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ABSTRACT 
In this paper we present a study of parallel and distributed 

genetic programming models and their relationships with the 
bloat phenomenon.  The experiments that we have performed 
have also allowed us to find an interesting link between the 
number of processes, subpopulations and the model we 
should use when applying parallelism to GP.   We study the 
synchronous and asynchronous version of the island-model in 
GP domain. 

I.   INTRODUCTION 
It is well known that Genetic Programming (GP) programs 

tend to increase their size as population evolves [10,11].  This 
phenomenon is in some respect negative since it requires a 
large amount of computer resources to be managed.  Several 
alternatives have been proposed to control that problem.  In 
[11] some of these proposals are described:  firstly, by 
placing a universal upper limit either on tree depth or 
program length; secondly, by incorporating a penalty which 
is proportional to program size; and finally, tailoring the 
genetic operations. 

To our knowledge, the problem of bloat has always been 
studied by using sequential GP and panmictic populations.  
Nevertheless, when we studied different parallel models for 
GP in some of our previous research, we found an interesting 
relationship between program size evolution and the number 
of populations and individuals we employ (see [7]).  We 
stated there that this relationship has much to do with the 
problem of bloat.  In [5] and [6] we defined the concept of 
parameters region of effort; This characterises performance 
curves in parallel GP.  Although we indicated that this region 
had a lot to do with the difficulty of problems and the 
optimum number of individuals that are required for solving 
problems, it can now be analysed again in the light of the 
new influences detected from the parallel and distributed GP 
models.  This idea is more widely studied in this paper by 
means of a couple of benchmark problems and several set-
ups. 

We have also analysed the synchronous and asynchronous 
parallel GP models when completing our previous study on 
the influence of the number of individuals and 
communication time.  We can thus have an idea about how 
the best performances are obtained. 

At the same time, this study has also shown us some 
important links between firstly the total number of 
individuals and secondly subpopulations, and the number of 
processors we use to obtain results.  Sometimes, when the 
brute force is not available, we must carefully consider  the 
computer resources we have and GP models we must use to 
obtain the best results. 

This paper is structured in the following way:  Section 2 
presents parallel models that are commonly used in 
evolutionary algorithms.  In section 3 we describe the 
benchmark problems we have employed.  Section 4 deals 
with the bloat phenomenon.  Section 5 presents an study of 
synchronization models.  In section 6 we show some ideas 
that establish a relationship between number of processors, 
populations and synchronization models.  Finally, section 7 
presents our conclusions. 

II.   PARALLEL MODELS FOR EVOLUTIONARY 
ALGORITHMS 

One common problem when evolutionary algorithms are 
used for solving real-life problems is the large amount of 
computer resources that are required.  Parallel models have 
been applied to Evolutionary Algorithms (EAs) over the last 
few years [1,2,3,8 and 15]. This is done by taking the concept 
of subpopulation:  the main population is divided into several 
smaller ones that evolve at their own pace, exchanging 
individuals.  The idea is to search different portions of the 
search space and also promote diversity by means of those 
migrating individuals (other configurations are also possible, 
see [13]). 

If we focus on GP we see that individuals feature different 
sizes and complexities, and this means that evaluating 
different individuals may require very different lengths of 
time.  Therefore, when we use several subpopulatios for 
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devising solutions -the well known island-model- each of the 
subpopulations will evolve generations at a very different 
pace.  At the same time, this is very important when we use 
several processors to compute subpopulations:  depending on 
the way we synchronise subpopulations, we will obtain 
different results.  This is one of the issues we investigate in 
this paper.  Specifically, we study the synchronous and 
asynchronous versions of the island-based parallel and 
distributed GP.  When we use the synchronous model, all 
processes -subpopulations- synchronise when sending and 
receiving individuals.  Nevertheless, if we employ the 
asynchronous model, each population sends and receives 
individuals according to some internal measurements.  No 
synchronization exists in this second model.  Both parallel 
models are also employed to study the size evolution of 
individuals. 

III.   EXPERIMENTS 
We have taken a couple of benchmark problems that are 

widely used in GP literature:  the ant problem (see [11]) and 
the even parity 5 problem [9].  Summarizing, the ant problem 
tries to find some pieces of food which are positioned along a 
path on a two dimensional grid.  The even parity function 
takes a number of Boolean inputs and returns TRUE only if 
an even number of inputs are true. 

Performing the same experiments a number of times is 
useful for obtaining conclusions (14 times in [14] and 14, 25 
or 60 times in [8]). We have decided to run each of our 
experiments 50 times.  We have employed the padgp tool 
[5,6] and all the experiments have been conducted in a PC-
LINUX 350 Mhz environment. 

The padgp tool implements the master/slave model, each 
slave being a subpopulation.  The master process is in charge 
of managing messages, while the communication topology is 
the ring:  process n sends its individuals to process n+1. 

The main GP parameters we have employed are the 
following ones:  Crossover probability 98%;  Mutation 
probability 50% for the ant problem and 5% for the even 
parity.  Each population exchange 10% of their individuals 
each 10 generations for the ant problem, and each 5 
generation for the even parity problem. We have employed 
the padgp tool (see [6] and [4]) which implements the 
master/slave model, each slave being a subpopulation.  The 
communication topology is the ring:  process n sends its 
individuals to process n+1.   

IV.   THE BLOAT PROBLEM 
As mentioned above, there is an increase in size of GP 

programs when GP populations evolve.  This has been fought 
by establishing limit values for the maximum size of 
individuals, or by penalizing the individuals' fitness values 
with a factor that is proportional to their size. 

Nevertheless, in [7], we presented preliminary results 
which showed that when none of the above solutions are 

applied to island-based parallel GP, the individuals' length 
evolution varies according to the number of individuals and 
subpopulations we employ.  In order to confirm that idea, we 
have performed a larger set of experiments. 

 

  

  

  

Figure 1:  The Ant problem without length control. 

  

  

  

  

Figure 2:  Fitness obtained with and without length control in the ant 
problem. 
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In figure 1, we show the ant problem with several 
configurations:  panmictic GP and parallel GP based on the 
island model, with 250 and 2500 individuals and 5, 10 or 20 
subpopulations.  When performing these experiments, we 
have sometimes applied a penalty that is proportional to 
individual's size within the fitness function.  This set of 
experiments has been labelled "with length control" in the 
graphs.  When this restriction has not been applied, we have 
labelled graphs as "without length control". 

When there is no length control the panmictic –labelled as 
classic in graphs– model shows a greater increase in size than 
the parallel models.  This happens in almost all the 
configurations.  However, when length control is applied, the 
classic model sometimes controls the average size of 
individuals better than parallel models (see figure 3). 

The same experiments have been performed with the even 
parity 5 problem, and similar conclusions can be drawn (see 
figure 3 and 4).  We can observe that when using the parallel 
model, the higher the number of populations we use, the 
smaller the increase in individuals size we find. 

 

  

 

  

Figure 3:  The Ant problem with length control. 

 

  

  

  

 
Figure 4:  The evenp problem with length control. 

 

  

  

  

Figure 5:  The evenp problem without length control. 

We can thus state that length evolution depends greatly on 
the GP model we use.  Both synchronous and asynchronous 
versions of GP restrict the bloat phenomenon when no 
penalization is applied within the fitness function.  
Nevertheless, this control is not so effective as when it is 
explicitly introduced into the fitness function.  Consequently 
(when the latter is use) differences favouring parallel models 
are not observed. 
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Figure 6:  The evenp problem with length control  

Figures 2, 5 and 6 show the fitness obtained by all the 
models studied.  We see that sometimes panmictic GP 
obtains the same or even worse results than parallel GP 
(synchronous or asynchronous), but this depends on the 
number of subpopulations we use. 

Furthermore, we have seen that a larger number of 
populations -which in turn means a smaller number of 
individuals per population- controls the bloat phenomenon 
better than using smaller number of populations, and this is 
the reason which allows parallel models to control bloat 
better than the panmictic model (the model with only 1 
population) when no other control is applied.  At the same 
time, given that differences in size are sometimes large and 
differences in fitness obtained are small, parallel models may 
obtaind better convergence results when we compare fitness 
to computing effort.  This of course depends on the number 
of subpopulations we use, which confirms the notion of " 
region of effort" presented in [5]. 

V.   SYNCHRONIZATION MODEL 
We now continue by analysing the time required for 

evaluating generations within synchronous and asynchronous 
parallel GP. 

Figure 7 shows us the time taken to compute each 
generation in the ant problem.  We show different settings, 
and the curves can be classified in two groups:  those that 
correspond to experiments with a high number of individuals 
and those with a low number of individuals. 

If we focus on curves obtained when employing a higher 
number of individuals (2500) we can remark on an 
interesting issue:  when we use the synchronous model, pre-
migration generations take less time to compute.  These 
effect becomes evident two or three generations before the 

migration phase.  Something similar can also be observed 
when using the asynchronous model.  But this time the 
reduction of time happens during the final generations of 
each experiment.  This occurs when length control is applied 
and also when it is not employed 

 

  

  

 

 
Figure 7. Time spent by each generation in ant problem with 2500 

individuals 

In order to explain that circumstance, we must remember 
how the Operating System works.  When we use a 
monoprocessor system, which is endowed with a multi-
process operating system (Linux), several processes can run 
simultaneously, thanks to the assignment of pieces of 
processor time -quantums- to different processes.  Each 
process is assigned a quantum cyclically, until it finishes.  
When a process stop for an input/output operation, it is not 
assigned new quantums before it receives data.  Its 
corresponding quantum is distributed among the other 
processes. 

Padgp uses mpich [12] which is an implementation of 
MPI.  In turns, mpich uses sockets for exchanging 
information between processes. The picture becomes 
complete if we say that Linux consider sockets as 
input/output operations.  This means that each time a process 
is awaiting data from another process, the first one will 
become idle and will give its corresponding quantum to other 
processes, which in turn will compute quicker. 

This operating system feature is the source for the 
temporal reduction in generations that are close to the 
migration generation.  Within the synchronous model, if a 
process begins a migration generation, it sends its best 
individuals to the master process and becomes idle before 
individuals from other populations arrive.  Other populations 
that have not yet arrived at the migration generation will use 
the supplied quantum in order to compute more quickly, thus 
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arriving earlier at the migration generation, and also 
providing new quantums for other populations.  Sumarising, 
this issue causes the last few generations before the 
synchronisation step to do their work in less time on average 
(see figure 6), while migration generations require much 
longer.  

Something similar happens within the asynchronous 
model:  the lack of synchronization helps each population to 
compute at its own pace, never waiting for individuals, only 
receiving them when they are in the buffer.  Due to the 
different speed of each process, the quicker ones will finish 
before the remaining ones.  When they finish, their quantums 
are also distributed among the remaining ones, which are 
probably performing their final generations.  This helps the 
last few generations to compute quickly in slower processes, 
allowing them to finish more quickly and providing in turn 
new quantums to even slower processes.  This is the reason 
for the decrease in generation time for the final generations. 

If we bear in mind all the experiments that we have 
performed using only one processor, we could conclude that 
the asynchronous model will be the preferred algorithm if we 
employ a multiprocessor system or even a cluster of 
computers:  each population runs on a different processor, 
and the synchronous model will not be able to make use of 
quantums from idle processes. 

On the other hand, if we focus on curves that have been 
obtained with a low number of individuals, the above 
mentioned effects are not so evident.  This is due to the low 
communication rate (we always take 10% of the population 
size as the migration rate). 

We can thus state that the number of individuals in 
subpopulations is a critical factor when determining the total 
time needed for obtaining solutions in parallel models, not 
only because they require time to compute, but also because 
they produce bottlenecks in communication processes.  We 
could avoid this problem by suppressing the master process, 
allowing subpopulations to communicate directly, and also 
by using several processors.  This final issue is studied in the 
following section. 

VI.   ADVANTAGES OF PARALLEL MODELS. 
If we look at figure 8, we can see that the best 

performances are not always obtained with the same model.  
It greatly depends on the total number of individuals and 
number of populations.  We must now observe figure 6 again, 
and be aware of the dynamics of synchronous and 
asynchronous models. 

If we carefully study figure 9, we can draw the following 
conclusion if we attend to both the number of populations 
and processors we are using.  Let M be the total number of 
processors we are using, and N the total number of 
populations: 

 

 

 

  

  

 
Figure 8:  Fitness obtained by several configurations and 2500 individuals 

1. If N=1, we are dealing with the panmictic model.  
There is no interest in using a parallel architecture. 

2. If M=1, then we are using a monoprocessor system 
a. If N is large, then we should use the 

asynchronous or the panmictic model. 
b. If N is nor large nor small, we should use the 

panmictic model. 
c. If N is small, we better use shynchronous or 

asynchronous model. 
3. If N>>M (N is much larger than M), then N/M=k, 

being k a large number.  In this case we can apply 
conclusion 2.a within each of the processors (each of 
them must evaluate k subpopulations).  But if we look 
at all the processors at the same time, the 
asynchronous model is preferable, given that it obtains 
better convergence when we are measuring fitness. 

4. If N<<M, there are idle processors, and those that are 
working, are managing only 1 subpopulation.  In this 
case the asynchronous model is also preferable. 

5. If N≅M, then N/M≅1, and we are also managing each 
subpopulation with one processor:  The asynchronous 
model is again the best choice.  We save time and also 
obtain the best convergence results. 
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Figure 9:  Acumulated time in each generation. 

VII.   CONCLUSIONS 
In this paper we have studied synchronous and 

asynchronous parallel GP models.  We have seen how they 
can help to control the bloat phenomenon when no other 
controls are applied.  We achieve better control of bloat when 
we use a larger number of populations, each with a smaller 
number of individuals. 

We have also studied the time required for computing 
synchronous and asynchronous models, as well as the 
influence of the Operating System when working on 
monoporocessor systems.  This study has allowed us to draw 
conclusions about the performance that will be obtained in 
multiprocessor systems.  The asynchronous model is the 
preferable when we use Parallel and Distributed GP with 
several processors.  If we work on a monoprocessor system, 
both synchronous and asynchronous models obtain similar 
results. 
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