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1 Motivation

In most variants of Evolutionary Algorithms (EAs), multiple search points are considered each iteration.
In analogy to nature, the search points are called a population of (arti�cial) individuals. Due to the
fact that computers were slow and mostly sequential machines when these algorithms were developed,
the inherent parallelism of populations had to be serialized in the �rst implementations. Later on, when
parallel computers became a�ordable for universities, researchers began to parallelize EAs again. Since
the terminology of the sequential algorithms had more or less settled at that time, the parallel versions
were described by an extension of the sequential terminology where a generalization would have been
appropriate instead. Surprisingly, this generalization has not been done ever since, although there were
approaches to a common terminology of parallel EAs. The work described here is an attempt to provide a
uni�ed model of population structures, independently of their parallelization properties. This paper starts
with a brief overview of other approaches to model, classify, or analyze population structures. Then, a
general framework for the formal description of population structures is introduced, followed by examples
of common population structures expressed by means of the given model. Finally, as an application of
the formal framework, a method for calculating growth rates and takeover times of arbitrary population
structures is presented.

2 Parallelism and Population Structures

Traditional EAs allow each individual in a population to interact (compete or mate) with any other. In
biological terms, a population like this is called panmictic. This fully connected interaction scheme is not
very well suited for a parallel implementation.

On the other hand, parallelizing a sequential algorithm usually means that the parallel version, given
the same input as the original algorithm, produces the same output, as well. Since every parallel algorithm
can be run time sliced on a sequential machine, the maximum speed-up is limited linearly by the number
of processors. In other words, parallelization does not change the quality of results, it just delivers the
same results in less time.

Except for master/slave parallelization of �tness function evaluations, all parallel EA approaches
violate the same-input-same-output rule. The panmictic approach is replaced by structured populations
which can be evaluated in parallel with a reduced need for communication.

First attempts to a uni�ed terminology of non-panmictic population structures were made by Gorges-
Schleuter [1], who presented a rough classi�cation of parallel EAs. She identi�ed three major models of
parallelization in EAs:

� Island Model:
The population consists of separated subpopulations. Each subpopulation is a panmictic EA. A
limited amount of genetic information is exchanged between arbitrary subpopulations.

� Stepping Stone Model:
The population consists of separated, panmictic subpopulations. A non-total neighborhood relation
is de�ned on the subpopulations. A limited amount of genetic information is exchanged between
adjacent subpopulations.

� Neighborhood Model:
A non-total neighborhood relation is de�ned on the individuals. Individuals interact (mate, com-
pete) with adjacent individuals only.

Today, most authors do not discriminate between the island and stepping stone model. Instead,
either the term island model or migration model is used for an EA with panmictic subpopulations. The
neighborhood model is sometimes also called di�usion model.

In the past, work on population structures always emphasized a particular model. For panmictic
subpopulations, there are mostly empirical studies, e.g. [2, 3, 4, 5]. In a theoretical approach, Cant�u-Paz
[6] presented optimal subpopulation sizes for some special instances of Genetic Algorithms.

2



Neighborhood models were analyzed with respect to local selection schemes [7, 8] as well as neighbor-
hood shapes in grid topologies [9, 10].

3 A Hypergraph-Based Model of Population Structures

3.1 Hypergraphs

The de�nitions in this section base on the theory of hypergraphs as de�ned by Berge [11] in the 60s.
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Figure 1: A hypergraph with vertices X = f1; : : : ; 10g and edges E1 = f1; 2; 3; 4g, E2 = f2; 4; 7; 8g,
E3 = f8; 9; 10g, and E4 = f3; 4; 5; 6;7g.

Graphs are usually de�ned as sets of pairs of a base set. Elements of the base set are called vertices,
and pairs of vertices are called edges. The basic idea of hypergraphs is the extensions of edges from pairs
to arbitrary subsets of the set of vertices:

Def. 1 Let be X = fx1; x2; : : : ; xng a �nite set, and E = (Ei j i 2 I) a family of subsets of X. The family
E is called hypergraph on X, if

Ei 6= ; 8i 2 I (1)[
i2I

Ei = X : (2)

The pair H = (X; E) is called hypergraph, and jXj is the order of H.
Two vertices xk and xl of an hypergraph are adjacent, if they are contained in common edge, formally

9i : xk 2 Ei ^ xl 2 Ei : (3)

For each hypergraph H = (X; E), there exists a dual Hypergraph H� = (E;X ), with vertices e1; : : : ; em
and edges fX1; : : : ; Xng, given that:

8j 2 f1; : : : ; ng : Xj = feiji � m;Ei 3 xjg , (4)

where the vertices ei correspond with the edges Ei of H, and the edges Xj with the vertices xj of H,
respectively.
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3.2 Representations of Hypergraphs

The e�ciency of algorithms on simple graphs is usually based on a suitable representation of a given graph.
Many algorithms are de�ned on adjacence lists or adjacence matrices. These representations cannot be
easily transfered to hypergraphs, because the information which edge two vertices are connected by is
lost.

A loss-free representation of a hypergraph is its incidence matrix. The columns of the matrix represent
the edges of the hypergraph and the lines the vertices. If H is a hypergraph with edges m and vertices
n, then it is described by the matrix A with

ai;j =

(
1 if xi 2 Ej

0 else.
(5)

The indicidence matrix of the hypergraph given in Fig. 1 is

A =

0
BBBBBBBBBBBBBBBBBBBB@

1 0 0 0

1 1 0 0

1 0 0 1

1 1 0 1

0 0 0 1

0 0 0 1

0 1 0 1

0 1 1 0

0 0 1 0

0 0 1 0

1
CCCCCCCCCCCCCCCCCCCCA

The adjacence of two vertices xi and xk can be calculated as scalar product of the ith that kth row:

< ai;�; ak;� >= 1, 9Ej : xi 2 Ej ^ xk 2 Ej: (6)

The vertex adjacence matrix B with bi;k =< ai;�; ak;� > can be obtained as follows:

B = AA> (7)

Accordingly one can express the edge adjacence matrix as scalar product of the appropriate lines of the
incidence matrix. One receives the matrix as

B� = A>A: (8)

B� is as well the vertex adjacence matrix of the dual hypergraph H�. The matrix B�, for example, allows
the calculation of the diameter with

�(H) = minfkj
kX

i=0

B�i = Kng (9)

where Kn is the adjacence matrix of the complete (simple) graph with n vertices.

3.3 Modeling of Population Structures by Means of Neighborhood Graphs

Non-panmictic population models, as published in the past, usually base on regular geometric structures.
Frequently, rings, tori, or cubes are used to place the individuals or subpopulations on. Since all these
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structures can be described as meshes, there is already a natural notion of adjacency. For neighborhood
models, the most popular population layout is a two-dimensional grid folded to a torus.

The neighborhood relation in torus shaped populations is not necessarily limited to adjoining mesh
point, but it is more often de�ned by means of a distance measure in a two-dimensional plane. Clearly,
once the neighborhood relation is given, it can be represented by a graph. While a graph representation
seems to be appropriate for neighborhood models, it does not very well reect the structure of coarse
grained models. A neighborhood graph of a migration model contains large cliques, i.e. fully connected
subgraphs. A formal de�nition of populations structures by means of graphs is omitted here in favor to
the following, more general model which is based on the theory of hypergraphs.

4 Modeling of Population Structures by Means of Hypergraphs

4.1 De�nitions

Before we give a de�nition of population structures, we must state what a population is in this context:

Def. 2 Let be A the search space of a given objective function, S the space of additional state information
needed by the optimization algorithm under consideration. Then an element of the familyA�S is called
an individual. A family of individuals (pt0; : : : ; p

t
��1); p

t
i 2 A�S is called population at time t or population

at generation t.

The state information may contain, e.g., the mutation variances of an Evolution Strategy.
Since the actual values of individuals are not needed for the de�nition of population structures, it is

su�cient to identify individuals by their indices in the population.

Def. 3 A population structure � on a population P with jP j = � is a triple (X; E ;Q), consisting of a
hypergraph (X; E); X = f0; : : : ; � � 1g; E � P(X), and a partition Q � P(X ) of X with jQj = jEj. The
hyperedge Ei is called deme of the elements from Qi 2 Q.

As the term deme indicates, each hyperedge contains the potential parents of the individuals in the
corresponding element of the partition. The duality of hypergraph is also reected by the de�nition
of population structures. Since the partition Q can be also interpreted as a hypergraph, there are two
matrices associated with population structures:

� E 2 IB(��m): Incidence matrix of the hypergraph (X; E).

� Q 2 IB(��m): Incidence matrix of the hypergraph (X;Q).

Consider the relation i is a potential parent of j. The adjacence matrix of the associated simple graph
can be written as

A = EQ
>
2 IB(���); � = jXj (10)

. Lets calls this matrix the individual adjacence matrix. The dual matrix, the deme adjacence matrix,
describes the relation Qi has potential o�spring in Qj. It can be calculated as

A� = Q
>
E 2 IB(m�m); m = jQj (11)

As can be seen, this modeling approach adjusts to the scale of a particular population structure.

Def. 4 A path from i to j in a population structure � = (X; E ;Q) is a �nite sequence of 2-tuples
(i� ; j�); � = 0; : : : ; l with i0 = i; jl = j; and i� 2 Qk ) j��1 2 Ek; 1 � � � l. The value l is the length of
the path (i� ; j�).

If there exists a path from i to j, there is at least one shortest path. The longest shortest path
between two individuals is called the diameter of the population structure. Obviously, the diameter is as
well the elitist takeover time of a population structure. The diameter can be calculated as the diameter
of the simple graph G with (x; y) 2 G if 9� 2 �ZZ : x 2 E� \ y 2 Q� . Let be E the incidence matrix

of H = (X; E), Q the incidence matrix of J = (X;Q). Since gi;j =
PN�1

i=0 ex;i � qi;y =< hx;�; q�;y >, the

adjacence matrix of G is EQ
>
.
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5 Hypergraph Models of Population Structures

5.1 Panmixis

The most common population structure in Evolutionary Algorithms is panmictic:

�pan = (X; E ;Q)

X = (0; : : : ; �� 1)

Q = (X)

E = (X)

(12)

5.2 Migration and Pollination

In the following, the population structure of a migration model without isolation is presented. Let be
P = f0; : : : ; � � 1g; � 2 IN a population, r 2 IN the number of subpopulations with � = r�; r; � 2 IN,
and m 2 f1; : : : ; �g the number of migrants between adjacent subpopulations. The subpopulations are
Qi = fi�; : : : ; i� + � � 1g; i = 0; : : : ; r � 1.

Let be Ms!t the set of migrants from subpopulation Qs to subpopulation Qt. If Ms!t 6= ;, there is
a migration path from Qs to Qt.

A proper model of migration does not keep the migrants in their source subpopulation after migration,
i.e. the migrants are not in the set of potential parents of their successors. This is modeled by subtracting
the set of migrants from their source populations hyperedge. The migration model can now be described
as follows:

�migr = (X; E ;Q)

X = (0; : : : ; �� 1)

Qi = fi�; : : : ; i� + � � 1g

E = (E0; : : : ; Er�1)

Ei = Qi [
Sr�1

s=0Ms!i n
Sr�1
t=0 Mi!t;

Ms!i � Qs; Mi!t � Qi

(13)

If the subtraction of the migrants is omitted, one obtains a pollination model:

�poll = (X; E ;Q)

X = (0; : : : ; �� 1)

Qi = fi�; : : : ; i� + � � 1g

E = (E0; : : : ; Er�1)

Ei = Qi [
Sr�1

s=0Ms!i; Ms!i � Qs

(14)

The di�erence to the model above is that the migrants are also potential parents of the next generation of
their source subpopulation. Since genetic information is copied instead of moved, the biological analogy of
plants spreading pollen is more accurate than that of migrating animals. A pollination model is sketched
in Fig. 2, with

X = f0; : : : ; 15g

Q = ff0; : : : ; 3g; f4; : : :; 7g; f8; : : : ; 11g; f12; : : :; 15gg

E = ff0; : : : ; 3; 5; 14g; f4; : : :; 7; 3; 10g; f8; : : :; 11; 4; 15g;f12; : : : ; 15; 0; 9gg

(15)
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Figure 2: Sketch of a pollination population structure with four subpopulations in a ring. For the sake
of clarity, the hyperedges E0 and E3 are omitted.

5.3 Fine Grained Models

The majority of the �ne grained approaches published in literature uses grid or torus topologies. The
neighborhood relation is derived from a topological measure. A simple yet widely used topology, a
one-dimensional ring with � individuals and a neighborhood radius of �, is described by the following
population structure:

�ring = (X; E ;Q)

X = (0; : : : ; �� 1)

Q = (fx0g; : : : ; fx��1g)

E = (E0; : : : ; E��1)

Ei = (i
�

� �; : : : ; i
�

+ �)

(16)

where
�
� and

�
+ are calculated in the factor group �ZZ. Examples for symmetrical contiguous neighbor-

hoods on two-dimensional meshes are given in [9] and [10].
The mapping of populations in the two-dimensional Euclidean plane usually results from biological

analogies[1], in some cases indirectly by the notion of cellular automata[12]. Actually, grid induced
neighborhoods are just special cases of graph induced neighborhoods. For a given maximum distance �,
any connected graph G � X �X induces the following population structure:

�graph = (X; E ;Q)

X = (0; : : : ; �� 1)

Q = (fx0g; : : : ; fx��1g)

E = (E0; : : : ; E��1)

Ei = fj j dG(ei; ej) � �g; 1 � � � �=2

(17)

where dG(x; y) is the length of the shortest path from x to y in G.
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A simple neighborhood model is sketched in Fig. 3, with

X = f0; : : : ; 15g

Q = ff0g; f1g; f2g;f3g; f4g; f5g;f6g;f7gg

E = ff7; 0; 1g; f0;1;2g;f1;2;3g;f2;3; 4g; f3; 4; 5g; f4; 5; 6g; f5; 6;7g;f6; 7;0gg

(18)
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Figure 3: Sketch of a neighborhood population structure with eight individuals in a ring. For the sake of
clarity, only the hyperedges E3 and E4 are drawn.

5.4 Fine Grained Models

6 Modeling Isolation Times

The de�nition of population structures given above does not allow the modeling of isolation times. Using
edge weights as in classical ow problems results in a cumulation over the time, averaging out some of the
e�ects of isolation. Therefore, the given de�nition is extended not only to allow isolation, but any change
of the population structure over time. This is achieved by replacing the hypergraph H by a sequence
of hypergraphs Ht; t 2 IN, where (X; E t;Q) is the population structure applied to generate generation
number t+ 1 from generation number t.

Def. 5 A dynamic population structure � on a population P with jP j = � is a triple (X; E t;Q), consisting
of a sequence of hypergraphs Ht = (X; E t); X = f0; : : : ; � � 1g; Et � P(X) and 8t 2 IN : jE tj = m, as
well as a partition Q � P(X ) of X with jQj = m. The hyperedge Et

i is called deme at generation t of the
elements of Qi 2 Q. A dynamic population structure with E t = E = const for all t 2 IN is called static
population structure oder just population structure.

Def. 6 The diameter of a dynamic population structure is minfk j
Pk

i=0

Qi

�=0A�(t) = K�g withA�(t) =

Ht
� Q.
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The pollination model from Eqn. 14 can now be extended by an isolation time �:

�poll = (X; E t;Q)

X = (0; : : : ; �� 1)

Qi = fi�; : : : ; i� + � � 1g

E t = (Et
0; : : : ; E

t
r�1)

Et
i =

(
Qi [

S
(s;i)2GMs!i; Ms!i � Qs for t � 0 mod �

Qi else

(19)

7 Takeover Behavior of Population Structures

In the last years, a growing number of researchers in �eld of EAs try to �nd good measures for the
selection pressure of di�erent selection methods. Some of them are biologically inspired, e.g. [13, 14, 15],
others base on pure probability theory, e.g. [16, 17, 18]. A decent analysis of properties of panmictic
selection methods was given by Blickle and Thiele [19].

All these approaches relay on the assumption that individuals are indistinguishable and interchange-
able. Since this does not hold true for structured populations, the theory developed for panmictic
populations cannot be easily transfered.

7.1 Takeover Times and Probabilities

A common analytical approach to measure the selection pressure of an EA is the calculation of the
takeover time, i.e. the number of generations it takes for the best individual of the initial population to
�ll the entire population under selection only. Unfortunately, for non-elitist selection operators, there is
always a positive probability that the best individual gets lost before the population could be taken over,
especially in the beginning.

An improvement of this approach is the notion of a takeover probability[18]. The idea is to de�ne a
Markov chain where each possible number of best individuals is an element of the state space.

Let be pselect : IN� IN! IR; (�; k) 7! pselect(�; k) a function calculating the success probability for a
single trial if a population of � individuals contains k best individuals, where success means drawing a
best individual. Since selection of individuals is a Bernoulli experiment, the transition probability from
a non-absorbing state i of the Markov chain into another state j is

pi;j =

�
�

j

�
(pselect(i; �))

j(1� pselect(i; �))
��j (20)

Because every trial has the same success probability, the success is binomial distributed. In the non-
panmictic case, individuals are selected from di�erent subsets of the population, thus trials have di�erent
success probabilities. Since this leads to a generalized binomial distribution, the state space of a Markov
chain would be of size

P�

k=0

�
�
k

�
. Thus, a Markov chain analysis as in [18] is practically impossible.

7.2 Probabilistic Diameter

Although a simpli�cation with respect to the extinction of the best individual, the takeover time as
de�ned in [17] can be useful to compare selection methods among each other. The scenario for takeover
time calculations is the following: The initial population contains a single best individual. Then, only
selection is applied until the entire population consists of best individuals. The number of iterations
needed is called the takeover time.

Section 6 contains the de�nition of the diameter of a population structure. Since the diameter is
just the elitist takeover time of the population structure, it seems reasonable to calculate the takeover for
non-elitist selection schemes in a similar manner. The idea is to propagate the best individual through the
population as in the diameter calculation, based on the probability distribution of the selection operator.
Chakraborty et.al. [18] calculated the success probabilities for the most common selection operators.
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Starting with a single best individual in the initial population, the expectation value of the number
of best individuals after one generation is

E
(1)
best := � � pselect(�; 1) (21)

In general, for a given number k(t) of best individuals in generation t,

E
(t+1)
best := � � pselect(�; k

(t)) (22)

is the expectation value for the number of best individuals in generation t + 1. We obviously cannot
calculate the expected number of best individuals in generation t by iterating eqn. 21 with

k(t+1) := E
(t)
best (23)

This would mean to replace an iterated Bernoulli experiment by its expectation value. But then, this is
how growth curve analysis and takeover time calculation was done in the past (e.g. [17], p. 71, eqn. 4).

To avoid the misleading notion of an expectation value, the following de�nition is given.

Def. 7 Let be � = (X; E ;Q); jXj = � a population structure, and pselect : IN � IN ! IR; (�; k) 7!
pselect(�; k) a success function for a given selection operator. Let be for all i 2 X:

s1i = 1=� (24)

rti =
X
j2E�

stj ; i 2 Q� (25)

s
(t+1)
i = pselect(r

t
i; jE�j); i 2 Q� (26)

The probabilistic diameter of � under pselect is

�"(�; pselect) := minft : 8i 2 X : s
(t)
i � 1� "g (27)

The value 1� " is the required takeover level, where " is usually almost zero.
The recursive calculation of ~rt = (rt0; : : : ; r

t
��1) can be done simultaneously:

~rt = ~s(t)>E
(t)
: (28)

The value of minfs
(t)
i ji 2 Xg can be interpreted as a growth coe�cient of the best individual. Fig. 4

shows the growth rates for panmictic population models with population size 1024 for linear ranking
selection as well as (�; �)-selection. As in [17], the growth curves resemble logistic functions, in contrast
to the growth curves of non-panmictic population models.

The growth curves of the migration models in Fig. 5 and Fig. 6 show the di�erent reaction of (�; �)
selection and linear ranking to isolation times. The latter keeps the logistic character for much higher
isolation times. The curve of the neighborhood model in Fig. 7 shows the expected linear growth rates.

8 Conclusions and Outlook

This paper presents a uni�ed model of population structures in Evolutionary Algorithms. It has been
shown that the model is a powerful framework for calculations on non-panmictic populations. As an
example, we have presented a de�nition of the takeover time of arbitrary population structures which is
consistent with the traditional panmictic takeover time de�nition.

This model presented here is intended as a base for further theoretical work in the �eld of non-
panmictic population structures. While a Markov chain model of non-panmictic population structures is
not generally useful, it should be possible to keep the state space small for a small number of demes by
taking advantage of the duality of the given de�nition. This is subject to further research.
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Figure 4: Growth curves of a panmictic (�; �) selection and linear ranking.
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Figure 5: Growth curves of a migration model in a ring of 16 subpopulations and local (16,64) selection.
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Figure 6: Growth curves of a migration model in a ring of 16 subpopulations and local linear ranking
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