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Abstract- The presented evolutionary algorithm is es-
pecially designed to generate recurrent neural networks
with non-trivial internal dynamics. It is not based on ge-
netic algorithms, and sets no constraints on the number
of neurons and the architecture of a network. Network
topology and parameters like synaptic weights and bias
terms are developed simultaneously. It is well suited for
generating neuromodules acting in sensorimotor loops,
and therefore it can be used for evolution of neurocon-
trollers solving also nonlinear control problems. We
demonstrate this capability by applying the algorithm
successfully to the following task: A rotating pendulum
is mounted on a cart; stabilize the rotator in an upright
position, and center the cart in a given finite interval.

1 Introduction

The combined application of neural network techniques and
evolutionary algorithms turned out to be a very effective tool
for solving an interesting class of problems (for a review see
e.g. [1], [8], [11]). Especially, in situations where a task
involves dynamical features like generation of temporal se-
quences, recognition, storage and reproduction of temporal
patterns, or for control problems requiring memory to com-
pute derivatives or integrals, other learning strategies are in
general not available.

The ENS�-algorithm (evolution of neural systems by
stochastic synthesis) outlined in section 2 is inspired by a bi-
ological theory of coevolution. Based on a behavior-oriented
approach to neural systems, the algorithm originally was de-
signed to study the appearance of complex dynamics and the
corresponding structure-function relationship in artificial sen-
sorimotor systems; i.e. the systems to evolve are thought of as
“brains” for autonomous robots or software agents. The basic
assumption here is that in “intelligent” systems the essential,
behavior relevant features of neural subsystems, called neuro-
modules, are due to their internal dynamical properties which
are provided by their recurrent connectivity structure [6]. But
the structure of such nonlinear systems with recurrences can
in general not be designed. Thus, the main objective of the
ENS�-algorithm is to evolve an appropriate structure of (re-
current) networks and not just to optimize a given (feedfor-
ward) network structure. It is applied to networks of standard
additive neurons with sigmoidal transfer functions and sets no

constraints on the number of neurons and the architecture of
a network. In fact, it develops network topology and param-
eters like weights and bias terms simultaneously on the basis
of a stochastic process.

In contrast to genetic algorithms, which are often only
used for optimizing a specific feedforward architecture [8],
[11], it does not quantize the network parameters like weights
and bias terms. With respect to algorithms like, for instance,
EPNet [12], it does not include an individual “learning” pro-
cedure, which exists naturally only for feedforward networks
and problems where an error function or reinforcement sig-
nals are available.

For the solution of extended problems (more complex en-
vironments or sensorimotor systems) the synthesis of evolved
neuromodules forming larger neural systems can be achieved
by evolving the coupling structure between modules. This is
done in the spirit of coevolution of interacting species. We
suggest that this kind of evolutionary computation is better
suited for evolving neural networks than genetic algorithms.

In [7] we reported on tests of the algorithm, applying it
to the pole-balancing problem that usually serves as a bench-
mark problem for trainable controllers [5]. Of course, the
inverted pendulum is one of the simplest inherently unsta-
ble systems, and balancing it under benchmark conditions is
mainly in the domain of linear control theory. Stabilizing a
pendulum which is free to rotate, and initially may be point-
ing downward, is therefore a more challenging nonlinear con-
trol problem [2]. Here, stabilization of an unstable stationary
state, and de-stabilization of a stable stationary state have to
be realized by one controller [9], [10]. In section 3 we will
show that this problem is easily solved by evolved neural net-
work solutions if the controller has access to the full phase
space information. Two “minimal” solutions of the feedfor-
ward type are presented, although also recurrent networks
were generated by the algorithm. If input signals are reduced
to only the cart position and the pole angle the problem can
not be solved by a pure feedforward structure because differ-
entiation has to be involved in the processing. We present a
parsimonious 2-input solution to the swinging-up problem in
section 3.3, which utilizes a recurrent network structure.

Using continuous neurons for the controllers, different
from many other applications, our approach does not make
use of quantization, neither of the physical phase space
variables nor of internal network parameters, like synaptic
weights and bias terms, or output values of the neurons. Sec-
tion 4 gives a discussion of the results.



2 The ENS�-Algorithm

To start the algorithm one first has to decide which type of
neurons to use for the network. We prefer to have additive
neurons with sigmoidal transfer functions for output and in-
ternal units, and use input units as buffers. The number of
input and output units is chosen according to the definition
of the problem; that is, it depends on the pre-processing of
input and post-processing of output signals. Nothing else is
determined, neither the number of internal units nor their con-
nectivity, i.e. self-connections and every kind of recurrences
are allowed, as well as excitatory and inhibitory connections.
Because input units are only buffering data, no backward con-
nections to these are allowed.

To evolve the desired neuromodule we consider a pop-
ulation p�t� of n�t� neuromodules undergoing a variation-
evaluation-selection loop, i.e. p�t � �� � S E V p�t�. The
variation operator V is realized as a stochastic operator, and
allows for the insertion and deletion of neurons and connec-
tions as well as for alterations of bias and weight terms. Its
action is determined by fixed per-neuron and per-connection
probabilities. The evaluation operator E is defined problem-
specific, and it is usually given in terms of a fitness function.
After evaluating the performance of each individual network
in the population the number of network copies passed from
the old to the new population depends on the selection oper-
ator S. It realizes the differential survival of the varied mem-
bers of the population according to evaluation results. In con-
sequence of this selection process the average performance
of the population will tend to increase. Thus, after repeated
passes through the variation-evaluation-selection loop popu-
lations with networks solving the problem can be expected to
emerge.

To demonstrate the basic functioning of the ENS�-
algorithm we will discuss its application to a toy control
problem (balancing a rotator on a cart), which involves the
handling of conflicting properties: stabilizing an unstable
stationary state (balancing) and de-stabilizing a stable one
(swinging-up).

2.1 Setting the Problem

The problem to solve is given here as follows: A rotating pen-
dulum is mounted on a cart that can move on a 1-dimensional
interval. The controller has to bring the pendulum into the
upright position and then has to balance it as long as possi-
ble. At the same time, interval boundaries have to be avoided,
and the cart has to be centered. The control signal is given by
the force on the cart. Because we use neurons with sigmoidal
transfer functions the force applied to the cart varies contin-
uously between ��� � F � �� �N �. The cart is bound
to move in the interval �	�
 � x � 	�
 �m�. The initial
position �� of the pendulum can be anywhere on the circle
with initial velocity ��� � �. The cart starts from positions
���� � x� � ��� with zero velocity �x� � �.

The equations for the physical system under control are

given by
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where g � 
���ms�� denotes gravitational acceleration,
mc � ��� kg and m � ���kg mass of cart and pendulum,
respectively, l � ���m half length of pendulum, and F de-
notes the force applied to the cart. We use no friction terms
because we found these have no interesting effect on the evo-
lution process or network capabilities. The dynamics of cart
and pendulum are computed by using Euler discretization of
these equations with time step � � ���� s.

For the neurocontroller we use the standard additive neu-
ron model with sigmoidal transfer function �. A termination
signal is given after a time t � tmax. The highest fitness
of an individual network corresponds to the minimum of the
corresponding cost function C; it has the general form

C � c� � P� � c� � Px � c� �Nn � c� �Ns � c� � IF �

where the constants c�� � � � � c� are all positive. It takes into
account the pendulum’s integrated deviation from the upright
position P�, and the cart’s integrated deviation from the zero
position Px (they define the problem), costs c� �Nn for each
neuron and for each connection c� �Ns (to select for parsimo-
nious network architectures); Nn and Ns denote the number
of neurons and synapses, respectively. Furthermore, the ap-
plied force IF , integrated over the last 20 seconds of each
trial, can also be added. This will optimize the applied force
to balance the pendulum by minimizing oscillations of the
cart. The cost factors c�� � � � � c� have to be appropriately cho-
sen, and their choice will influence the properties of the evo-
lutionary process considerably. During a run of the ENS�-
algorithm these cost factors can be varied on-line.

We distinguish between two classes of controllers. One,
called t-class, uses additive units with anti-symmetric transfer
function ��x� � tanh�x�, the other one, the s-class, uses
the strictly positive transfer function ��x� � �� � e�x���.
The first class of controllers needs only one output neuron
providing a force

F � �� � tanh�ai�[N] � (1)

where ai denotes the activity of the output unit i. The s-class
needs two output units, i and i� �, giving a force

F � �� � ���ai�� ��ai����[N] � (2)

3 Evolved neurocontrollers

For the following evolved solutions we used an average num-
ber of 50 individuals in each population. A successful run had
about 10000 generations. Because the ENS�-algorithm is pri-
marily designed to study theoretical aspects of modularized



recurrent networks, we were not concerned about statistics
or computation time. The required computing time depends
strongly on the parameter settings - their optimal values in the
context of a given problem are not known from the beginning
- and on the design of an appropriate fitness function. Param-
eters of the algorithm are, for instance, the probabilities for
insertion and deletion of neurons and connections, and for al-
teration of bias and weight terms; furthermore, the costs for
neurons, for connections, and for the applied force, the steep-
ness of the selection function, the average population size,
the maximal time to solve the problem (stop criterion), and
the like.

It should be mentioned that all the probabilities (for in-
sertion/deletion of neurons, insertion/deletion of connections,
variations of weights and bias terms, etc.) all can be set sep-
arately. For the evolution of the networks described below
the following typical parameter values of the algorithm had
been used: The probabilities for inserting and deleting a neu-
ron where both set to 0.05, the probability to set a connec-
tion from an inserted neuron to existing neurons where set to
0.5. Probabilities for inserting and deleting synapses where
both set to 0.1, and the probabilities for varying connection
strengths and bias terms where set to 0.3. But often the pos-
sibility to vary these parameters on-line during the evolution-
ary process has been used. To obtain parsimonious network
structures one has to “balance” the probabilities for inserting
neurons and for setting its connections.

During intermediate states of the evolutionary process the
fittest modules may become quite large - more than 20 neu-
rons and 60 synapses - and network size and architecture
are often varied. Finally there appear smaller modules with
equally good or better performance. Some of the “minimal”
solutions found by the ENS�-algorithm are described in the
following.

3.1 A t-class Controller with Four Inputs

As sensor signals we choose the full set of state variables x,
�, �x, �� of the physical system. The corresponding four input
units then receive the signals:

in� �� x�	�
 � in� �� ��� � in� �� �x�	�
 � in� �� ���� �
(3)

The output unit 5 of a t-class controller provides the force F
applied to the cart according to equation (1).

Among a family of larger modules, the ENS�-algorithm
came up with the following minimal solution: The architec-
ture of this controller w� is shown in figure 1 and its weights
are given as follows:

w�
� � ��� ������ �	���� ������� �� �� �
����

w�
� � ��� ������ ������� ����
� �
���� �� ��

where wi � �wi�� wi�� � � � � win� denotes the weight vector
of its neuron i, with wi� denoting the bias term of unit i.
Although this module has a very simple feedforward struc-
ture, tests revealed that it solves the problem for all initial

Figure 1: A minimal 4t-class solution w�.

Figure 2: The effective control of w�: x�t�, ��t�, and F �t�
starting from x� � 	�� and �� � �.

conditions �	�� � x� � 	�� and �� � �� � � in less
than 10 seconds. This is demonstrated for instance in figure
2 where cart position x, angel � and the applied force F are
given as functions of time t. Starting with initial conditions
x� � 	�� (cart close to boundary at x � 	�
), �� � � (pen-
dulum pointing down), and �x� � ��� � � we observe that
the controller needs only three swings to get the pendulum
into the upright position, and then it balances the pendulum
by centering the cart at the same time. That the controller w�

has a comparable good performance for almost all initial con-
ditions is demonstrated in figure 3 where the �x� ��-space is
divided into 100x100 squares: The grey scale represents the
output performance of the controller during the first 12 sec-
onds; with black representing 0% and white� ���%; start ve-
locities are �x � �� � �. The rotator is balanced for almost all
�x� ��-positions of the cart-rotator system (not black). Grey
shades correspond mainly to small cart oscillations which
still occur after some seconds if the rotator had to be swung
up from an almost downward position. Black squares indi-
cate failure before the end of the maximal evaluation time
tmax � �	 seconds.



Figure 3: Performance of controller w� on �x� ��-initial con-
ditions: White=100%, black=0%.

The module in figure 1 displays already an interesting fea-
ture: it can be understood as composed of two submodules.
The structure of the one given by neuron 6 with its four inputs
is known as that of a pole balancing module [7]. The mod-
ule given by neuron 5 with its three inputs swings up the pole
from downward positions when isolated. They are coupled
through the connection w��.

3.2 An s-class Controller with Four Inputs

Sensor signals are again given by equation (3). The force on
the cart is applied according to equation (2) for output units
5 and 6. Again several neurocontrollers emerged during the
evolution process and one of the minimal examples, the con-
troller w�, is shown in figure 4 with weights given by

w�
� � ���	� �� ����
�� ������ �� �� �� �����
�

w�
� � ������� 	��
�� �	��
� �	�
�� �� ��	�	� �� 	��
��

w�
	 � ���	
� �	���� �
���� ���	�� ���
�� �� �� ��

where again wi � �wi�� wi�� � � � � win� denotes the weight
vector neuron i, with wi� the bias term.

Also this neurocontroller uses only one internal neuron
and a no recurrent connections to solve the problem. The
output neuron 6 gets a “lateral” connection from output neu-
ron 5. Figure 5 reveals that it is even faster than the t-class
controller. It needs only two swings to get the pendulum into
the upright position, starting from x� � 	�� and �� � �. Sta-
bilizing the pendulum and centering the cart is done with a
small oscillating force signal. The origin of these oscillation
is not given by an internal oscillator of the neural structure,
but it results from the feedback loop via the environment. The
performance of controller w� on other initial conditions is
roughly comparable to that of w�, as is displayed in figure
6. The main difference is that the performance of w� is not
symmetric on �x� ��-space because the bias terms of its out-
put units are not fine tuned, to give zero force for zero inputs.

Figure 4: A 4s-class solution w�

Figure 5: The effective control of w�: x�t�, ��t�, and F �t�
starting from x� � 	�� and �� � �.

Again, this system can be viewed as composed of two sub-
modules: The module given by neuron 7 with its two inputs
acts on the module given by the connections from the inputs
to the output neurons plus the connection w��.

4 A t-class Controller with Two Inputs

Reducing the input signals to only cart-position x and angle �
makes the the problem more sophisticated. The control mod-
ule now has to compute derivatives, and therefore evolving
recurrent connections have to be expected. The claim is, that
there exists no feedforward network which is able to solve
the task (and, to our knowledge, there is no solution of this
kind described in the literature). Solving the problem under
these restrictive input conditions seems to be a much harder
problem. In fact, we can not present an evolved neurocon-
troller, which acts as successfully for all initial conditions of
the physical system as, for instance, controller w�. But it was
quite easy to evolve a controller which is able to solve the
swinging-up problem [10], i.e. starting the cart-rotator sys-
tem from initial conditions x� � �, �� � �. The architecture



Figure 6: Performance of controller w� on �x� ��-initial con-
ditions: White=100%, black=0%.

of this controller w� is shown in figure 7, and its weights are
given as follows:

w�
� � ����		� �
���� ����� ����
� ��
	� 
��
� �
�

�

w�
� � ����
�� ������ ���

� ���
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w�
� � ������� ��
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w�
� � ������� �� ���
�� �� �� �� ��

Figure 7: The 2t-controllerw� solving the swinging-up prob-
lem.

Figure 8 shows that controller w�, although having only
two inputs, is able to swing up the rotator from x� � �, �� �
�, �x� � ��� � � and to balance it in less than five seconds.
But then balancing is achieved by a periodic force signal to
the cart. This spoils of course the overall performance of the
controller.

The performance of w� during the last 10 seconds of the
maximal evaluation time tmax � 	� [s] on all of the �x� ��-
initial conditions is displayed in figure 9. It shows that there
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Figure 8: Cart position and pole angle under the action of the
2t-controllerw�, starting from x� � �, �� � �, dots represent
the applied force.

Figure 9: Performance of controller w� on �x� ��-initial con-
ditions: White=100%, black=0%.

are some isolated start positions for which the controller is
able to solve the task (white squares). Especially the cen-
tral light region indicates that the controller acts there as a
pole balancer. Black dots again represent positions where
the controller fails before the maximal evaluation time tmax

is reached. For grey shaded initial conditions the controller
keeps the pendulum swinging or rotating.

As expected, the controller w� uses recurrent connections
to solve the problem: Two self-connections, w�� and w��,
and the loop w��, w��. In fact, the module composed of neu-
rons 3 and 4 has complex dynamical properties; for accessi-
ble (stationary) inputs it has quasiperiodic attractors as well
as attractors of high periodicity. Several delay lines for input
signals along neurons 5 and 6 probably do also contribute to
the successful operation of the controller.



5 Conclusions

We have demonstrated that the ENS�-algorithm can be ap-
plied successfully to a challenging nonlinear control problem
like balancing a rotating pendulum. The evolved network so-
lutions for the four input problem are remarkably small in
size (compare e.g. with network solutions derived in [10]).
They solve the problem very effectively by getting the pen-
dulum in upright position, stabilizing it and centering the cart
in less then 10 seconds, without hitting interval boundaries,
and they do that for almost all initial conditions from inter-
vals �� � �� � � and �	�� � x � 	��. Because they
have full access to physical phase space variables, they do
not need recurrences to compute derivatives. Remarkable is
that both four input solutions w� and w� can be described
as a composition of interacting subsystems - one is more or
less responsible for the destabilization of the stable stationary
state, the other for the balancing, i.e. the stabilization of the
unstable stationary state.

As for the pole-balancing problem discussed in [7], the
problem becomes much harder if controllers get only infor-
mation about cart position and angle of the pendulum. Then
the problem is no longer solvable with a pure feedforward
network, because differentiation now has to be done by the
controller itself. The evolved controller w� presented in sec-
tion 3.3 swings-up the pendulum from the downward posi-
tion, i.e. x� � �, �� � �, but it does not operate with com-
parable success on all other initial conditions. We suggest,
that the type of fitness function used for this problem or the
chosen combination of cost factors is not yet appropriate for
generating general solutions with a performance comparable
to that of controller w�.

The ENS�-algorithm is of course capable of generating
networks for classical network problems - usually solved by
feedforward networks. This was reported in [4]. In terms
of required computation time (which is large for evolutionary
algorithms)ENS� can not compete with learning algorithms
like backpropagation. Instead, it is used mainly for the devel-
opment of network structures, optimizing parameters as well,
and it has the advantage of producing unconventional topo-
logical solutions which may be worthwhile to study in their
own right.

The algorithm still can be optimized. For instance the
evaluation operator in the variation-evaluation-selection cy-
cle may be substituted by an evaluation-learning cycle, if an
appropriate learning procedure is at hand. This is done, for
example, in the EPNet-approach in [12] for the case of feed-
forward networks. For recurrent networks, and using a be-
havior based approach to neurocontrollers, there is no univer-
sal learning rule to apply. Using only the internal states of
a neural network, we are trying to optimize a given recurrent
network structure by using ideas outlined in [3]. Furthermore,
equivalents to other additional features of evolutionary algo-
rithms - like e.g. crossing over - are not yet implemented in
the ENS�-algorithm.
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