects of Crossover and Step Expansion

Figures 4 and 5 illustrate how the use of crossover uniformly increased the number of function
evaluations required for convergence of the EPSA while providing better solutions. We
examined the data further to identify interactions between crossover and mutation offsets. It
seemed that crossover was most successful when used in conjunction with the regular simplex
mutation offsets, typically producing the best-ranked solutions overall. Among the worst
ranked results overall were those that used the regular mutation offset without crossover.
However, neither of these interactions was consistent in all cases.

As shown in Figure 6, using expansion consistently results in more function evaluations to
convergence. However, there appeared to be no correlation between expansion and relative
ranking of final solutions. Thus using expansion in EPSAS does appear to be helpful.

4.2.2 Mutation Effects

Figures 7 and 8 illustrate the effect of varying the set of mutation offsets with the method
of selecting mutation offsets. EPSAS generally terminated sooner when using multinominal
selection of mutated components with the regular simplex mutation offsets. However, there
is less of a distinct trend when we consider the relative rank of the final solutions. For the
Rastrigin problem, using the regular mutation offsets is better, which probably reflects the
strong coordinate bias in this problem. Also, the use of the regular simplex mutation offsets
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Figure 4: Number of function evaluations to convergence with and without crossover. Name

of the test function appears above the crossover rate for plot.
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Figure 6: Relative rank of number of function evaluations by expansion.
appears above 1 for expansion used, above Ootherwise.

with binomial mutation seems to help the EPSA find the best solutions in
test cases, although not necessarily consistently so (e.g. see F24).

4.2.3 Comparison with EP

Function name

three of the five

In Figure 9 we see combined results that show the relative quality of the final solutions
reached by EPSAS and EPs. We compare the final values from the EPSAS using the regular
simplex mutation offsets, no expansion, multinominal selection of mutation offsets, and using
both crossover and noncrossover. We compare these results with the best results obtained
by an EP. We consider the EP’s results at three stopping points: (a) at the median number
of function evaluations for the EPSA without crossover, (b) at the median number of func-
tion evaluations for the EPSA with crossover, and (c) at the maximum number of allowed
function evaluations (700,000). Thus we can make direct comparisons between the EP to
the EPSAS with and without crossover, as well as consider whether running the EP longer
would ultimately find better solutions. In these results, the EPSA consistently outperforms

the EP, even when the EP is allowed to run for substantially longer than the EPSA.

5 Conclusions

Our experiments confirm our previous observation that an EPSA using crossover can find
better solutions, but at the expense of slower convergence [7]. Further, it is clear from these
experiments that EPSAS converge more quickly if they can reduce mutation step length
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offsets and selection of mutated components.
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Figure 8: Relative rank of final solutions by combination of mutation offset and selection of

mutated components.
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Figure 9: Performance of EP vs EPSA. Function name appears above name of method.
Bottom row consists of crossover rate (for EPSA plots) or number of function evaluations
(for EP plots). FINAL denotes EP terminated on maximum number of function evaluations.
Comparisons between EPSA and EP results for the same number of function evaluations can
be made by considering pairs of consecutive EPSA and EP results.

while considering fewer mutation steps. Thus these results suggest that EPS.AS using the
regular set of mutation offsets and the multinominal selection of mutated components are
the most effective design for EPSA. These EPSA examine the fewest number of mutation
offsets before reducing the step length, and in most of our problems this type of EPS.\ found
solutions that are as good as any of the other EPS.4S. Finally, the comparison between this
EPSA and a canonical EP indicates that better solutions can be obtained by EPS.AS with
fewer function evaluations.

Our algorithmic analysis needs to be extended in several ways. First, we need to consider

other algorithmic factors, such as the way in which competitive selection is performed, to

evaluate their effecton EPSAS.Further, weneed to performa broader comparisonof EP and
EPSASon real applications to evaluate whether the performance difference here is robust. We
have also begun to extend these results to include an analysis of the robustness of convergence
for EP and EPSAS, as well as their applicability to bound-constrained problems.
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