
A Genetic Algorithm for Minimax Optimization Problems
Jeffrey W. Herrmann

Department of Mechanical Engineering
and Institute for Systems Research

University of Maryland
College Park, Maryland 20742

jwh2@eng.umd.edu

Abstract- Robust discrete optimization is a technique for
structuring uncertainty in the decision-making process.
The objective is to find a robust solution that has the best
worst-case performance over a set of possible scenarios.
However, this is a difficult optimization problem. This pa-
per proposes a two-space genetic algorithm as a general
technique to solve minimax optimization problems. This
algorithm maintains two populations. The first popula-
tion represents solutions. The second population repre-
sents scenarios. An individual in one population is eval-
uated with respect to the individuals in the other popu-
lation. The populations evolve simultaneously, and they
converge to a robust solution and its worst-case scenario.
Since minimax optimization problems occur in many ar-
eas, the algorithm will have a wide variety of applications.
To illustrate its potential, we use the two-space genetic
algorithm to solve a parallel machine scheduling prob-
lem with uncertain processing times. Experimental re-
sults show that the two-space genetic algorithm can find
robust solutions.

1 Introduction

Many decisions involve uncertainty. Recently, researchers
have begun to study such problems and to develop approaches
for finding robust solutions that have the best worst-case per-
formance over a set of possible scenarios. However, this is a
difficult optimization problem, and no general techniques ex-
ist. Kouvelis and Yu [9] discuss approaches for handling un-
certainty, and they review robust discrete optimization prob-
lems, complexity results, and solution procedures.

This paper proposes a two-space genetic algorithm as a
general technique to solve minimax optimization problems.
This algorithm maintains two populations. The first popula-
tion represents solutions. The second population represents
scenarios. An individual in one population is evaluated with
respect to the individuals in the other population. This causes
the algorithm to converge to the robust solution and its worst-
case sceanrio. Since minimax optimization problems occur in
many areas, the algorithm will have a wide variety of appli-
cations. To illustrate the algorithm’s potential, we use the al-
gorithm to solve a parallel machine scheduling problem with
uncertain processing times. The objective is to find a sched-
ule that minimizes the worst-case makespan. Experimental
results show the two-space genetic algorithm can find robust
solutions.

The remainder of this paper is structured as follows: Sec-
tion 2 describes robust discrete optimization problems. Sec-
tion 3 presents the two-space genetic algorithm. Section 4
describes the parallel machine scheduling problem. Section 5
presents the experimental results. Section 6 concludes the pa-
per by identifying topics for future research that could extend
the algorithm’s utility.

2 Robust Discrete Optimization Problems

Making decisions under uncertainty is a difficult problem.
However, accepting and structuring uncertainty can lead to
effective decision-making. Stochastic optimization recog-
nizes uncertainty but asks the decision-maker to assign prob-
ability distributions to possible outcomes. Then, after solving
the associated optimization problem, one can select the deci-
sion that has the best average performance over time or one
can select the decision that has the best performance in the
expected outcome.

Robust discrete optimization, on the other hand, seeks to
identify decisions that will perform well under any circum-
stances. Although many criteria are available, one reasonable
choice is the minimax criterion, which allows one to identify
a robust decision (or solution) as one that has the best worst-
case performance.

Robust discrete optimization (as described by Kouvelis
and Yu [9]) uses scenarios to structure uncertainty. Decision-
makers must use their intuition about the decision environ-
ment to define a set of scenarios. Each scenario in this set
represents a possible future. That is, the scenario occurs with
some positive but unknown probability.

In general, a robust discrete optimization problem can be
formulated as follows. Let X be the set of all solutions. Let
S be the set of all possible scenarios. The performance of a
solution x ∈ X in scenario s ∈ S is F (x, s). The problem is
to find the solution that has the best worst-case performance,
which is the same as minimizing (over all solutions) the max-
imum (over all scenarios) performance:

min
x∈X

max
s∈S

F (x, s)

In general, robust discrete optimization problems are more
difficult to solve than the deterministic versions that have
no uncertainty. The robust discrete optimization versions of
many polynomially solvable optimization problems are NP-
hard, although some easily solvable cases do exist. (For re-
sults in the more general area of minimax theory, see Du and



Pardalos [3].)
Kouvelis and Yu [9] describe a branch-and-bound algo-

rithm that uses surrogate relaxation to generate bounds, and
they use this procedure to solve four robust optimization
problems. However, there are no general techniques for solv-
ing robust discrete optimization problems.

Some authors have proposed genetic algorithms for prob-
lems with uncertainty. (For more information on genetic
algorithms, see, for example, [2, 4, 7, 12].) Tsutsui and
Ghosh [16] present a genetic algorithm that applies noise to
the decoding procedure. This allows the algorithm to find so-
lutions whose performance is insensitive to small changes in
the solution values. They present results for some functions
on one- and two-dimensional search spaces. However, they
do not explicitly consider the scenarios present in robust dis-
crete optimization problems.

The design of robust control systems is an important re-
lated area, and a few authors have proposed genetic algo-
rithms for this problem. Taranto and Falcao [15] consider
robust decentralized power system damping controllers and
use a genetic algorithm to find designs that maximize the sum
of the spectrum damping ratio over all operating conditions.
Marrison and Stengel [10] measure compensator robustness
as the probability that the system will behave unacceptably.
They use a genetic algorithm to find parameter values that
minimize this probability. This is a stochastic optimization
approach, though their genetic algorithm does handle uncer-
tainty in estimating the cost function, which cannot be eval-
uated directly. Tang, Man, and Gu [14] use a genetic algo-
rithm to search for distillation column controllers that per-
form well for all possible plant characteristics. For a problem
with four plants, they formulate a multiple objective prob-
lem and use the genetic algorithm to find non-dominated so-
lutions. The authors note that, when there is a large set of
scenarios, the problem of efficiently determining a solution’s
worst-case performance still remains. This is the problem that
the two-space genetic algorithm addresses.

3 Two-space Genetic Algorithm

We propose a two-space genetic algorithm for finding good
solutions to minimax optimization problems. This section
will first present the two-space genetic algorithm and then
discuss the motivation behind it.

The two-space genetic algorithm maintains two distinct
populations: P1 has individuals that represent solutions in X ,
and P2 has individuals that represent solutions in S. For a
solution x in P1, the objective function h(x) evaluates that
solution’s worst-case performance with respect to the second
population:

h(x) = max{F (x, s) : s ∈ P2}

The algorithm penalizes large h(x) and rewards small h(x),
so solutions with better worst-case performance will survive.

Similarly, for a scenario s in P2, the objective function

g(s) evaluates the best solution in the first population:

g(s) = min{F (x, s) : x ∈ P1}

The algorithm penalizes small g(s) and rewards large g(s),
so scenarios with worse optimal solutions will survive.

For instance, consider Example 1, which displays hypo-
thetical populations of solutions and scenarios. The entry in
each cell of the table is F (xi, sj). x1 is more likely to survive
since it has the best worst-case performance (h(x1) = 8), and
s3 is more likely to survive since it has a poor optimal solu-
tion (g(s3) = 8).

Example 1
Scenario

Solution s1 s2 s3 h(xi)
x1 4 7 8 8
x2 2 10 9 10
x3 9 6 10 10

g(sj) 2 6 8
A traditional, simple genetic algorithm has the following

steps:

1. Create initial generation P (0). Let t = 0.

2. For each individual i ∈ P (t), evaluate its fitness f(i).

3. Create generation P (t+1) by reproduction, crossover,
and mutation.

4. Let t = t + 1. Unless t equals the maximum number
of generations, return to Step 2.

The two-space genetic algorithm can be summarized as
follows:

1. Create initial generations P1(0) and P2(0). Let t = 0.

2. For each individual x ∈ P1(t), evaluate h(x) =
max{F (x, s) : s ∈ P2(t)}.

3. For each individual s ∈ P2(t), evaluate g(s) =
min{F (x, s) : x ∈ P1(t)}.

4. Create generation P1(t+1) by reproduction, crossover,
and mutation.

5. Create generation P2(t+1) by reproduction, crossover,
and mutation.

6. Let t = t + 1. Unless t equals the maximum number
of generations, return to Step 2.

This algorithm is motivated by the need to search two
spaces, X and S, when it is not possible to identify, in reason-
able time, the worst-case performance of a solution. If the set
S is not large, then, while searching the set X , one could eva-
lute maxs∈S F (x, s) for each solution x that the search finds.
If the set S is large, however, repeatedly searching S to de-
termine maxs∈S F (x, s) will lead to excessive computational
effort.



The two-space genetic algorithm reduces the computa-
tional effort needed. It takes a sample population from the
set of scenarios and allows this to evolve while the algorithm
is searching for solutions. Thus, it searches two spaces simul-
taneously. Moreover, it is evaluating the solutions in parallel,
since it uses the same scenarios for all solutions.

The chosen objective functions encourage the two-space
genetic algorithm to converge to a robust solution. Although
we do not prove the convergence, the following argument pro-
vides the necessary insight. Suppose that there exists a solu-
tion z ∈ X and a scenario t ∈ S such that

F (z, t) = min
x∈X

F (x, t) = max
s∈S

F (z, s)

Consequently,

F (z, t) = min
x∈X

max
s∈S

F (x, s) = max
s∈S

min
x∈X

F (x, s)

If the initial populations are sufficiently large, then for all
x ∈ P1, h(x) is approximately maxs∈S F (x, s). Likewise,
for all s ∈ P2, g(s) is approximately minx∈X F (x, s). Thus,
the populations are likely to converge towards z and t.

Now, consider any generation such that z is in P1 and t
is in P2. Then, h(z) = F (z, t) and g(t) = F (z, t). For all
other x ∈ P1, h(x) ≥ F (x, t) ≥ F (z, t) = h(z). Thus,
z is more likely to survive. Similarly, for all other s ∈ P2,
g(s) ≤ F (z, s) ≤ F (z, t) = g(t). Thus, t is more likely to
survive.

Consequently, we can see that, in this case, the genetic
algorithm will converge to z, the most robust solution, and t,
that solution’s worst-case scenario.

To test its potential, we used the two-space genetic algo-
rithm to solve a specific robust discrete optimization prob-
lem. Before discussing the implementation details for the
two-space genetic algorithm, we will present the scheduling
problem under consideration.

4 Parallel Machine Scheduling

There are a wide variety of parallel machine scheduling prob-
lems. Pinedo [13] provides a review of the most important
research results. Most previous work has considered deter-
ministic scheduling, where all information is known ahead of
time, and stochastic scheduling, where some information has
a known probability distribution. We will consider a prob-
lem with more general uncertainty. Previously, Daniels and
Kouvelis [1] and Kouvelis et al. [8] have studied schedul-
ing problems with uncertain processing times and developed
methods to optimize the worst-case performance. In addition,
researchers have developed genetic algorithms to find good
solutions to deterministic scheduling and sequencing prob-
lems (see, for example, [5, 6, 11]).

We will consider the following problem. There is a finite
set of jobs and a set of parallel, identical machines. All jobs
are available at the current time. Each job requires processing
on any one of the machines. Each job’s processing time is

uncertain. The only available data are a lower bound and an
upper bound on the required time. The problem is to create a
schedule that minimizes the total time needed to complete all
jobs. No preemption is allowed. No rescheduling can occur
once processing begins.

Let {J1, . . . , Jn} be the set of jobs. Each job Jj has a
minimum processing time pj and a maximum processing time
qj , where 0 < pj < qj . There are m machines M1, ...,
Mm. The decision variables are the nm binary variables xjk ,
where xjk = 1 if and only if Jj is assigned to machine Mk.
An assignment x is a feasible assignment (or solution) if, for
each job Jj ,

∑m
k=1 xjk = 1. Let X be the set of all solutions.

A scenario s is a combination of realized processing times.
Thus, s = (ps

1, . . . , p
s
n). For each job Jj , pj ≤ ps

j ≤ qj . S is
the set of all possible scenarios.

F (x, s) is the makespan of a solution x in scenario s. The
makespan is the maximum total processing time on any ma-
chine:

F (x, s) = max
1≤k≤m

{
n∑

j=1

xjkps
j}

The problem is to minimize (over all schedules) the maxi-
mum possible makespan:

min
x∈X

max
s∈S

F (x, s)

We will use the two-space genetic algorithm to find robust
solutions.

For this simple problem it is easy to find the worst-case
scenario, and thus we can judge the two-space genetic al-
gorithm’s performance. Note that, for any solution, one
of its worst-case scenarios is the one when all jobs require
their maximum processing time. Let t represent this sce-
nario: t = (q1, . . . , qn). Then, F (x, t) = maxs∈S F (x, s).
Thus, minx∈X F (x, t) is the minimum worst-case perfor-
mance. A lower bound on this worst-case performance is
La = 1

m

∑n
j=1 qj . In the experiments described later, we will

consider instances with four machines and nine jobs. Thus,
at least one machine will have at least three jobs. A second
lower bound is the sum of the three smallest maximum pro-
cessing times: Lb = q1 + q2 + q3, if we number the jobs so
that q1 ≤ q2 ≤ q3 ≤ . . . ≤ qn. L = max{La, Lb} combines
these lower bounds for minx∈X F (x, t).

5 Experimental Results

To implement the two-space genetic algorithm, we used
GENESIS, a genetic algorithm software developed by John
J. Grefenstette. We modified the code so that the algorithm
creates and maintains two populations. Each individual in
each population is evaluated with respect to the individuals in
the other population. Each run of the algorithm created 100
generations of each population. Each population had 50 indi-
viduals. The algorithm used an elitist strategy that copied the
best individual in one generation to the next generation.



Recall that a solution assigns every job to a machine, and a
scenario is a combination of processing times. The objective
is to minimize the worst-case schedule makespan.

5.1 Problem Generation

We tested the two-space genetic algorithm on randomly gen-
erated problem instances. All instances had m = 4 identi-
cal parallel machines. We created various problem sets, each
with ten instances. Various parameters governed the instance
generation. The problem size was n = 9 jobs. The param-
eters α1 and α2 governed the processing times. Each job’s
minimum processing time pj was selected from a uniform
distribution with the range [10, 50α1]. α1 equals 0.2, 0.6, or
1.0. Each job’s maximum delay dj was selected from a uni-
form distribution with the range [0, α2pj]. α2 equals 0.2, 0.6,
or 1.0. The maximum processing time qj = pj + dj .

Each set of ten instances can be denoted by the combina-
tion of the parameter values. We used all nine combinations
of α1 and α2. Thus, there were 90 instances altogether.

To solve these problems, the genetic algorithm uses 27-bit
strings. Each individual in both populations has nine genes,
one for each job. Each gene contains three bits. Individuals in
the first population represent assignments. After transform-
ing the gene’s value to an integer in the set 1, . . . , m, gene j
identifies a machine k, and the job is assigned to that machine.
That is, xjk = 1 and xjp = 0 if p �= k. Each individual in the
second population represents a scenario s. After transform-
ing the gene’s value to a real number in the interval [p j , qj ],
gene j describes the job’s realized processing time ps

j .

5.2 Results

To evaluate the algorithm, we compare the solutions to the
lower bound L, as described in Section 4. In addition, we
used a standard version of GENESIS to find good solutions
to the problem minx∈X F (x, t). Recall that scenario t is the
worst-case scenario, and the optimal makespan of this prob-
lem is the optimal makespan to the robust scheduling prob-
lem.

All results are relative to the lower bounds and averaged
over the ten instances in the problem set. If, for each in-
stance i = 1, . . . , 10, an algorithm finds a solution x∗

i whose
worst-case performance is h(x∗

i ), and the lower bound for
that instance is Li, then, the algorithm’s average relative per-
formance is H :

H =
1
10

10∑

i=1

h(x∗
i )

Li
.

Table 1 lists the results. The deviation from the lower bound
is the same for both algorithms. This shows that the two-
space genetic algorithm is able to find robust solutions.

Problem Set Two-space Worst-case
n α1 α2 Genetic Algorithm Optimization
9 0.2 0.2 1.000 1.000
9 0.2 0.6 1.002 1.008
9 0.2 1.0 1.028 1.037
9 0.6 0.2 1.044 1.041
9 0.6 0.6 1.058 1.047
9 0.6 1.0 1.053 1.053
9 1.0 0.2 1.056 1.064
9 1.0 0.6 1.068 1.062
9 1.0 1.0 1.062 1.062

Table 1: Results for the Parallel Machine Scheduling Problem

6 Summary and Conclusions

This paper presented a two-space genetic algorithm and sug-
gested that it can be a general technique for solving minimax
and robust discrete optimization problems. The two-space
genetic algorithm should be useful for solving minimax op-
timization problems in a wide variety of domains. It will be
particularly useful when determining the worst-case scenario
is a difficult problem due to the number of scenarios.

To illustrate its potential, we used the algorithm to solve
a parallel machine scheduling problem with uncertain pro-
cessing times. For this particular problem, we can find good
lower bounds and thus evaluate the algorithm’s performance.
The results show that a two-space genetic algorithm is a very
suitable technique for robust discrete optimization problems
such as these. For the specific problem considered here, one
can verify that there exists a solution z ∈ X and a scenario
t ∈ S such that

F (z, t) = min
x∈X

F (x, t) = max
s∈S

F (z, s)

However, the algorithm may require adjustment to solve
problems when this condition does not hold. Preliminary re-
sults suggest that maintaining diversity in the population of
scenarios may be necessary. If the second population con-
verges to just one scenario, the first population will converge
to the solutions that are optimal for that scenario. However,
these solutions may have terrible performance on other sce-
narios. Evaluating how often a scenario is a worst-case sce-
nario may be an appropriate objective function, and sharing
mechanisms can maintain a variety of worst-case scenarios in
the second population. This yields a more accurate evalua-
tion of the individuals in the first population and causes it to
converge to truly robust solutions.

Another possibility is to give each individual a memory so
that, if an individual survives intact from one generation to
the next, it can compare its performance (with respect to the
current population of scenarios) to its worst-case performance
in the past. This also yields more accurate evaluations.



Bibliography

[1] Daniels, R.L., and P. Kouvelis, “Robust scheduling to
hedge against processing time uncertainty in single-
stage production,” Management Science, Volume 41,
Number 2, pages 363-376, 1995.

[2] Davis, L., ed., Handbook of Genetic Algorithms, Van
Nostrand Rheinhold, New York, 1991.

[3] Du, Ding-Zhu, and Panos M. Pardalos, Minimax and
Applications, Kluwer Academic Publishers, Dordrecht,
1995.

[4] Goldberg, D.E., Genetic Algorithms in Search, Op-
timization, and Machine Learning, Addison-Wesley,
Reading, Massachusetts, 1989.

[5] Herrmann, Jeffrey W., and Chung-Yee Lee, “Solving
a class scheduling problem with a genetic algorithm,”
ORSA Journal of Computing, Vol. 7, No. 4, 1995.

[6] Herrmann, Jeffrey W., Chung-Yee Lee, and Jim Hinch-
man, “Global job shop scheduling with a genetic algo-
rithm,” Production and Operations Management, Vol-
ume 4, Number 1, pp. 30-45, 1995.

[7] Holland, J.H., Adaptation in Natural and Artificial Sys-
tems, University of Michigan Press, Ann Arbor, Michi-
gan, 1975.

[8] Kouvelis, P., and R.L. Daniels, and G. Vairaktarakis,
“Robust scheduling of a two-machine flow shop with
uncertain processing times,” working paper, Fuqua
School of Business, Duke University, 1996.

[9] Kouvelis, Panos, and Gang Yu, Robust Discrete Opti-
mization and Its Applications, Kluwer Academic Pub-
lishers, Norwell, MA, 1997.

[10] Marrison, Christopher, and Robert F. Stengel, “Robust
control system design using random search and genetic
algorithms,” IEEE Transactions on Automatic Control,
Volume 42, Number 6, pages 835-839, 1997.

[11] Mattfeld, Dirk C., Evolutionary search and the job shop
: investigations on genetic algorithms for production
scheduling, Heidelberg : Physica-Verlag, 1996.

[12] Michalewicz, Zbigniew, Genetic Algorithms + Data
Structures = Evolution Programs, Springer-Verlag,
Berlin, 1992.

[13] Pinedo, Michael, Scheduling : theory, algorithms, and
systems, Englewood Cliffs, N.J.: Prentice Hall, 1995.

[14] Tang, K.S., K.F. Man, and D.-W. Gu, “Structured ge-
netic algorithm for robust H-infinity control systems
design,” IEEE Transactions on Industrial Electronics,
Volume 43, Number 5, pages 575-582, 1996.

[15] Taranto, G.N., and D.M. Falcao, “Robust decentralised
control design using genetic algorithms in power sys-
tem damping control,” IEE Proceedings. Generation,
Transmissions, and Distribution, Volume 145, Num-
ber 1, pages 1-6, 1998.

[16] Tsutsui, Shigeyoshi, and Ashish Ghosh, “Genetic algo-
rithms with a robust solution searching scheme,” IEEE
Transactions on Evolutionary Computation, Volume 1,
Number 3, pages 201-208, 1997.


