Hierarchical Evolution of Heter ogeneous Neural Networ ks

Daniel Weingaertner, Victor K. Tatai, Ricardo R. Gudwin, Fernando Von Zuben
DCA - FEEC - State University of Campinas (UNICAMP)
CP 6101 — CEP 13083-970 — Campinas, SP — Brazil
{danielw, tatai, gudwin, vonzuben} @dca.fee.unicamp.br

Abstract — This paper describes a hierarchical evolutionary while integrating with others in a same ensemble (neural net).

technique developed to design and train feedforward neural Such abstraction is based on the cooperative combination of
networks with different activation functions on their hidden evolving populations of experts, combining their

layer neurons (Heterogeneous Neural Networks). At an upper qualifications to reach the problem solution [2].
level, a genetic algorithm is used to determine the number of With such objective in mind, we used a hierarchical

neurons in the hidden layer and the type of the activation h Kk Hi hical Coevolution Geneti
function of those neurons. At a second level, neural nets competeapproac » KNOWN as Rierarchical Loevolutionary Lenetic

against each other across generations so that the nets with theAlgorithm (HCGA), which was initially conceived with two
lowest test errors survive. Finally, on a third level, a €volutionary levels [3]. We added one more evolutionary

coevolutionary approach is used to train each of the created level to it, so that on the first level a GA is used to build the
networks by adjusting both the weights of the hidden layer ANN's topology, i.e., to choose both the number of neurons
neurons and the parameters for their activation functions. in the hidden layer and the AF of each neuron. It is worth
noticing here that those AF’s can also be RBF’s. On a second
level, neural nets compete against each other across
generations so that the nets with the lowest test error survive.
Finally, on the third level, a coevolutionary approach is used
to train each of the above-created networks by adjusting the
weights of the neurons in the hidden layer and the parameters
of their AF’s. The weights of the neurons on the output layer
are optimized using the Least Mean Square method.

In the remainder of the paper, we introduce the use of
evolutionary techniques for the configuration of neural nets,
present our framework to the automatic design of
heterogeneous neural networks, show results from our

[. INTRODUCTION

Multi-Layer Perceptron (MLP) and Radia Basis Function
(RBF) networks are the most common feedforward artificial
neural networks (ANNSs) used on classification, recognition
and prediction problems. They have been applied to a variety
of fields, usualy producing better results when replacing or
being combined with conventional techniques. Such
capabilities come from the fact that both MLPs and RBFs
show an important attribute: they are universa approximators
with good generalization capabilities [11], [2].

Typically, ANNs are composed of a pre-defined number of

similar neurons in their hidden layer. Despite the existence of
some rules of thumb to indicate this parameter in accordance
with the available training data, such empirica methods are
failure-prone, not warranting their applicability in all cases.
In such context, designing ANNs through simulated
evolution has shown its effectiveness as an automatic
dternative to manua configuration [5]. A prominent

experiments, compare this approach to a previous version [1],
identify possible work extensions, and address some final
considerations.

[I. EVOLUTIONARY ALGORITHMSAPPLIED TO
NEURAL NETWORKS

GA'’s have been used in conjunction with neural networks

advantage of the evolutionary design over the manual oneis jn three major undertakings [5]: data pre-processing, weight
its adaptability to dynamic changesin the environment [16]. optimization, and neural net topology determination. The
Although the neuron’s activation function (AF) has beensecond item has been hampered mainly because of the
shown to be an important parameter for the ANNompeting Conventions Problem. As weight adjustment with
configuration — it is the source of non-linearity responsibIgA's relies heav”y on recombination, there may be many
for the approximation capabilities — few works havesquivalent symmetric solutions to the same optimization
explored such fact while devising new neural net tOpO'Ogi F0b|em1 de|aying the convergence process. This can be
Currently, there are no extensive results reported in tBgeviated by using more appropriate crossover operators
literature contemplating the actual effectiveness of employiRghich try to avoid individuals presenting the same cyclic
gaussian or logistic AF’s in all neurons of the hidden layegenetic order on the elements of their chromosomes.
This approach is followed, generally, as a means to simplify Another strategy centers upon the integration between
the design tasks. evolutionary programming (EP) and ANNSs. Liu and Yao [16]
HOWGVGr, if the AF of each neuron could be automatica”Nave presented an EP-based a|gorithm for the tuning of
defined, better results regarding the net performance and f@Ns with different activation function nodes. The weights
training convergence rate could be achieved. In this work, Wge adjusted by means of a combination of the
attempt to investigate such supposition by using Genet#ackpropagation (BP) algorithm with a random search
Algorithms (GAs) for the design of heterogeneous neurg|gorithm. For simplicity, the authors chose to use only the
networks. The idea is to view each hidden neuron as a pﬁﬁﬁstic and the Gaussian AF’s, as they represent two broad
with distinguished capabilities (different AF) to be explored|asses of activation functions with complementary features.

The resulting generalized neural net (GNN), as they call it, problems.
resembles very much what we name here as heterogeneous
neura networks (HNN), albeit our approach gears towards
the employment of a hierarchical coevolutionary-genetic Figure | shows the heterogeneous neural network (HNN)
algorithm (HCGA) and is open to other types of AF’s. model used on the HCGA It resembles a typical
lyoda and Von Zuben [6] have also attempted to analy#edforward neural net; the main difference lies on the hidden
the impact of configuring ANNs with different AFs at thelayer, as its neurons may have distinct ARg.)). Such
hidden layer by proposing an evolutionary hybridunctions are chosen from a delimited candidate set, which is
architecture inspired by another constructive methderesented in Table I, and comprehends a broad parcel of
(Projection Pursuit Learning - PPL). Such approach aldBose usually employed on the construction of ANN’s.
incorporates distinct composition functions in the output It is important to emphasize that there is also a Radial
layer (additive and/or multiplicative), leading to a higheBasis Function (RBF-Green [13]) that can be used together
efficiency on the combination of the mapping efforts realizedith the non-RBF functions, in a novel approach that we
by the hidden neurons. Their algorithm relies only on @xpect to increase the HNN's approximation capacity. On the
classical GA, not directly promoting the cooperation amongBF-Green function we can adjust up to three paramaters:
the units. - the vector with the RBF’s center coordinates;the RBF's
Finally, it is worth mentioning the prominent evolutionaryariance vector; anadv — a pondering weights vector. To
methodology developed by Moriarty and Miikkulainen [3]reduce the GA’s search space, we only evolveuthvalues
[4], denominated SANE. SANE relates to a “symbiotiand one value fas. No pondering weights are used.
adaptive neuro-evolution system” in which a population of
homogeneous neurons is coevolved to compose a neural net TABLE|
intended to be deployed on dynamic environments. ThiS SET OF HIDDEN NEURONSACTIVATION FUNCTIONS
hierarchical solution attempts to optimize the neural topologs
by two means. First, since neurons are recognized d¥me Activation Function
functional building blocks, their ensemble can be more .o

A. Heterogeneous Neural Networks

accurately evaluated. Second, since no neuron is evaluated h=x

only by its own capabilities, but rather by the qualities of the 1if x<0

groups in which it takes part, evolutionary pressure exists t@igna step h,=gr1if x>0

evolve several complementary neuron types. Hastvalue if x=0
bx —bx

[1l. THE HCGA2 APPROACH Hyperbolic Tangent h = ebx —eﬁbx
In this section, we first present the main design decisions e re

taken during the conception of the HC&spproach and then 1 122

assess its adequacy and performance through a series Gfssian h, = e
N 2rmo

benchmarking results over well-known pattern classification

n 1 2
= ‘\ RBF-Green h = Zwi e 202 Hl
@_> hy(x) 1>

(w2 net output. The output neurons have all an additive linear
1> : combination as aggregation function. There are two sets of
@ weighted connections, namelyy and W. The later is

As illustrated (Figure I)x and§ represent, respectively, the
$§ input vector of the training/testing patterns and the resulting

> @_> he(X) > optimized during a supervised configuration process, through

: . stimulus-response pairs, by means of the Least Mean Square
X0 > _ 1> (LMS) method. The adjustment of the weights W is
1> .

defined in order to solve the following optimization problem:
|+ > 5 min |ly - sif,
w

@—) ha(X) > - : where ||-]| is the Euclidian norm and
. @ thi(x) hy(x) ... h,(x)O
@/ Y=HWS=0i06) hot) o (o) gW

o . : : . O

O

Figure 1: Architecture of the heterogeneous neural network to be evolved % g
by the hierarchical approach. The shadowed area indicates the

components to be optimized by the coevolutionary process: neurons with
different activation functions and the associated weights.

@

@)

Given the training set {(x;,s;)}?,, the LMS will then try to
minimize the sum of the squared errors produced by each of
the p input-output patterns. The H matrix is obtained, in this
case, after the definition of m transfer functions chosen
among the candidates given by Table | and applied to the p
patterns thereupon. The optimal solution for the output
weightsis given by

H'HW=H's =>W=HH)'"H's ®)
where (H'H)*H" is the pseudo-inverse of H, which shall only
exist if H has anon-deficient rank.

B. HCGA, Architecture

The shadowed box in Figure | indicates the components of
the HNN to be optimized directly by the HCGA,. As
depicted in Figure IlI, we conceived a hierarchical
coevolutionary architecture composed of three levels. In an
upper level, aconventional GA (NNdGA) is used to build the
neural network description (NNd) or net topology, i.e., to
choose the number of neurons in the hidden layer and their
AFs (possibly distinct). Each gene in the chromosome

In order to promote the cooperative behavior among the
neurons that participate in a given net (aiming at the
optimized sharing and division of responsibilities), each unity
receives its fithess according to the average fitness of the
networks wherein it engages. Each neuron on the hidden
layer can be viewed as a distinct evolving species that is
allotted to a separate GA (NeuronGA) customized to
represent its attributes and that will probably specialize in a
complementary manner to the other NeuronGAs.

The chromosomes associated with the HNNs are codified
as follows: each gene represents a logical link to a given
neuron pertaining to a certain bottom level NeuronGA. The
same neuron is allowed to integrate various neural nets. All
HNN'’s in a HNNGA have the same architecture (since they
were built after the same NNd) and differ by the hidden layer
neurons they take from the NeuronGAs. Typically, the
codification of the neuron chromosomes in the NeuronGAs
comprehend two slots: one for the input weights and another
for the neuron’s AF parameters. The mutation and crossover
operators may actuate on both slots at the same time, and
they know how to manage the differences between them

represents one AF from Table I. Similar NNd's are ndgcale, data type, etc.). _ _
allowed in order to reduce the possibility of equivalent The evolution of the HNN'’s architecture and of the hidden

symmetric solutionsGompeting Conventions Problem).

layer weights are alternated. This process can avoid the

Associated to each NNd, there is a second level GROVINg target problem resulting from the simultaneous
(HNNGA) whose population consists of HNN's with theevolution of both architectures and Weight_s [15]. The number
hidden layer built according to the NNd. Those HNN's takef generations considered for benchmarking purposes relates
their hidden layer neurons at random from the bottom levi8 the NNdGA cycles. The initial populations of all GA's
GAs (NeuronGAs). Neural nets compete across generatidfNdGA, HNNGA and NeuronGA) are set in a random

and are refined using the iterated LMS optimization proce§®nner

(zero-average and uniform distribution).

applied to their output weights. The fitness of the HNNs {gonfiguration parameters can be found on Table Il and
inversely proportional to the Root Mean Squared ErrdtPpendix A is dedicated to a more detailed explanation of
(RMSE), that is, corresponds to the percentage of correctie HCGA algorithm.

classified patterns. The NNd receives the fitness of the bestregits

ranked HNN of its HNNGA.

At the bottom level, a coevolutionary approach was

The two pattern classification problems considered here

selected to train the networks by adjusting both the Awere obtained from the PROBEN1 benchmarking repository

parameters of the hidden layer neurons and the input weigﬁ

], allowing the comparison of our proposal with others. The

NeuronGA; NewronGA,; NeuronGAy

NewronGa; NeuronGa, NeuronGa,; NeuronGa,

Figure I1: Hierarchical coevolution of heterogeneous neural networks. The small geometrical forms represent neurons with
different AFs. The NeuronGAs provide the neuronsto the HNNSs. The fitness of the best HNN is set on the corresponding NNd.

TABLE I
SYSTEM CONFIGURATION PARAMETERS

Parameter Meaning NNdGA HNNGA NeuronGA
MAX_GENERATIONS Maximum number of generations 200 5 1
POPULATION_SIZE Number of elementsin the GA 20 30 30
RANDOM_PERCENT Percentage of new randomly initialized elements to be inserted in the population 20% 20% 20%
ELITIST_SELECTION Percentage of best elements copied to next generation (elitist selection) 10% 10% 10%
CROSSOVER_CHANCE Percentage of elements to be created by crossover between the best elements 25% 25% 25%
MUTATION_CHANCE Chance of mutation occurrence 1% 1% 1%
MIN_HIDDEN_NEURONS Minimum number of neurons allowed in the net hidden layer 5 -- --
MAX_HIDDEN_NEURONS Maximum number of neuronsallowed in the net hidden layer 15 --
MAX_UNUSED_CYCLES Maximum number of cyclesa neuron may survive without belonging to any network -- -- 3

database of patterns in this repository is, for each problem, appeared more frequently than others, but not in a significant
divided into three different partitionings of the ssme dataset. manner that would allow us, for example, to caracterize a
This alows network simulation with the same set but with tendency for these classification problems.
patterns in a different order each time. The data sets are By observing the fitness of the best evolved network along
divided into training, validation and test patterns. The the generations we notice that it does not converge too fast,
training patterns were used in the network refinement through indicating that our HNN population is able to maintain
the LMS process;, the validation patterns were used to diversity and escape frotocal maxima even though we use
compute the HNN's fitness, and the test patterns were usedato elitist selection approach. The average fitness of all
test the best HNN at the end of each NNdGA cycle. It isetworks does also not oscillate much, because the changes
important to remark that the test result is not used by tirethe neurons during their evolution is smooth, due to the use
HCGA; (not even to indicate when to stop the training phasef the geometrical crossover [17] and inductive mutation
as done in many ANN training algorithms), thus working ad4]. The test data correct classification percentage, despite
an independent result. some big punctual oscillations, does not change significantly,
The first problemCard, refers to the task of approving orindicating that the best network does not loose much of its
not the delivery of credit cards to particular customers, takimgneralization capacity.
into account their profiles. The database has 690 samples of

possible customers (patterns), with 51 input parameters (net TABLE Il

input attributes) and two possible output responses (yes or PERCENTAGE OF NEURONS OF EACH TYPE ON THE BEST
no). 44% of the customers have good profiles and there are NETWORK, FOR EACH DATA SET.

some absent data referring to some attributes, hindering e Liner Signdl Hyperbolic Gaussian RBF-Green
classification process. There are 345 training patterns, 172 Sep Tangent

validation patterns and 172 test patterns.

The Heart problem lies in the area of predicting cardiacci * 18.92% 14,95% 1352% 2714% 2543%
diseases by observing some clinical cases (patients’ health © 87 159 1055 559 20,66
conditions). In this repository, there is a collection of 92, # 2%23% 1990% 1682% 20,10% 17,.95%
patient samples (patterns) each composed of 35 inputs °© 746 13914 9,90 9,90 12,66
(personal data) and two outputs (prone to cardiac problems o " 21.80% 14.14% 1806% 24.64% 21,36%
not). Some attributes are also missing, making the decision ° 2432 1308 1452 1572 1420
even harder. The sets are divided into 460 training patternsi i 121’229/2" 91’254/; 201";342’ 231’2923 33"?032’
230 valldatlo_n patterns an(_JI 230 test patterns. W 1830% 2128% 2025% 20.09% 20,14%

The experiments were |mplemented_ in the Java language i 739 033 702 783 6.36
(JDK 1.2) and, on an IBM 9076SP (with four IBM/RS6000 W 1879% 1801% 26.22% 2526% 11.73%
Power2 Super Chip 160 MHz processors). It took about 283 1203 1332 18,22 579 483

min. to process each NNdGA cycle, confirming the high
computational costs we expected during training. But after
obtaining the evolved net, no extra computational costs arelable IV compares the results achieved by many neural
present. Besides, the ease of use is a real advantage, sinc8@hgork architectures [7]-[8] and our HCGA approach for the
designer does not need to know which AF’s to use, hos@me data sets. HCG/Aperforms better than most other
many neurons to put in the hidden layer, etc. approaches in most of the cases, showing its great
Each experiment was run five times. Table Il shows tr@eneralization capabilities when applled to classification
men percentage (u) and standard deviation (G) of the prOblemS. For instance, the HCQAmprovement over the
participation of each AF type in the best networks evolveggcond best ANN for the Card3 problem reaches nearly 20%,
for each problem. C# stands for fBard data set and H# for taking into account the classification error rate. Another
the Heart data set. As can be noted, some types of neurc@vantage over most other ANNs is the easiness of use, since

no parameter adjustments have to be done (we simply used
the default GA parameters for all tests).

TABLE IV
COMPARED RESULTS BETWEEN HCGA, AND OTHER ANNs.

Correctly classified patterns

results, surpassing the first version by as much as 40% for the
cardl set and by almost 25% for the heart3 set.

TABLEV
COMPARED RESULTS BETWEEN HCGA: AND HCGA;

Best network’s root mean squared error

cardl card2 card3 heartl heart2 heart3
cardl card2 card3
bess p o bess p o best p = HCGA, 0.0988 0.1205 0.1105 0.1174 0.1435 0.1870
MLP 860 860 103 810 810 086 810 810 119 HCGA, 0.0582 0.1047 00756 0.1087 0.1087 0.1435
RBF 880 87.0 067 820 810 070 830 830 0.70
CasCor 840 780 248 790 770 1.87 820 800 197
Tower 848 — 241 784 — 201 796 — 206 - Future\Work
FD’Y;a/[’*I'd 22-2 - ;g gi-g - i-% gg-g - g-gi Some improvements could be undertaken as future work.
Upstart 907 — 203 861 — 196 837 — 253 First of _allweshould test th_e performance of _the HCG_AZ_ on
Tiling 802 — 274 791 — 248 791 — 208 other_ km_ds of pr_oblems, |I|(e temporal series prediction,
PercCasc 876 — 212 868 — 297 841 — 211 function interpolation, etc. Likewise, we can extend the
heart1 heart2 heart3 AF’s of the hidden layer neurons, instead of setting a
best p o best p o best pu I predefined number of AF’s. It would be also possible to use
MLP 800 80.0 09 820 80 114 760 760 112 an ANN as AF, creating a nested structure for the HNN. Still
RBF 820 820 120 820 810 172 790 790 048 ; ;
CasCor 820 79.0 196 800 770 166 740 720 197 we couldladd more levels to thle Hcgswic(erar:chy, |nkorderh
Tower 787 — 273 778 — 311 708 — 3136 to co-evolve two or more neural networks that work together
Pyramid 795 — 293 782 — 269 760 — 238 on a certain upper level problem.
DistAl 791 — 403 809 — 292 86 — 271
Upstart 841 — 248 815 — 206 808 — 265 V. CONCLUSION
Tiing 765 — 198 717 — 202 774 — 218
PercCasc 827 — 264 86 — 303 8.0 — 202 This work has examined the suitability of merging together
HCGA, 804 790 136 822 808 135 791 757 244

D. Comparison with HCGA,

The first version of this algorithm, developed by Coelho et
a. [1], showed good results on classification problems, as
well as on prediction problems, but had some problems that
we have solved on this version.

First of al, the HNNs now have the possibility of
augmenting and prunning [12] the number of neurons &t the
hidden layer at each generation, giving space to the arousd of

“extend-shrink” behaviors. Another advantage of the ne
the separation of HNN's with different

HCGA; is

in a same framework various promising approaches proposed
recently for the configuration of neural net architectures,
particularly those involving coevolution. The resulting model
(HCGA;) comprehends a new hierarchical-based
evolutionary scheme devoted to the progressive assembling
of heterogeneous neural structures. This blending strategy
was assessed through a series of benchmarking tests over
classification problems. The findings obtained so far
corroborate other results already presented in the literature,
showing that HCGA constitutes a promising design strategy
on the direction of fully automatic adjustment of an extended
¥et of neural networks parameters.

architectures into different GAs, so that the neurons from tiie Acknowiedgments

NeuronGAs will always work with the same peers, This research was partially sponsored ®APES and
facilitating the neuron’s specialization. The creation of ongapgsp through MSc. scholarships to the first and second
NeuronGA for eacposition in the net's hidden layer, insteadaythors respectively. Also the third and fourth authors would
of one NeuronGA for each neuron AF type, as in H&GAjike to thank CNPq for their support. The computational

also brings advantages. In this way, even neurons with
same AF are encouraged to specialize into different regiopgnaAPAD
of the search space (due to coevolutionary forces). Wha,

ources necessary to run the experiments were provided by
(National Center of High Performance
mputation in S&o Paulo), a project from UNICAMP /

happened in HCGAwas that a HNN containing neuronsg|Ngp - MCT.
with the same AF would have them to perform almost the

same task, since they were part of the same NeuronGA.

V. REFERENCES

Table V shows a comparison of the RMSE between the

best HNN of HCGA and HCGA. The difference to the '
results in Table 1V is that, in HCGAthe validation patterns
were added to the training patterns, the test patterns were
used for validation and no independent test was made. Thug]
to be able to compare both versions, we had to run on the
same conditions. It is clear that HC&Aas much better

A. L. V. Coelho, D. Weingaertner and F. J. Von Zuben, “Evolving
Heterogeneous Neural Networks for Classification Problefsics.

of Genetic and Evolutionary Computation Conference (GECCO-
2001), pp.266-273, Morgan Kaufmann Publishers, July 2001.

B. Whitehead and T. Choate, “Cooperative-Competitive Genetic
Evolution of Radial Basis Function Centers and Widths for Time
Series Prediction”)EEE Trans. on Neural Networks, Vol. 7:4, pp.
869-880, 1996.

[3] D. E. Moriarty, and R. Miikkulainen, “Efficient Reinforcement 3) Run each HNNGA fOENNGA_MAX_GENERATIONS.

Learning through Symbiotic EvolutionMachine Learning, Vol. 22,
pp-11-33. Kluwer Academic Publishers, Boston, 1996.

[4] D. E. Moriarty, and R. Miikkulainen, “Hierarchical Evolution of
Neural Networks” Proceedings of the |EEE International Conference
on Evolutionary Computation, pp.428-433, 1998.

[5] D. Whitley, “Genetic Algorithms and Neural Networks”, In: Periaux,
J. and Winter, G. eds.Genetic Algorithms in Engineering and
Computer Science. John Wiley & Sons Ltd., 1995.

[6] E. lyoda and F. Von Zuben, “Evolutionary Hybrid Composition of
Activation Functions in Feedforward Neural NetwdrksProcs.
IJCNN, article #396, 1999.

[7] J. Ribeiro and G. Vasconcelos, “An Experimental Evaluation of the
Cascade-Correlation Network in Pattern Recognition Problenst,
of ICONIP, pp.1133-1136, Springer-Verlag, New Zeland, 1997.

[8] J. Ribeiro and G. Vasconcelos, “Constructive Neural Networks for
Pattern Classification and VerificationProc. of ICONIP, Springer-
Verlag, 1999.

[9] L. Prechelt, “PROBENL1: A Set of Neural Benchmarking Rules”, TR
21/94, Universtat Karlsruhe, 1994.

[10] Q. Zhao, “A Coevolutionary Algorithm for Neural Net Learning”,
Procs. of ICNN, Vol.1, pp.432-437, 1997.

[11] R. Parekh, J. Yang and V. Honavar, “Constructive Neural Network
Learning Algorithms for Multi-Category Real-Valued Pattern
Classification”, TR 97-06, Dep. of Computer Science, lowa State
University, 1998.

[12] R. Reed, “Pruning Algorithms — A SurveyfEEE Trans. on Neural
Networks 4:5, pp.740-747, 1993.

[13] S. S. Haykin, “Neural Networks: A Comprehensive Foundation
Prentice Hall, 1998.

[14] T. Back, D. B. Fogel and T. Michalewicz, editofs:volutionary
Computation 1: Basic Algorithms and Operators’, Ingtitute of Physics
Publishing, 2000.

[15] X. Yao, “A review of evolutionary artificial neural networkdht. J.
Intell. Syst., Vol. 8:4, pp. 539-567, 1993.

[16] Y. Liu and X. Yao, “Evolutionary Design of Artificial Neural
Networks with Different Nodes”,Procs. of the Third IEEE
International Conf. on Evolutionary Computation (CEC96), pp. 670-
675, Japan, May 1996.

a. Apply mutation @NNGA_MUTATION_CHANCE) to the
HNNGA population. Add to the population: 1)
HNNGA_CROssOVER_CHANCE HNNs generated by two
points crossover; 2) HNNGA_RANDOM_PERCENT
randomly generated HNNs.

b. Adjust the weights of the output layer neurons of each
HNN using the LMS method.

c. Use the validation input/output patterns to compute
the Root Mean Squared Error (RMSE) of each HNN
and set their fitness as being (1.0-RMSE).

d. Send the HNNSs’ fithess to the neurons in their hidden
layer. The fitness of the neurons will be the average
fitness of all networks they participate in.

€. HNNGA_ELITIST_SELECTION best HNN'’s will pass to the
next generation. The population will be completed by
tournament selection between the remaining HNN'’s.

f. Run NeuronGA_MAX_GENERATIONS evolutionary cycles
for each NeuronGA.

i) Set fitness on unused neurons. They receive as
fitness the average fitness of the NeuronGA,
divided by the number of cycles they are unused.
After NeuronGA_MAX_UNUSED_cYCLES the fitness is
set to zero.

ii) Generate a new neuron population by taking: 1)
the neurons that belong to the best ranked HNNs
(regardless of their fitness); 2) the
NeuronGA_ELITIST_SELECTION best neurons; 3)
NeuronGA_CROSSOVER_CHANCE Neurons generated
by geometrical crossover [177; 4)
NeuronGA_RANDOM_PERCENT randomly generated
neurons; and complete the population with
tournament selection between the remaining
neurons. Finally, apply uniform mutation [14]
(NeuronGA_MUTATION_CHANCE) to the population.

[17] Z. Michalewicz, G. Nazhiyath and M. Michalewicz,“‘A note_ on the4) Take as fitness for each NNd the fithess of the best HNN

usefulness of geometrical crossover for numerical optimization .

problems”,Proc. 5th Ann. Conf. on Evolutionary Programming, MIT evolved by its HNNGA.

Press, 1996. 5) If the NNdGA has run foKRNdGA_MAX_GENERATIONS, return

the best ranked HNN of the NNd with highest fitness.

6) Apply mutation {NdGA_MUTATION_CHANCE) to the NNdSs.
Add to the population: IyndGA_cRossovER_CHANCE NNdSs
generated by two points crossover,; 2)
NNdGA_RANDOM_PERCENT randomly generated HNNs.

a. Crossover is done between the best ranked NNds. The
NeuronGAs corresponding to the exchanged neurons
also have to be exchanged and all HNNs of the
HNNGAs have to be updated, in order to reflect the
changes in the NNds.

b. Mutation can add or remove a neuron, as well as

) change the type of its AF. Again, the NeuronGA’s

NeuronGA_POPULATION_SIZE heurons, which have all the and the HNN’s in the HNNGA’s have to be adapted

same AF (determined by the NNd). to reflect the changes.

b. Generateinnea_popuLaTion_size initial HNNs taking 7) The NNdGA_ELITIST_SELECTION best NNd's will pass to the
the neurons of their hidden layer from the pew generation. The population will be completed by

NeuronGAs. Those neurons will be taken randomly, oyrmament selection between the remaining NNd's.
one from each NeuronGA, in order to create networkg Go 1o stepp).

hat are equivalent to the NNd. One neuron may bé
used by more than one HNN.

VI. APPENDIX A (HCGA; ALGORITHM)

1) Generate an initial population of NNdGA_POPULATION_SIZE
NNdSs for the NNdGA. These NNds contain the number of
neurons in the HNN’'s hidden layer (ranging from
MIN_HIDDEN_NEURONS tO MAX_HIDDEN_NEURONS) and the type
of each neuron’s AF.

2) For each NNd, create a genetic algorithm (HNNGA) that
will be used to train the HNNSs.

a. Create one GA (NeuronGA) for each neuron on the
NNd, and initialize it with a population of

