
Managing Approximate Models in Evolutionary Aerodynamic Design
Optimization

Yaochu Jin
yaochu jin@de.hrdeu.com

Markus Olhofer
markus olhofer@de.hrdeu.com

Bernhard Sendhoff
bs@el-tec.de

Future Technology Research Division
Honda R&D Europe (Deutschland) GmbH

63073 Offenbach/Main, Germany

Abstract- Approximate models have to be used in evolu-
tionary optimization when the original fitness function is
computationally very expensive. Unfortunately, the con-
vergence property of the evolutionary algorithm is un-
clear when an approximate model is used for fitness eval-
uation because approximation errors are involved in the
model. What is worse, the approximate model may intro-
duce false optima that lead the evolutionary algorithm to
a wrong solution. To address this problem, individual and
generation based evolution control are introduced to en-
sure that the evolutionary algorithm using approximate
fitness functions will converge correctly. A framework for
managing approximate models in generation-based evo-
lution control is proposed. This framework is well suited
for parallel evolutionary optimization in which evaluation
of the fitness function is time-consuming. Simulations on
two bench-mark problems and one example of aerody-
namic design optimization demonstrate that the proposed
algorithm is able to achieve a correct solution as well as a
significantly reduced computation time.

1 Introduction

Evolutionary algorithms have widely been applied to opti-
mization problems that are discontinuous, multi-modal and
multi-objective [1, 2]. Aerodynamic structural optimiza-
tion problems such as preliminary turbine design [3], turbine
blade design [4] and multi-disciplinary turbine blade design
[5] are some good examples.

Despite the success in structural design optimization, there
are still difficulties that impede evolutionary algorithms to be
applied to more complicated problems, e.g. 3-D design opti-
mization. One essential difficulty is the prohibiting time con-
sumption due to high complexity of the aerodynamic analysis
and large number of evaluations needed in the evolutionary
optimization. Several methods have been developed for con-
structing approximate models to alleviate this difficulty. One
widely used method in design engineering is the Response
Surface Methodology, which uses low-order polynomials and
the least square estimations [6]. The Kriging model, which
is also called the Design and Analysis of Computer Experi-
ments (DACE) model [7], is another very useful tool. In this
method, a global polynomial approximation is combined with

a local Gaussian process and the maximum likelihood method
is used for parameter estimation. In the last few years, arti-
ficial neural networks, including Multi-layer Perceptrons and
Radial Basis Function networks have also been employed to
build approximate models for design optimization. In [8] a
more comprehensive review of different approximation con-
cepts is provided. Comparisons of the different modeling
techniques can be found in [9].

One major problem arising in using approximate models
is the lack of sufficient training data, which prevents the users
from achieving a model with sufficient approximation accu-
racy. Generally, since evaluation of the original fitness func-
tion is very time-consuming, data collection is computation-
ally very expensive. Due to this, the approximate model may
be of low fidelity and may even introduce false optima. In
this case, measures have to be taken to guarantee the correct
convergence of the optimization algorithm when approximate
models are used. In this paper, the correct convergence means
that the minimum found by the evolutionary algorithm is a
near-minimum or the global minimum.

Model management has been investigated in conventional
optimization with approximate models. In [10], a framework
for managing approximate models has been proposed based
on the classical trust-region methods [11]. An extension of
this work has been reported in [12]. One main feature of the
framework for managing approximate models is the strong
interplay between the optimization and the fidelity of the ap-
proximate model based on the trust-region method, which en-
sures that the search process converges to a reasonable solu-
tion of the original problem.

Managing approximate models in optimization based on
evolutionary algorithms has not caught much attention until
recently. In [13], a heuristic convergence criterion is used
to determine when the approximate model must be updated.
The basic idea is that the convergence of the search process
should be stable and therefore, the change of the best solution
should not be larger than a user-defined value. An assump-
tion is that the first sets of data points are weakly correlated
with the global optimum of the original problem, which is not
necessarily true for high dimensional systems. An approach
to coupling approximate models with evolutionary algorithms
is proposed in [14] in an attempt to balance the concern of op-
timization with that of design of experiments. The main idea

E0009911
Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 1, pp.592-599, IEEE, June 2001

E0009911

is to maintain the diversity of the individuals and to select
those data points that are not redundant for model updating
(online learning). In this method, when to carry out the on-
line learning of the approximate model is simply based on a
prescribed generation delay. Most recently, we noticed the
paper [15], in which a neural network is trained with some
initial samples to approximate the NK model. During evolu-
tion, the fittest individual in the current population is evalu-
ated on the original fitness function for every

���
generations.

This individual then replaces the one with the lowest fitness
in the training set and the neural network is retrained. It is
found that the evolutionary algorithm becomes misled by the
neural network model when the complexity of the original fit-
ness landscape is high. The common weakness in the above
methods is that neither the convergence property of the evolu-
tionary algorithm with approximate fitness functions (correct
convergence is assumed) nor the issue of model management
is addressed.

As we have shown in [16], an incorrect convergence oc-
curs when the approximate fitness function has false optima.
To improve the convergence of the evolutionary algorithm,
the concept of evolution control is introduced. By evolu-
tion control, we mean that not only the approximate fitness
function but also the original fitness function will be used in
evolution. There are two possibilities to combine the true fit-
ness function with the approximate fitness function. One ap-
proach is called individual-based evolution control, in which
a certain number of individuals within a generation are evalu-
ated with the true fitness function. Such individuals are called
controlled individuals. The second approach is to introduce
generation-based evolution control, which means that in ev-
ery � generations, �����	�
��� generations will be con-
trolled. In a controlled generation, all the individuals are
evaluated with the true fitness function. For the sake of con-
venience, every � generations is called a control cycle, �
the size of the control cycle, and � the evolution control fre-
quency.

When the fitness function is computationally expensive,
parallel evolutionary algorithm will often be used. In this
case, generation based evolution control is more attractive be-
cause it is suitable for parallelization. The question now is to
determine the evolution control frequency so that the evolu-
tionary algorithm converges correctly with as few calls of the
original fitness function as possible. To this end, a framework
for model management with generation based evolution con-
trol is proposed. The main idea is that the frequency at which
the original function is called and the approximate model is
updated should be determined by the local fidelity of the ap-
proximate model. By local fidelity, we mean the fidelity of
the model for the region where the current population is lo-
cated. The lower the model fidelity is, the more frequently
the original function should be called and the approximate
model should be updated. Since it is hardly possible to build a
globally correct approximate model for problems with a large
dimensionality in the design space, a local model is of more

practical importance. With this strategy, the computational
cost can be reduced as much as possible while the correct
convergence of the evolutionary algorithm can be guaranteed.

An evolution strategy with covariance matrix adaptation
(CMA) [17] is adopted in this work. Besides its attractive
convergence speed, the self-adaptation of the covariance ma-
trix can also be taken advantage of during on-line learning.
The basic idea is that the new data points that lie along the di-
rection in which the evolutionary algorithm proceeds should
be given larger weight in on-line learning. Very interestingly,
rough information on the directions is contained in the covari-
ance matrix. Results from the benchmark problems show that
better results can be achieved when the covariance matrix is
used to weight the new samples in on-line learning.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the evolution strategy used in our work along
with an explanation of the covariance matrix adaptation.
The parallel implementation of the evolutionary algorithm is
briefly described. In Section 3, two approaches to evolution
control are suggested to improve the convergence of the evo-
lutionary algorithm with approximate fitness functions. A
framework for evolutionary optimization with approximate
fitness functions is proposed in Section 4, which includes the
evolution control strategy, the determination of the frequency
for evolution control, as well as the weighted learning algo-
rithm on the basis of the covariance matrix. The effective-
ness of this framework is demonstrated with examples on two
benchmark problems and one application example in Section
5. A summary of the results concludes the paper in Section 6.

2 Evolution Strategy with Covariance Matrix
Adaptation

The standard Evolution Strategy (ES) can be described as fol-
lows:
�� �������
�� �����������������! #"�$��%�&���'�! ($ � � (1))* �������)* �!�+�,�-�'.) /$ (2)$ ��0 $213�4� � 0 �-��5) /$213�4�)� 0)
 �!����6-� (3)

where
)* is the parameter vector to be optimized and , " and
 � are the strategy parameters. The
 � are also called step-

sizes and are subject to self-adaptation, as shown in equation
(2). The $ � , $ and

) /$ are normally distributed random numbers
and a random number vector, respectively, which character-
ize the mutation exercised on the strategy and the objective
parameters.

The derandomized Covariance Matrix Adaptation (CMA)
[17] differs from the standard ES mainly in three respects:7 In order to reduce the stochastic influence on the self-

adaptation, one stochastic source for both the adapta-
tion of the objective and of the strategy parameters is
used. In the derandomized approach, the actual step
length in the objective parameter space is used to adapt

the strategy parameter. Therefore, the self-adaptation
of the strategy parameters depends more directly on the
local topology of the search space.7 The second method is the introduction of the cumula-
tive step size adaptation. Whereas the standard evo-
lution strategy extracts the necessary information for
the adaptation of the strategy parameters from the
population (ensemble approach), the cumulative step
size adaptation additionally relies on information col-
lected during successive generations (time averaged
approach)1. This leads to a reduction of the necessary
population size.7 In the CMA algorithm the full covariance matrix of the
probability density function

8 �)$9�:� ;
det �)<>=@? ��BA�C'�EDGF 6 �����IH@� �A �)$KJ)< =�?)$K�EL4M (4)

is adapted for the mutation of the objective parameter
vector (N satisfies

)< �)N)N J with $ � 1O��� � 0 �-� , then)N)$21P�4� � 0)< � ; Q������R�-� denotes the global step-size):)* �!���:�)* ���S�T����.UQ��!���T���)NV�!�S�W�-�)$ 0 $ � 13�4� � 0 ���XM
(5)

Since
)< =�?

has to be positive definite with
det �)< =@? �ZY � , the different matrix entries cannot
be determined independently and the detailed adapta-
tion algorithm is a little more involved, see [17, 18] for
a detailed description.

The evolution strategy is parallelized in this work. The
basic motivation to implement an evolutionary algorithm in
parallel is to reduce the processing time needed to reach an
acceptable solution. This is badly in need when the evalu-
ation of the fitness takes a large amount of time. There are
several approaches to parallelization and the one we adopt
here is the global parallelization. In this approach, there is
one single population and the evaluation of the individuals is
done in parallel. For design problems, the evaluation of the
individuals usually takes up the overwhelming part of the to-
tal time consumption, therefore, a sub-linear speed-up can be
achieved if the global parallelization approach is used. The
hardware for the implementation of parallel evolutionary al-
gorithms can be very different. In our case, a network of
computers with multi-processors is used. The implementa-
tion of the parallelization is realized with the Parallel Virtual
Machines library.

1As with all analogies, the division into ensemble and time averaged ap-
proach should not be taken too literal. Firstly, also in the standard ES no
explicit averaging over the inviduals in each generation takes place (besides
a recombination operator), but only an indirect exploitation of the ensemble
(the population) in the selection process. Secondly, the “time averaging” in
the derandomized ES occurs in addition to the emsemble “average”. How-
ever, still we feel that the analogy helps to gain some understanding of how
both strategies operate, e.g. why the derandomized methods work well even
with small population sizes.

3 Evolution Control

If the problem we are dealing with is of low dimensional-
ity, both random sampling and regularized learning [16] are
very helpful to prevent an approximate model from producing
false minima. However, if the dimension of the model is very
high, it will be very difficult to achieve correct convergence
using these methods. To solve this problem, we introduce
the concept of evolution control. By evolution control, we
mean to employ the original fitness function when necessary
to prevent the evolutionary algorithm from converging to a
false minimum. Two methods are proposed:

Individual-based control In this approach, part of the indi-
viduals ([) in the population (\ in total) are chosen
and evaluated with the original fitness function. If the
controlled individuals are chosen randomly, we call it a
random strategy. If we choose the best [individuals
as the controlled individuals, we call it a best strategy.

Generation-based control In this approach, the whole pop-
ulation of] generations will be evaluated with the real
fitness function in every ^ generations, where]_�`^ .

Furthermore, when controlled individuals or controlled gen-
erations are introduced, new training data becomes available.
Therefore, on-line learning of the neural network will be ap-
plied to improve the approximation of the network model in
the region of optimization and in turn to improve the conver-
gence of the evolutionary algorithm.

In both evolution control schemes, it is very important
to determine the minimal control frequency that is needed
to guarantee a correct convergence. Empirical investiga-
tions [16] on the individual-based evolution control approach
showed that more than half of the individuals need to be con-
trolled when the random strategy is used. If the best strategy
is used in individual-based evolution control, about a ��b of
the individuals should be controlled. It is assumed that the
approximate model has false minima. Similar results have
been obtained for generation-based evolution control. That is
to say, if a fixed evolution control frequency is used, about
half of the generations should be controlled to ensure correct
convergence.

Although the effectiveness of these two evolution control
methods is comparable, generation-based evolution control
is more suitable when parallel evolution strategies are im-
plemented and the number of processors equals the num-
ber of individuals in the offspring population. It is evident
that in global parallelization (master-slave mode), the needed
computation time for each generation is determined by the
individual with the maximal time consumption. Therefore,
use of computationally efficient approximate models with
individual-based evolution control will not be able to reduce
time consumption for parallel implementation. Due to this
reason, generation-based evolution control is applied in our
framework for managing approximate models.

Generation t+1 Generation t+2 Generation t+3 Generation t+4 Generation t+5

One evolution control cycle

Figure 1: One evolution control cycle. The controlled gener-
ations are denoted by filled boxes.

4 Managing Approximate Models

4.1 Generation-based Evolution Control

As suggested in the last section, generation-based evolution
control is employed in this work. For the sake of convenience,
a more detailed description of the generation-based evolution
control approach is presented in the following. Fig. 1 shows
an evolution control cycle. In this example, the cycle consists
of
�

generations, among which c generations are controlled.
As we mentioned, the number of generations to be controlled
within an evolution control cycle is called control frequency
for short. Our task is to adjust the control frequency on-line so
that the calls of the computationally expensive original fitness
function can be reduced as much as possible without affecting
the correct convergence of the algorithm.

4.2 Determination of Control Frequency

It is intuitive that the higher the fidelity of the approximate
model is, the more often the fitness evaluation can be made
using the approximate model and the smaller] can be. How-
ever, it is very difficult to estimate the global fidelity of the
approximate model. Thus, a local estimation of the model
fidelity has to be used. This is feasible because the evolu-
tion strategy generally proceeds with small steps, i.e., with the
Gaussian distribution small mutations are most likely. There-
fore, we can use the current model error to estimate the local
fidelity of the approximate model and then to determine the
frequency at which the original fitness function is used and
the approximate model is updated. Suppose there are ^ gen-
erations within an evolution control cycle, and] generations
need to be controlled. To obtain a proper] , heuristic fuzzy
rules can be derived as follows:

If the model error is large, then] is large.
Since the rule system has only one input variable, the

input-output mapping of such a fuzzy system can approxi-
mately be expressed by:

]@�Bd%.P�-�e�f]Kg � D .ih'j �Bd#�j glk�m�n ��]Gglk�mo�p]Gg � D � 0 (6)

where q *Sr denotes the largest integer that is smaller than * ,] glk�m is the maximal] ,] glk�m �f^ , and] g � D usually equals �
so that the information on the model fidelity is always avail-
able. j glk�m is the allowed maximal model error and j �BdS� is

the current model error estimation, d denotes the d -th evolu-
tion control cycle of ^ generations.

The estimation of the current model error is carried out be-
fore the next cycle begins. Suppose all the new data in the last] generations are valid (in aerodynamic optimization, some
designs may result in unstable fluid dynamics and therefore
the data are invalid), there will be]�\ data in total, where \
is the population size. Thus, the model error is estimated as
follows:

j �BdS�:� sttu �]�\wv�xy �{z ? ��|@�!}E���p|G~�~>�!}E��� 6 (7)

where |@��}�� is the true fitness value and |9~�~>��}E� is the fitness
calculated using a feedforward neural network model:

|K~�~3���y� z ?�� �&� � Dy ��z ?'� � � * � � 0 (8)

where � is the number of hidden nodes, � is the number
of inputs, � � � is the weight between the input layer and the
hidden layer, � � is the weight between the hidden layer and
the output layer, and � �EM�� is the logic function� ��$��e� ���.�� =�� M (9)

The framework for evolutionary optimization with ap-
proximate models can be summarized as follows:

begin
Initilize \�� � � ,]�� � � , ^ , j glk�m , � glk�m , let d�� �
for �e� � to � glk�m

if � b ^U��]@�BdS�����
Use the original fitness function
Storage the data for model updating

else
Use the approximate model

end if
if � b ^��3^����

Estimate the local model fidelity j �Bd#�Estimate]@�Bdo.`���
Update the approximate model, d��Pd%.P�

end if
end for

end
To make sure that the information on the model fidelity

is always available, at least one generation should be con-
trolled within one evolution control cycle. Since the fidelity
of the model is estimated locally based on the error informa-
tion from the last cycle, ^ should not be too large.

4.3 Weighted On-line Learning Using Covariance Matrix

On-line learning should be efficient to improve the model fi-
delity without taking much time. One approach to enhancing
the learning efficiency is to actively select new samples for

network training. There are a number of methods for active
data selection in neural network learning, which are usually
called active learning [19, 20]. However, these active learning
methods are mostly very time-consuming and are not suitable
for on-line learning.

For on-line learning during optimization, the new data
samples are ’selected’ by the evolution strategy. Very inter-
estingly, we can get a clue for which data points will most
likely be visited by the evolution strategy in the next genera-
tion from the covariance matrix. Based on this information,
the neural network is able to determine which data points are
to be learned more rigorously. Suppose there are � new sam-
ples collected at the end of one control cycle, then the cost
function for weighted learning is defined by

j � �� ~y ��z ?#� ��}��&�!|@�!}E���p| ~�~ ��}���� 6 0 (10)

where, � �!}E� is the weight for sample } , which is calculated
from the covariance matrix:

� �!}E�e�`����� H � �A �)* ��}����)* x � J
< =@? �)* ��}E���)* x � L

0 (11)

where
)* ��}E� is an arbitary point in the parameter space,

)*
xis an individual in the current parent population to be refer-

enced,
<

is the covariance matrix defined in equation (4). If
the parameter vector

)* is close to the origin (zero), equation
(11) can be approximated by

� �!}E�e�f�&���IH�� �A)* ��}E� J < =�?)* �!}E��LRM (12)

Before applying the weights to neural network learning,
they need to be normalized

� �!}E�e� � �!}E�� glk�m (13)

where � glk�m is the maximal weight among � �!}E� 0 }��� 0 A 0 M�M{M 0 � . In this way, the neural network is able to learn
the most important samples, and those with a weight smaller
than a given threshold are discarded in learning.

5 Numerical Examples

In order to verify the feasibility of the proposed approach to
managing approximate models, numerical studies are carried
out on the Ackley function, the Rosenbrock function and an
aerodynamic design example.

5.1 The 20-D Ackley Function

The first experimental study is conducted on the 20-
dimensional Ackley function. A (A , ��A) evolution strategy
with covariance matrix adaptation is adopted. In the simu-
lation, ^ is set to � , the maximal] is set to a and the minimal] to � . The maximal number of generations is c �G� .

Table 1: Generation-based evolution control
Best Fitness Number of CFD Calls

Average 0.98 1440
Variance 0.41 99.8

Table 2: Evolution with the original function only.
Best Fitness Number of CFD Calls

Average 2.33 1440
Variance 1.69 0

The results, including the best fitness and the number of
calls of the real fitness function, are listed in Table 1. The
average best fitness and the average] over � � runs are

� M �G�
and A�M � � . Compared with the results in [16], it is seen that the
evolution control frequency to guarantee correct convergence
has been significantly reduced through the proper estimation
of the model fidelity.

To show that we can benefit from the introduction of the
approximate model, we implement the optimization without
using the approximate model but with the same number of
evaluations of the original function. In the ten runs, the av-
erage number of calls of the original fitness function is �&aKa � ,
which corresponds to ��AGA generations for a population size
of �-A . Therefore, we conduct � � runs of the evolution with a
maximum of �-AGA generations and the results are presented in
Table 2. The average best fitness resulting from the � � runs
is A�M cGc . Comparing it with the average fitness using the ap-
proximate model with approximately the same computational
overhead, we see that we have obtained a better result with
the help of an approximate model. Note that we assume that
the computational cost of the approximate model is negligible
compared to that of the original fitness function.

In the above simulation, all new data are used for network
training. In the following, we introduce the weighted learn-
ing based on the covariance matrix. In the simulation, it is
found that the use of weighted learning should be introduced
after the evolution process becomes relatively stable. This
may be due to the fact that at the beginning of the evolution,
the information obtained by the evolutionary algorithm is still
inaccurate. The results are presented in Table 3.

It is noticed that in � � runs, the best fitness on average is
further significantly improved, while the average number of
calls of the original function increases remains approximately
the same (fewer than 4 generations in total).

Table 3: Evolution control with weighted learning.
Best Fitness Number of CFD Calls

Average 0.81 1483
Variance 0.32 77.8

5.2 The 20-D Rosenbrock Function

Simulations are also carried out on the 20-D Rosenbrock
function. Similarly, simulations are done in three different
cases, namely, evolution using both the approximate model
and the original model, evolution using the original model
only, and evolution with a combination of the approximate
model and the original model with weighted learning.

When evolution control is employed, the best fitness isc � M � and �G� � calls of the original function are necessary on
average within A �K� generations. Since �G� � calls equals ap-
proximately ��c generations with a population size of �-A , we
then run the evolution for ��c generations with the original
function only.

The average best fitness is A � ��M c . Therefore, we have
again achieved a much better result with the help of the ap-
proximate model. Finally, we introduce the weighted learn-
ing. The average best fitness is A � M � , again better than the
results without weighted learning. We noticed that an in-
crease of �Gc calls of the original function is needed in this
case, which is about � generations more. Therefore, we con-
duct another � � runs with � �K� generation using the original
fitness function only and the average best fitness is �9��M a . This
demonstrates that we do benefit from using an approximate
model by use of the proposed framework.

5.3 Blade Design Optimization

Aerodynamic design optimization is difficult partly due to the
fact that complex computational fluid dynamics (CFD) sim-
ulations have to be conducted to evaluate the performance
of a structure. Usually, CFD simulations are very time-
consuming. For example, one 2-D CFD simulation based on
Navier-Stokes equations with turbulence model takes aboutc � minutes CPU time on a high-performance computer, and
one 3-D CFD simulation more than � � hours. Therefore, it is
difficult to apply evolutionary algorithms to this kind of de-
sign optimization, since usually evolutionary algorithms need
hundreds or thousands of performance evaluations. To ad-
dress this problem, approximate models are introduced in op-
timization.

The objective of the optimization in our study is to max-
imize the efficiency of a turbine blade and to minimize the
bias of the outflow angle from a prescribed value. The max-
imization of efficiency is realized by the minimization of the
pressure loss. In addition, mechanical constraints must be
satisfied to ensure that the design is stable in mechanics and
feasible for manufacturing. In order to describe the two di-
mensional cross section of the blade, a spline encoding based
on Non-Uniform Rational B-Splines [21] is used. The spline
is constructed using �ia -dimensional control points that de-
fine the control polygon. For the two dimensional geometry
representation, the z-coordinate is fixed to zero. The weights
defined in NURBS for each control point are fixed to reduce
the dimension of the search space. As pointed out in [21], in
many NURBS implementations, the weights are fixed, which

Figure 2: Representation of the blade geometry with B-
splines.

does not impair much the representation capacity of NURBS.
In this case each control point is described only by two pa-
rameters, i.e., the * and | coordinate of the point. Figure
2 illustrates a blade (solid line) that is generated by a spline
with � control points. The dotted line shows the correspond-
ing control polygon.

A �BA 0 �G��� -ES is used for optimization. The population is
initialized with a given blade to reduce the computation time.
A neural network model is used to approximate the pressure
loss and the outflow angle respectively. The size of the evo-
lution control cycle is set to � and at least one generation will
be controlled within one cycle.

(a)

0 500 1000 1500 20005.0

5.5

6.0

6.5

7.0

7.5

Number of Evaluations

P
re

ss
u

re
 L

o
ss

(b)

0 500 1000 1500 2000
65.5

66

66.5

67

67.5

68

68.5

69

69.5

70

70.5

Number of Evaluations

O
ut

flo
w

 A
ng

le

Figure 3: Blade optimization without approximate models:
(a) Pressure loss, (b) Outflow angle.

The optimization was first run without any approximate

models. In A#��� generations, the Navier-Stokes solver was
called A�cG�K� times. The pressure loss and outflow angle are
shown in Fig. 3. The minimal pressure loss is

� M �9� � with an
outflow angle of �K�#M � .

In the next optimization experiment, a neural network is
used for approximation of the pressure loss and a second net-
work for the outflow angle. The networks are trained off-
line using data samples collected in other similar optimization
tasks (but not the ones in the first optimization). In AG�#� gen-
erations, the Navier-Stokes solver was called for A�a � � times
and the network models were called aK�Kc times. Note that the
number of CFD calls is about the same in the optimization
without approximate models. The change of the pressure loss
and outflow angle is given in Fig. 4 and the obtained minimal
pressure loss is

� M �K� A with an outflow angle of �K�#M � . This
corresponds to a � ��b reduction of the pressure loss. On the
other hand, only about �G� � Navier-Stokes calls (about � � gen-
eration) are necessary to achieve the same loss as in the first
optimization. Notice that in the figure, the number of evalua-
tions includes both calls of the Navier-Stokes solver and that
of the neural network models.

(a)

0 500 1000 1500 2000 2500
0.05

0.055

0.06

0.065

0.07

0.075

Number of Evaluations

P
re

ss
ur

e
Lo

ss

(b)

0 500 1000 1500 2000 2500
65.5

66

66.5

67

67.5

68

68.5

69

69.5

70

70.5

Number of Evaluations

O
ut

flo
w

 A
ng

le

Figure 4: Blade optimization with approximate models: (a)
Pressure loss, (b) Outflow angle.

Finally, the optimization with approximate models and
weighted on-line learning is carried out. In this optimiza-
tion, the weighted learning based on the information from the
covariance matrix of the evolution strategy is employed. InAK��c generations, the Navier-Stokes solver was called A�a � a

times. The achieved minimal pressure loss is
� M �9�G� with an

outflow angle of �G�SM � . Compared to the second optimization
in which no weighted learning is applied, the performance is
degraded from the viewpoint of the achieved minimal pres-
sure loss. However, we still notice that the performance is
about

�9b
better than that of the first run. In addition, we find

the trajectory of the pressure loss during optimization (see
Fig. 5) is smoother than that in the second run. It means that
the average quality of the approximate model is better than
that in the second run.

Compared with the results on the test functions, the perfor-
mance of weighted learning in aerodynamic design optimiza-
tion is worse. This might be ascribed to the fact that very
small mutation steps are used in design optimization, since
large mutation steps often result in an unstable behavior of
the Navier-Stokes solver.

(a)

0 500 1000 1500 2000 2500 3000
0.05

0.055

0.06

0.065

0.07

0.075

Number of Evaluations

P
re

ss
ur

e
Lo

ss

(b)

0 500 1000 1500 2000 2500 3000
65.5

66

66.5

67

67.5

68

68.5

69

69.5

70

70.5

Number of Evaluations

O
ut

flo
w

 A
ng

le

Figure 5: Blade optimization with approximate models and
weighted learning: (a) Pressure loss, (b) Outflow angle.

6 Conclusions

Evolutionary optimization with approximate fitness functions
is studied in this paper. Based on the empirical convergence
studies on two benchmark problems, individual and genera-
tion based evolution control are suggested to ensure the cor-
rect convergence of an evolutionary algorithm using an ap-
proximate fitness function. A framework for managing the
approximate model with the generation-based evolution con-
trol is proposed. The basic idea is to estimate the local model

fidelity so that the frequency of evolution control can be on-
line adjusted. In this way, the number of calls of the original
computationally expensive function can be reduced and cor-
rect convergence can still be achieved.

Sample weighting is employed during on-line learning.
The weighting information is derived from the covari-
ance matrix of the evolution strategy. Results on both
benchmark problems and an application example show
that the proposed framework is very promising in that it is
able to produce a good solution and reduce computation time.

ACKNOWLEDGEMENTS
The authors would like to thank T. Arima, T. Sonoda, E.
Körner and W. von Seelen for their support.

Bibliography

[1] D. Goldberg D., K. Deb, and J. Clark. Genetic algo-
rithms, noise, and the sizing of the populations. Com-
plex Systems, 6, 1992.

[2] C.A. Coello Coello. An updated survey of evolutionary
multiobjective optimization techniques: State of art and
future trends. In Proceedings of 1999 Congress on Evo-
lutionary Computation, pages 3–13, Washington D.C.,
1999. IEEE Press.

[3] S. Tong and B. Gregory. Turbine preliminary design
using artificial intelligence and numerical optimization
techniques. Journal of Turbomachinar, 114(1), 1992.

[4] M. Olhofer, T. Arima, T. Sonoda, and B. Sendhoff. Op-
timization of a stator blade used in a transonic compres-
sor cascade with evolution strategies. In I. C. Parmee,
editor, Evolutionary Design and Manufacture, pages
45–54, 2000.

[5] P. Hajela and J. Lee. Genetic algorithms in multidisci-
plinary rotor blade design. In Proceedings of 36th Struc-
tures, Structural Dynamics, and Material Conference,
New Orleans, 1998.

[6] R. Myers and D. Montgomery. Response Surface
Methodology. John Wiley & Sons, Inc., New York,
1995.

[7] J. Sacks, W. J. Welch, T. J. Michell, and H. P. Wynn. De-
sign and analysis of computer experiments. Statistical
Science, 4:409–435, 1989.

[8] J. Bartelemy and R. T. Haftka. Approximation concepts
for optimum structural design - a review. Structural Op-
timization, 5:129–144, 1993.

[9] W. Carpenter and J. Barthelemy. A comparison of poly-
nomial approximations and artificial neural nets as re-
sponse surfaces. Structural Optimization, 5:166–174,
1993.

[10] J. Dennis and V. Torczon. Managing approximate mod-
els in optimization. In N. Alexandrov and M. Hussani,
editors, Multidisciplinary design optimization: State-of-
the-art, pages 330–347. 1997.

[11] H. Schramm and J. Zowe. A version of the bundle idea
for minimizing a nonsmooth function: Conceptual idea,
convergence analysis. SIAM Journal of Optimization, 2,
1992.

[12] A. J. Brooker, J. Dennis, P. D. Frank, D. B. Serafini,
V. Torczon, and M. Trosset. A rigorous framework
for optimization of expensive functions by surrogates.
Structural Optimization, 17:1–13, 1998.

[13] A. Ratle. Accelerating the convergence of evolution-
ary algorithms by fitness landscape approximation. In
A. Eiben, Th. Bäck, M. Schoenauer, and H.-P. Schwe-
fel, editors, Parallel Problem Solving from Nature, vol-
ume V, pages 87–96, 1998.

[14] M. El-Beltagy, P. Nair, and A. Keane. Metamodeling
techniques for evolutionary optimization of expensive
problems: Promises and limitations. In W. Banzhaf,
J. Daida, A. Eiben, M. Gazon, V. Honavar, M. Jakiela,
and R. Smith, editors, Proceedings of Genetic and Evo-
lutionary Conference, pages 196–203, 1999.

[15] L. Bull. On model-based evolutionary computation. Soft
Computing, 3:76–82, 1999.

[16] Y. Jin, M. Olhofer, and B. Sendhoff. On evolution-
ary optimization with approximate fitness functions. In
Proceedings of Genetic and Evolutionary Computation
Conference., pages 786–792, Las Vegas, 2000.

[17] N. Hansen and A. Ostermeier. Completely derandom-
ized self-adaptation in evolution strategies. Evolution-
ary Computation, 2000. To appear.

[18] M. Kreutz, B. Sendhoff, and Ch. Igel. EALib: A
C++ class library for evolutinary algorithms. Institut
für Neuroinformatik, Ruhr-Universität Bochum, 1.4
edition, March 1999. www.neuroinformatik.ruhr-uni-
bochum.de/PROJECTS/SONN/Software/software.html.

[19] D. MacKay. Information-based objective functions for
active data selection. Neural Computation, 4(4):305–
318, 1992.

[20] S. Vijayakumar and H. Ogawa. Improving generaliza-
tion ability through active learning. IEICE Transactions
on Information and Systems, 82D(2):480–487, 1999.

[21] L. Piegl and W. Tiller. The NURBS Book. Springer,
Berlin, 1997.

