
Performing Classification with an Environment Manipulating Mutable Automata
(EMMA)
Karl Benson

Defence Evaluation and Research Agency,
DERA Malvern, St Andrews Road,

Worcestershire WR14 3PS, UK
Tel: +44(0)1684 894580

kabenson@dera.gov.uk

Abstract- In this paper a novel approach to performing
classification is presented. Hypersurface Discriminant
functions are evolved using Genetic Programming. These
discriminant functions reside in the states of a Finite State
Automata, which has the ability to reason1 and logically
combine the hypersurfaces to generate a complex decision
space. An object may be classified by one or many of the
discriminant functions, this is decided by the automata.
During the evolution of this symbiotic architecture, fea-
ture selection for each of the discriminant functions is
achieved implicitly, a task which is normally performed
before a classification algorithm is trained. Since each dis-
criminant function has different features, and objects may
be classified with one or more discriminant functions, no
two objects from the same class need be classified using
the same features. Instead, the most appropriate features
for a given object are used.

1 Introduction

This paper outlines current research being carried out at
DERA Malvern into the evolution of Automatic Target De-
tection (ATD) algorithms. Evolved algorithms are incorpo-
rated into an automatic all source image interpretation system
which draws the attention of photographic interpreters to re-
gions of interest within an image. One such algorithm known
as the FSM(GP) was developed by Benson [2] for the auto-
matic detection of shipping within spaceborne SAR imagery.
The FSM(GP) algorithm has now its self ‘evolved’ into an
algorithm known as EMMA2. EMMA is a simpler algorithm
than the FSM(GP), in that the need for transition thresholds
has been removed, and only one GP resides in each state. This
simplification is highly desirable in military ATD algorithms
where speed of execution is vital. The FSM(GP) performed
classification via a mechanism that allowed GPs that were un-
sure of an objects classification to call other GPs for a ‘second
opinion’. This resulted in an implicit gathering of evidence.
However, further use of the available information could have
been made. For example, if a GP was assigning the object to
class 1, but was unsure, causing a transition to another state,
then what did it know about the object to have assigned it to
class 1? A method of capturing this information was needed.
EMMA achieves this through a powerful technique that ex-

1What is meant by ‘reason’ is clarified in Section 2.
2The reason for the name EMMA is discussed in Section 4.

plicitly passes classification information from state to state,
and logically combines it to form a complex decision space.
The time taken to train EMMA has also been drastically re-
duced via the introduction of a hybrid training scheme that
comprises Dynamic Subset Sampling (DSS) [13, 14], and the
Rational Allocation of Trials (RAT) [24].

A thorough description of EMMA’s classification process
is given in Section 5 on a synthetic data set. To demonstrate
EMMA working with real world imagery, it is applied to the
detection of microcalcifications in digitized mammograms.
This also demonstrates that EMMA is a very versatile clas-
sification algorithm, and that its application is not restricted
to military use.

2 Detection and Classification of Objects within
Digital Images

Traditional decision theoretic methods strive to perform clas-
sification via the use of discriminant functions. Given
M functions d1(x); : : : ; dM (x), M classes !1; : : : ; !m, and
a vector of features x = (x1; : : : ; xn). The functions
d1(x); : : : ; dM (x) are known as discriminant functions if
di(x) > dj(x), when x belongs to class !i. Common prac-
tice is to construct a decision boundary between two classes
using the single discriminant function dij(x) = di(x) �
dj(x) = 0. This has the property that dij(x) > 0 if
x is from class !i, and dij(x) < 0 if x is from class !j [15,
pp 579–580]. This approach works well when two classes are
linearly separable and unimodal. However, when two classes
are not linearly separable, overlap, or are multimodal, deriv-
ing a discriminant function to discriminate between the two
classes is neither trivial nor obvious. A classification system
which is able to achieve this must be capable of identifying,
and separating, each of the multiple clusters of each class.

Decision trees (DTs) [23] and Neural Networks (NN) [15,
pp 595–619] are two commonly used methods that achieve
this by constructing hyperplanes that partition the feature
space. If the decision boundaries are highly complex, then
decision surfaces composed of many intersecting hyperplanes
must be formed. With NNs difficulty arises since hyper-
planes do not simply stop at their intersection with other hy-
perplanes. As a result features of the same class may occur on
both sides of the hyperplanes in feature space [15, p 617]. In
addition, it is difficult to determine the correct NN architec-
ture. DTs are capable of partitioning the feature space with



high accuracy, but the resulting DT can be very large with
rule sets which are more complex than necessary [16]. Al-
gorithms such as exhaustive search or dynamic programming
can be used to construct DTs with minimum size and maxi-
mum accuracy, but are computationally infeasible except for
trivial feature spaces [23]. There are many more classification
algorithms, the number of which prevents discussion here.
NNs and DT were mentioned since their method of splitting
up the feature space most closely resembles the method of
partitioning the feature space developed in this paper.

An algorithm that is capable of using a single discrimi-
nant function to partition a cluster of data from a class, rather
than using many intersecting hyperplane would be very desir-
able. This function may then be interpreted and provide in-
sight to the underlying distribution of the data, which can be
difficult with DTs and impossible with NNs. Although desir-
able, what of multimodal data? Assume class !i is bimodal.
Then more than one discriminant function may be required
to classify each cluster. This is still simplistic in compari-
son to constructing multiple hyperplanes around each cluster.
However, the algorithm would then require the ability to rea-
son. In the bimodal case this could be as simple as: if the
data sample is in the cluster defined by function one, or the
data sample is in the cluster defined by function two, then the
data sample belongs to class !i. For data with high modal-
ity, or which overlaps, as is the case for almost all real world
data, constructing such a rule is not trivial. The algorithm
would need to test a data sample against one of its discrimi-
nant functions, then make a decision as to whether to classify
the sample based on what it knows so far, or whether more
information is needed. If more information is needed, a deci-
sion must be made on how to combine this new information
with what is already known. This implies that the algorithm
must exhibit intelligent behaviour. An algorithm that is ca-
pable of this is developed in Section 4. But first some early
works which share similarities with the algorithms developed
in this paper are reviewed in Section 3.

3 Intelligence through Simulated Evolution

There are many lines of research in Artificial Intelligence (AI)
such as Neural Networks (NN) and knowledge based systems
to name but two. These systems strive to mimic human in-
tellect in some form [11, p 2]. In the early sixties, Lawrence
Fogel explored an alternative to using human intellect as a
model for AI. Since human intelligence is a product of nat-
ural evolution, Fogel proposed creating artificial intelligence
through simulated evolution [9, 10]. Fogel offered “intelli-
gent behaviour is the composite ability to predict one’s envi-
ronment coupled with a translation of each prediction into a
suitable response in light of some objective” [12, p 11]. Fogel
et al. [12] performed a number of experiments in which the
environment was modeled as a sequence of symbols from a fi-
nite alphabet. The aim of the work was to evolve an algorithm
that could predict the next symbol to emerge from the envi-

ronment, based on the sequence of symbols that came before
it. Finite State Automata (FSA) were used by Fogel et al. as
a useful representation of the algorithm. A small population3

of FSA were exposed to the environment. The FSAs better
able to predict the environment were retained and mutated to
produce offspring that then replaced less able FSA. Fogel et
al. termed this process Evolutionary Programming (EP).

Following these experiments other researchers such as
Cornett [4], Cornett et al. [5], Trellue [25], and Atmar, [1],
applied EP to pattern recognition problems. In these works
FSA were evolved to perform character recognition of hand-
written letters. The letters were digitized using various en-
coding schemes to provide a sequence of input symbols. For
example Atmar [1, p 91] lays the letter on a 3�3 matrix, and
quantizes each square of the matrix into one of the three sym-
bols 1, 2, 3. The symbol 1 represents little or none of the
letter present within the presently accessed square. The sym-
bol 2 represents a moderate amount of the square occupied
(30–60%), and the symbol 3 a great deal of the square occu-
pied (> 60%). Classification is determined by the final state
of the FSA after being presented with the sequence.

The classification of handwritten letters in the aforemen-
tioned works was achieved since the FSA were able to adapt
to, and predict their environment. As Fogel had proposed,
AI could be realized through simulated evolution, rather than
modeling human intelligence.

Humans however, poses a trait that is particular to them,
and no other evolved life on earth. They do not simply
adapt to meet the demands of the environment, they adapt
and change the environment to meet their demands. Take for
example a dam which stops the natural flow of a river to meet
our demand for a power source. It may therefore be beneficial
to evolve an algorithm that is able to adapt to the environment,
and simultaneously change the environment to meet its own
needs. This gaol is pursued in Section 4.

4 Environment Manipulating Mutable Au-
tomata (EMMA)

As with some of the works outlined in Section 3, the aim of
this research is that of performing classification. More specif-
ically, performing Automatic Target Detection within digital
images. A target is an object within an image which we wish
to detect. This may be vehicles in a rural scene, ships at sea,
or cancerous growths in digitized mammograms. The envi-
ronment of the algorithms in Section 3 was a sequence of
input symbols. The environment of the ATD algorithm is the
feature vector. It may be feasible to evolve ATD algorithms
in the same vein as the algorithms of Section 3 by present-
ing each component of the vector in sequence, but this is not
perused here. In this research the algorithms still take the
form of mutable automata, but with the added ability of being

3Small population sizes were used due to the limited computational re-
sources available at the time. A minimum population size of three machines
was used [12, pp 27–38].



State Input I Output Oi Next State q
n

q
k

Fk Oi =

(
Oi�1 AND Fk; if Fk < 0

Oi�1 OR Fk ; if Fk � 0
q
n
=

(
q
m
; if Fk < 0

q
h
; if Fk � 0

Table 1: Representation of a state q
k

and its transitions. The logical functions AND, and OR were chosen arbitrarily for the
purposes of demonstration.

able to manipulate both the sequence and number of sym-
bols presented to it. The classification algorithm has thus
been dubbed the Environment Manipulating Mutable Au-
tomata (EMMA). The environment manipulation is achieved
by embedding a Genetic Program (GP) [17] in each of the
automata’s states. The GP uses the feature vector as its ter-
minal set, and thus has the ability to select or discard appro-
priate or inappropriate features. This allows feature selection
to be performed as the algorithm evolves, a process which
normally needs to be performed explicitly before a classifi-
cation algorithm is trained. The features are then combined
by the GP function set to produce a discriminant function.
The output of the GP is also used as the state input. Hence,
the GP component of EMMA has the ability to manipulate
the environment before it is presented to the automata com-
ponent. EMMA may also halt and classify the target at any
time it feels it has sufficient information on which to perform
classification. Hence, EMMA may not require the full input
sequence. In addition to a GP, each state has embedded within
it, two logical functions. These logical functions are used to
combine the discriminant function of the current state with
the discriminant functions of previously visited states. This
concatenation of the discriminant functions allows a highly
complex decision space to be formed.

A description of how EMMA performs classification is
now given. Assume the start state to be state 0 (denoted q

0
). A

feature vector x = (x1; : : : ; xn) to be classified is presented
to EMMA. The state discriminant function F0

4, which may
use 1 to n of the features, is then evaluated and is treated as
the state input, and, in the start state, as the state output. A
positive return from F0 is treated as a logical true (binary 1),
and a negative return as a logical false (binary 0). A transition
to another state, say q

k
, is then executed based on the value

returned by F0. On entering qk, Fk is executed, and again the
value returned is mapped to 0 or 1. The returned value is then
combined with the output of the last state via one of the state
logical functions, and forms the state output. Again, a transi-
tion to a new state occurs based on the value returned by Fk.
This procedure continues until the maximum number of user
defined transitions has occurred, or the halt state is entered.
The final output is used as the classification, 1 indicating tar-
get, and 0 indicating non-target. The functionality of a state
and its associated transitions is depicted in Table 1.

The architecture of EMMA has a number of properties
worthy of note. Classification of multimodal or overlapping

4The GP embedded within its state.

data is obtainable. This is because no one discriminant func-
tion need be learnt for any one class. If for example a class
is bimodal, a discriminant function for each of the clusters
can be learnt and concatenated with a logical OR. To achieve
this EMMA has the ability to make a decision as to which
discriminant function to call next, and how to logically com-
bine it with previously called discriminant functions, based
on the classification currently being assigning to the object.
In addition, since the discriminant functions are constructed
from the features, two objects from the same class may cause
a discriminant function to return very different values. This
in turn influences EMMA’s decision as to which discriminant
function to call next, and consequently causes different logi-
cal combinations to be formed. Thus, no two objects from the
same class need be classified using the same features. Instead
the most appropriate features for that object are used. To the
author’s knowledge these properties, and EMMA’s versatility,
are not found explicitly in the literature, making this a novel
approach. To clarify the classification process, a worked ex-
ample is presented in Section 5.

5 Example Classification Problem

To enable visualization of the classification process, a two
class example, with a two dimensional feature space is pre-
sented. The example chosen is that of classifying two inter-
twined spirals, which has been a challenge for pattern clas-
sification algorithms, and has been the subject of much work
in the Neural Network community [3, 8, 18]. This problem
has also been tackled using GP by Koza [17, pp 445–457].
Each spiral is composed of 97 points, has a radius of 6.5,
and has 3 revolutions. For this problem the feature vector
x = (x1; x2) consists of the x, y coordinates of the points
that form the spirals. Figure 2(a) shows the spirals, in which
the circles represent class one and the squares represent class
two. In Figure 2 (e) and (f), an incorrectly classified point
from class one is represented by a star, and an incorrectly
classified point from class two is represented by a diamond.
The GP terminal set used by EMMA for this problem was fx,
y,R;g, where x, y are the coordinates of a point on the spiral,
and R 2 (�1; 1) is a random constant. The GP, and state
logical function sets used were f+; �; �; �; sin; cosg,
and fAND, OR, NAND, NOR, XORg. This is the same GP
function and terminal set as used by Koza [17, p 446] with the
omission of IFLTE (IF Less Than or Equal to). Koza included
this function to provide GP with some decision making capa-
bility. Since this is an inherent strength of EMMA, the IFLTE
function is not needed. The minimum and maximum number



I : Fk 7!
(
0 if Fk < 0

1 if Fk � 0
c : Oi 7! Oi�1 NAND I

a : Oi 7! Oi�1 AND I d : Oi 7! Oi�1 NOR I
b : Oi 7! Oi�1 OR I e : Oi 7! Oi�1 XOR I

Table 2: Mappings used for shorthand notation.

of states permissible was set to two and five respectively, and
the maximum GP tree depth was set to four. Thirty runs of
five hundred generations, with a population size of 252 indi-
viduals were performed.

Figure 1 shows an evolved four5 state EMMA, and its
functions F0; F1; and F2, that classifies each point of the
two spirals correctly. The mappings of Table 2 are used in
Figure 1 to aid clarity. This EMMA is used to demonstrate
step by step how classification of the two spirals is achieved.
On entering the start state q

0
; F0 is executed and becomes

both the input I and current output Oi. At this stage Oi�1

and I cannot be logically combined by NAND or XOR (this
states logical functions) since there has been no previous out-
put Oi�1. A transition to state q

1
then occurs. On enter-

ing state q
1
; F1 is executed and provides the state input.

If F1 � 0 then the halt state is entered and the output is
Oi = Oi�1 AND F1 � F0 AND F1. Referring to Figure
2 (c) and (e), the halt state is entered for all points which lay
in the positive region defined by F1, and their classification
is given by F0 AND F1. All of these points are now cor-
rectly classified, and EMMA has determined that no further
evaluation of them is necessary. If F1 < 0 then a transi-
tion to state q

2
occurs, and the output is again F0 AND F1.

On entering state q
2
; F2 is executed producing the state in-

put. If F2 � 0 then the halt state is entered and the output
is Oi = Oi�1 OR F2 � (F0 AND F1) OR F2. Referring to
Figure 2 (f), any point from class two that was incorrectly
classified whilst in the previous state is now correctly classi-
fied. If F2 < 0 then EMMA remains in the same state until
the maximum number of allowed state transitions has been
performed. EMMA then halts correctly classifying the points
of class one which have not already been classified. A more
efficient EMMA would have moved straight to the halt state
for F2 < 0 and still correctly classified the remaining points.
However, no evolutionary pressure was applied to force halt-
ing before the maximum number of state transitions occurred,
and so this repeated looping can be expected.

6 Training EMMA on Real World Imagery

A drawback of using Evolutionary Algorithms (EAs) is that
they can be computationally expensive. The computational
expense is proportional to R � G � M � Ns, where R is
the number of runs, G is the number of generations, M is
the population size, and Ns is the number of training sam-

5There are in fact only three ‘active’ states, the fourth state is the halt
state.

��
��
q
0 ��

��
q
1

��
��
q
2 ��

��
h

q

1

= 

:z

0/c

1/e

0/a
1/a

1/b

0/b

F0 = 4:180636962 sin

�
3:251366387x+

y2

x

�

F1 =
(x� 0:205963 y) cos

�
sin(0:192915x)
cos(x)�y+x

�
(x+ y)

F2 = sin(3 y � x) (� cos(0:55221x)� cos(cos(xy)))

Figure 1: A four state EMMA that solves the spiral problem.
The notation �=� denotes an input of � and an output of �,
where the mappings of Table 2 are used for brevity. The start
state is q

0
.

ples. EMMA performs classification on a pixel by pixel basis.
Thus, the parameterNs is a major contributor to the computa-
tional expense. If one 1024� 1024 image is used for training
purposes, then each population member must be evaluated
Ns = 1048576 times each generation. This is infeasible if
EMMA is to train within a reasonable time scale. To over-
come this problem a combination of the Rational Allocation
of Trials (RAT) [24], and an extension of Dynamic Subset
Selection (DSS) [13, 14] is used to speed up the training of
EMMA.

The RAT algorithm provides a method of speeding up the
selection of one model amongst many. RAT is essentially the
BRACE algorithm (RACEing with Blocking) [21] applied to
EAs. The BRACE algorithm initially evaluates all Nm mod-
els on a small number of ns training samples. It then ‘races’
the Nm models in parallel by evaluating each model on one
training sample at a time. When it becomes statistically un-
likely that a model will win the race, it is removed, and no
further computation time is wasted evaluating it. Moreover,
if it is clear that a model will win the race it too is removed.
RAT applies the BRACE algorithm to EAs by assigning indi-
viduals to tournaments, and racing the tournament members.

The DSS algorithm randomly selects a subset of Sn sam-
ples from the whole training set each generation. The pop-
ulation is then evaluated on this subset only. The selection
of a subset is weighted toward samples that the population
has found difficult to classify, and samples that have not been
seen for several generations. The DSS algorithm has been ex-
tended for use with EMMA so that two subsets are selected.
A subset for class 1, and a subset for class 2, which ensures
equal samples from both classes are selected.

The training time of EMMA is reduced by combining the
RAT and extended DSS algorithms. This combination shall



(a) Two spirals to classify (b) F0

(c) F1 (d) F2

(e) F0 AND F1 (f) (F0 AND F1) OR F2

Figure 2: The output of the EMMA shown in Figure 1. The
dark regions represent a positive output from the function,
and the light a negative.

be denoted DSSRAT, and is executed as follows. The popu-
lation is split into � tournaments. Two subset (one for each
class) of size Sn

2 are selected from the training set, and then
combined to form one subset. Each individual is then evalu-
ated on the first ns samples of the subset, after which RAT is
used to determine if further evaluation of each individual is
needed in order to produce a tournament winner. The maxi-
mum number of evaluations that any one individuals can re-
ceive is thus Sn.

7 Selection and Mutation

7.1 Selection

Selection is achieved via a (� + �)-EP, with the slight dif-
ference that instead of conventional tournaments being used,
DSSRAT is applied to the population to produce � tourna-
ment winners. These � individuals are retained as parents
and produce � � � offspring. The union of the � parents and
� offspring then form the next generation. In this research a
population size of 252 individuals is used, with 25% of the
population being retained as parents each generation. Thus,
selection is via a (63+189)-EP, with four individuals compet-
ing in each tournament.

7.2 Mutation

There are a total of fourteen different mutations that may be
applied to EMMA. These are: add a state, delete a state,
change the start state, mutate a transition, cycle the states,
headless chicken crossover on the states, exchange the GPs
of two states, replace a state GP with a randomly created GP,
mutate the state logical functions, headless chicken crossover
on the GPs, grow a GP sub-tree, shrink a GP sub-tree, mutate
a GP terminal, and mutate a GP function.

Choosing the frequency at which each mutation should be
applied is very difficult due to their large number. To over-
come this problem, the probability of each mutation occur-
ring is evolved online. This is done at the individual level.
Thus, each population member will have its own set of mu-
tation probabilities, which are referred to as strategy parame-
ters. The strategy parameters of a parent are mutated accord-
ing to equation 1 before an offspring is produced. The new
offspring is then created using the updated strategy parame-
ters.

P 0

i =Pi e
� 0N(0;1)+�Ni(0;1)

� =
1p
2
p
n

� 0 =
1p
2n

(1)

where P 0 is the updated strategy parameters, n is the number
of possible mutations, N(0; 1) is a normal random variable,
and Ni(0; 1) is a normal random variable sampled anew for
each of the possible mutations. It should be noted that equa-



Ground Truth

E
M
M
A

Positive Negative
Positive TP FP

true positive false positive
Negative FN TN

false negative true negative

Table 3: Definitions used in pixel classification. If EMMA
classifies a pixel as positive, and the pixel has been designated
as positive in the ground truth, then this is a true positive.

tion 1 also provides a means of controlling the amount of mu-
tations an individual receives. For example, if Pi = 1 8 i
then the individual would receive n mutations (14 in our cur-
rent case), and if Pi = 0 8 i it would receive none. If P 0 > 1
then it is reset to 1.

8 Detection of Microcalcifications in Digitized
Mammograms

The detection of microcalcifications in digitized mammo-
grams is used to demonstrate EMMA working with real world
imagery. Microcalcifications are considered to be an im-
portant sign of breast cancer since they are found in 30%–
40% of breast cancers detected radiographically in mammo-
grams [19]. The size of microcalcifications are in the range
of 0.1mm–1.0mm and have an average diameter of about
0.3mm, and appear on mammograms as small white spots.
The mammograms used in this paper were obtained from the
MIAS MiniMammographic Database6 [7]. These images dif-
fer from the original MIAS database in that the original, digi-
tized at 50 micron pixel edge, has been reduced to 200 micron
pixel edge and clipped/padded so that every image is 1024�
1024 pixels. Also provided with the images, are the center
locations and radii of clusters of microcalcifications, rather
than the locations of individual microcalcifications. Hence,
before training EMMA, a ground truth of pixels containing
microcalcifications was generated. These pixels are known
as positives, and pixels containing no microcalcifications are
known as negatives. For each pixel, a feature vector of six-
teen features was calculated off line before training EMMA.
At the beginning of each training run, the feature vectors were
read from file and stored in memory. This procedure reduced
training time since features are simply accessed from memory
rather than recalculated each time they are needed. The fea-
tures used were the pixel intensity, and the first three moments
of a 3�3, 7�7, 9�9, and 15�15window, centered on the
pixel being classified. These feature vectors formed the GP
terminal set, and the GP function set used was f+, �, �, �,
max, ming, where max, and min are binary nodes returning
the maximum and minimum of their arguments respectively.
The state logical function set used was fAND, OR, NAND,
NOR, XORg. The minimum and maximum number of states

6Obtainable from http://peipa.essex.ac.uk/ipa/pix/mias/.

was set to two and eight, and the maximum GP tree depth was
set to five.

A problem faced when developing classification algo-
rithms for use on real world imagery is that of obtaining a
good trade off in sensitivity and specificity. Sensitivity, Se,
and specificity, Sp, are defined as:

Se =
TP

TP + FN

Sp =
TN

TN + FP

(2)

where TP, TN, FP, and FN are as defined in Table 3 [6, p 170].
It is desirable to maximize both the sensitivity and specificity.
To this end the fitness function used was

f = Se + Sp where f = R+ 2 f0; : : : ; 2g: (3)

This fitness function behaved very well for the detection of
microcalcifications. This is because early in the run EMMA
found it relatively easy to maximize the sensitivity since the
number of positives are very small in comparison with the
negatives. Correctly classifying the positives is essential due
to their link with breast cancers. As the run progressed,
EMMA then began to work on maximizing the specificity,
and hence minimize the false positives.

9 Experimental Results

Thirty runs of two hundred generations were performed with
EMMA training on one image. Each run took approximately
forty minutes on a 450MHZ Pentium II PC. The best individ-
ual to emerge had six states and its output on two unseen test
images is shown in Figure 3. EMMA has clearly identified
all areas in which the radiologist has indicated there to be mi-
crocalcifications. This was the case for all seventeen unseen
test images on which EMMA was run. Figure 3(a) also con-
tains nine FPs, and Figure 3(b) contains six FPs. It should be
noted however that these FPs are single pixels and not clus-
ters. In other works such as [20], any single pixel classified
as a microcalcification was removed, and in [26, p 883] only
groups of three or more microcalcification were considered.
If a similar procedure was applied to the results of EMMA,
then the number of FPs would decrease dramatically, and in
some cases, result in zero FPs. Since the number of FPs pro-
duced by EMMA is reasonably small, it may be prudent to
leave them marked on the image, as in Figure 3, to let the
radiologist decide whether these singletons are indeed FPs or
microcalcification.

The detection of microcalcifications was used only as an
illustration of EMMA’s performance when applied to real
world imagery. If EMMA was to be used by a radiologists
as a diagnostic aid for the detection of microcalcifications,
then further work would need to be carried out in order to
obtain definitive results. For example, the full MIAS mam-
mographic database containing 50�m� 50�m resolution im-
ages should be used. These images contain four times more



(a) Unseen test image.

(b) Unseen test image.

Figure 3: Typical output of EMMA on two unseen digi-
tized mammograms. The squares are centered on the pixels
EMMA has designated as microcalcification, and the larger
circle in each image is the area in which the radiologist has
indicated there to be microcalcifications.

information than the images used in this paper, and would
allow fine grain features to be used. In addition, more than
one training image should used as in [22], where 80% of the
database is used for training and 20% for testing. This would
provide EMMA with a more diverse and representative train-
ing set allowing better generalization. However, the results
obtained in this very limited investigation are very promis-
ing indeed, and compare well with those reported in [20],
[22] and [26]. Yoshida et al. [26, p 868] report a sensitivity
of approximately 85% with a false positive rate of five clus-
ters per image. Meesman et al. [20] show results indicating
that 85%–90% of the clusters are detected with six FPs for
selected regions of the mammogram. However, they quote
“When we applied the networks to complete mammograms,
the output of the networks contained a large amount of false
positive clusters”. Rosen et al. [22] report a better perfor-
mance and were “able to find 91% of the clusters with a false
positive rate of 0.13 clusters per image”.

10 Summary

A novel approach to performing classification has been pre-
sented in an architecture dubbed EMMA. In this approach
hypersurface discriminant functions are evolved using GP.
These discriminant functions reside in the states of a FSA
which is evolved simultaneously. The FSA component has
the ability to reason, and combine the discriminant functions
logically to produce complex decision spaces. No prepro-
cessing need be performed before training EMMA, the raw
images are simple presented. EMMA has the ability to per-
form feature selection for all its discriminant functions whilst
it is evolving. Since each discriminant function will have dif-
ferent features, and one or more discriminant functions may
be used to classify objects from the same class, no two ob-
jects from the same class need be classified using the same
features. Instead, the most appropriate features for a given
object are used to classify it. These properties make EMMA
a very versatile ATD algorithm.

11 Acknowledgements

The Author would like to thank Colin Reeves, James Cubillo
and David Booth for their support whilst carrying out this
research. Thanks also go to David Fogel for answering many
EC related questions over the last year, and for his efforts
in supplying reference material used in this paper that would
have otherwise been difficult to obtain.

Bibliography

[1] W.J Atmar. Speculation on the Evolution of Intelligence
and its Possible Realization in Machine Form. Sc.D
dissertation, New Mexico State University, Las Cruces,
1976.



[2] Karl Benson. Evolving finite state machines with em-
bedded genetic programming for automatic target de-
tection within SAR imagery. In Proceedings of the
Congress on Evolutionary Computation, La Jolla Mar-
riott, San Diego, USA, 16-19 July 2000. IEEE.

[3] G Carpenter, S Grossberg, N Markuzon, J Raynolds,
and D Rosen. Fuzzy artmap: A neural network architec-
ture for incremental supervised learning of analog mul-
tidimensional maps. IEEE Transactions on Neural Net-
works, 3:698–713, 1992.

[4] F N Cornett. An application of evolutionary program-
ming to pattern recognition. MS thesis, New Mexico
State University, Las Cruses, 1972.

[5] F N Cornett, V P Holmes, and D W Dearholt. Some ex-
periments with evolutionary programs. In Proceedings
of 7th Annual Conference on Information Sciences and
Systems, March 1973.

[6] Russell C Eberhart and Roy W Dobbins. NEURAL
NETWORK PC TOOLS: A Practical Guide. Academic
Press, 1990.

[7] John Suckling et al. The Mammographic Image Society
Digital Mammogram Datatbase, pages 375–378. Inter-
national Congress Series 1069. Exerpta Medica, 1994.

[8] S E Fahlman and C Lebiere. The cascade-correlation
learning architecture. In Touretzky, editor, Advances
in Neural Information Processing Systems, volume 2.
Morgan Kauffman, 1990.

[9] Lawrence J. Fogel. Autonomous automata. Industrial
Research, 4:14–19, 1962.

[10] Lawrence J. Fogel. Biotechnology: Concepts and Ap-
plications. Prentice Hall, Englewood Cliffs, NJ, 1963.

[11] Lawrence J Fogel. Intelligence Through Simulated Evo-
lution: fourty years of evolutionary programming. Wi-
ley series on intelligent systems. Wiley, 1999.

[12] Lawrence J Fogel, Alvin J Owens, and Michel J
Walsh. Artificial Intelligence through Simulated Evo-
lution. John Wiley, 1966.

[13] Chris Gathercole and Peter Ross. Some training sub-
set selection methods for supervised learning in genetic
programming. Presented at ECAI’94 Workshop on Ap-
plied Genetic and other Evolutionary Algorithms, 1994.

[14] Chris Gathercole and Peter Ross. Small populations
over many generations can beat large populations over
few generations in genetic programming. In John R.
Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel,
Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors,
Genetic Programming 1997: Proceedings of the Second
Annual Conference, pages 111–118, Stanford Univer-
sity, CA, USA, 13-16 July 1997. Morgan Kaufmann.

[15] Rafael C Gonzalez and Richard E Woods. Digital Image
Processing. Addison Wessley, 1992.

[16] T K Ho. The random subspace method for constructing
decision forests. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 20(8):832–844, August
1998.

[17] John R Koza. Genetic Programming: on the program-
ming of computers by means of natural selection. The
MIT Press, 1992.

[18] Kevin J Lang and Michael J Witbrock. Learning to tell
two spirals apart. In Proceedings of the 1988 Connec-
tionist Summer Schools. Morgan Kaufman, 1988.

[19] Huai Li, Ray K J Liu, and Shih-Chung B Lo. Frac-
tal modeling and segmentation for the enhancement of
microcalcifications in digital mammograms. Technical
Research Report TR 96-38, Electrical Engineering De-
partment and Institute for Systems Research, University
of Maryland at College Park, 1996.

[20] D Meersman, P Scheunders, and D Van Dyck. Detec-
tion of microcalcifications using neural networks. In
3rd international workshop on digital mammography,
Chicago Illinois USA, 9–12 June 1996.

[21] Andrew W Moore and Mary S Lee. Efficient algorithms
for minimizing cross validation error. In William W Co-
hen and Haym Hirish, editors, Proceedings of the 11th
International Conference on Machine Learning, pages
190–198, Rutgers University, 1994. Morgan Kaufmann.

[22] Daniel Rosen, Benjamin Martin, Mark Monheit, Greg
Wolff, and Martin Stanton. A baysian neural network to
detect microcalcifications in digitized mammograms. In
3rd international workshop on digital mammography,
Chicago Illinois USA, 9–12 June 1996.

[23] S Rasoul Safavian and David Landgrebe. A survey of
decicision tree classifier methodology. IEEE Transac-
tions on Systems, Man, and Cybernetics, 21(3):660–
674, May 1991.

[24] Astro Teller and David Andre. Automatically choos-
ing the number of fitness cases: The rational allocation
of trials. In Proceedings of 2nd Annual Conference on
Genetic Programming, pages 321–328, Stanford Uni-
versity, CA, USA, 1997. Morgan Kaufmann.

[25] R E Trellue. The recognition of handprinted characters
through evolutionary programming. MS thesis, New
Mexico State University, Las Cruces, 1973.

[26] Hiroyuki Yoshida, Kunio Doi, and Robert M Nishikawa.
Automated detection of clustered microcalcifications
in digital mammograms using wavelet transform tech-
niques. In SPIE Image Processing, volume 2167, 1994.


