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Abstract – In this paper the difference between two
reproduction strategies of deliberate evolution is studied:
partner selection and environment evaluation. The experiments
conducted indicate that environment evaluation outperforms
partner selection when timing of reproduction is important.
When timing is not important, partner selection performs better
than environment evaluation.

1 INTRODUCTION

The adaptive power of evolution has been an inspiration to
artificial intelligence for some decades, e.g., [3]. In traditional
genetic algorithms partners come together by an invisible
hand that selects the most “fit” agents to mate with each
other. In nature evolution is a complex process in which the
agents involved play a more active role [6].

Reading work reported in literature shows that, next to
natural selection, the suitability of the environment and the
attractiveness of possible partners influence natural evolution
processes [2,7]. For example, Miller and Todd [8] explain
that natural selection is rather noisy, due to a diverse range of
possibilities of nature’s selection procedure. Mate selection
makes it possible to put the ancestral pressures of nature back
into the offspring, thus cancelling the noise. In nature these
two aspects influence evolution simultaneously, which makes
it hard to understand the effect of each aspect in separation.
Research in Artificial Intelligence and Artificial Life enables
the isolation of aspects.

The effect of environmental structure on evolutionary
adaptation is, for example, studied in [5]. The environmental
structure studied there is the way the food is distributed over
space and time. Fletcher, Bedau and Zwick show that more
detectable environmental structure leads to better adaptation.
To reach this conclusion, they simulated a world in which
agents have to jump to a nearby site in the environment to
reach food. The agents cannot see the exact food amount on
each spot so they have to estimate where they can find most
food. Experiments were done with environments with
different structures. Their experiments show that
environments with most information result in the best
adaptation.

The way sensory capabilities of agents influence their
adaptation to a given environment is studied in [11, 13]. In
both experiments agents have with no sensors at all, but with
just an action probability list. The list consists of seven values
representing probabilities of choosing a certain action (like
move right, move left, and procreate). This is used in the

evolution of the agents, performing mutation on the list when
an agent splits. It is shown that even without the capability of
sensing, such agents are capable of adapting to specific
environments. For instance, with certain density settings,
agents adapted their movements to clock-wise movements.

The effect of sexual selection on evolutionary adaptation is
studied by Ventrella [14, 15]. Ventrella simulated a
population of organisms which evolve morphology and motor
control for fluid locomotion. In this simulation there was no
explicit fitness function for the individuals. Individuals
selected their mates on the basis of physical properties of the
other agents. In Ventrella's experiments the fitness of an
individual is not only determined by the capability of the
agent to survive, but also by the capability to attract other
agents. Properties that may be attractive to agents, are not
necessarily properties that help the agent to survive. In
experiments where agents were attracted to lack of
movement, evolution of efficient energy use was inhibited.

In this paper two different strategies are studied in which
agents procreate deliberately. These agents, called deliberate
evolution agents (DEA), can (to some extent) determine when
to mate and with whom. In the DEA experiments no invisible
hand selects partners. The strategies resemble two aspects
that influence procreation in nature. The first is the
appropriateness of the animals’ environment. For example,
most animals are born in spring when food starts growing
again. The second criterion studied is the attractiveness of the
potential partner. The peacock, for example, is an animal that
goes to great lengths to attract partners.

The DEA project reported here set out to research which of
these criteria is more important. The question is whether a
species evolves better when individuals use the environment
as criterion or when the partners’ attractiveness is used.

Section 2 describes experimental set-up of the DEA
project. The experiments conducted and results thereof are
presented in section 3. In section 4 the conclusions of the
DEA project are given and compared to existing literature.

2 EXPERIMENTAL SETUP

As Wilson [16] pointed out, the emphasis of the project
should not lie in designing the agents to fit the world, but on
the analysis of the resulting behaviour of the agents. Before
describing the different types of DEA agents, first the DEA
world is specified.



2.1 The DEA world
The world used in the experiments is formed by a rectangle

size thirty in square. At regular time intervals 15 units of food
grow at random places. Several agents and several pieces of
food can occupy the same spot at the same time. Agents have
to find food in order to survive. When an agent dies, it just
disappears. Time in the DEA world is discrete time steps
called cycles. In each cycle all agents have the opportunity to
perform one action. Actions are performed sequentially;
youngest agents first, oldest last. Because the food-supply is
limited, agents have to compete for survival. The fittest
agents are able to produce more offspring so “good” genes
have a bigger chance to survive than bad ones.

2.2 DEA Agents
The agents in the DEA world can eat, find food, find a

partner, mate and sleep. All actions cost energy and time as in
the table below (Note that eating is the only action that
provides energy, in stead of costing

TABLE 1 ACTIONS LIST

Action Time consumption Energy consumption
Eat 1 -20
Find food 4 2
Find partner 4 3
Mate 1 30
Sleep 8 1

Eating is possible when food is at is the same spot as the
agent looking for it. When an agent eats, the number of food
units on the spot decreases by one. Eating ends the action of
finding food. The energy level of the agent increases if it
consumes a unit of food. When an agent decides to find food

and no food is available at the agent’s location, the agent
moves into the direction of the nearest food unit. If no food is
present within the visual range (see Figure 1) of the agent, the
agent does not move at all.

When looking for a partner, an agent moves towards the
nearest agent. The action ends when the agent is at the same
spot as some other agent. As with finding food, if there is no
other agent within visual range, the agent does not move.
Mating can only occur when another agent is within mating
range (see Figure 1), both agents have enough energy and the
number of agents in the neighbourhood does not exceed a
preset maximum. It is not necessary that both agents want to
mate but mating costs energy for both parents. An agent has a
maximum age of (by default) 200 cycles. The agent dies
when its energy level is below zero or when it has reached the

maximum age. The energy of an agent that has just been born
is 20 units.

2.2.1 The agents’ genes
The agent’s actions are listed in an action array, which is

part of its DNA. Each array consists of a sequence of 10
actions. All actions are performed sequentially; when the
agent finished the last action in the list, it starts over again.
This means that an individual agent is not able to adapt its
behaviour during its lifetime. Adaptation can only be
achieved by evolution. Agents also have weights used to
decide whether to mate or not. Weights are placed on a part
of the chromosome called the property-array.

2.2.2 Reproduction
In order to decide whether to reproduce or not, the agent

uses its weights. The agent observes three properties of the
environment or other agents. Each of these observations has a
corresponding weight, dictated by the agent’s genes. When
the evaluation exceeds a threshold (and all other requirements
are met), the agent mates. The agent evaluates the following:
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Where oi stands for observable i, and wi stands for the
weight corresponding oi. The global threshold tg is set to 50.
All weights are floats between –10 and 10.

When an agent decides to mate, the genetic information of
both parents is combined to produce the genes of the baby
agent. One point crossover is applied to both the action array
and the property array. This means that the chromosome is
split at a random point. The baby receives one part of its
genes from one parent, and the rest from the other.

When this crossover is performed, each gene mutates with
a probability of 0.08. This mutation is done by random re-
initialisation. This means that the gene gets a random new
value.

2.2.3 Agent types
Four agent types were used. The main types were partner

selection (PS) and environment evaluation agents (EE). These
are both divided in static and relative agents. The agents
differ in the observations on which they base the decision to
mate or not.

PS relative agent
o1 = agei – ageaverage

o2 = ci – caverage

o3 = ei – eaverage

Where agei stands for the age of agent i, and ageaverage for the
average age of the population, similarly c stands for the
number of children, and e for the energy level.

FIGURE 1
VISUAL MATING RANGE

The left arrow shows the visual range
(by default 7), the right arrow shows the
mating range (by default 3) The area
that the agent can observe is light grey.
To be able to mate, the desired partner
has to be in the dark grey area.



PS static agent
o1 = agei

o2 = ci

o3 = ei

EE relative agent
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Where a stands for the number of agents, in respectively
virtual range, mating range or the whole world. Virtual range
area and mating range area are denoted by rv and rm

respectively. The area size of the world is indicated by s and
the amount of food by f.

EE static agent
o1 = avr

o2 = amr

o3 = fvr

The agents differ in the observations on which they base
the decision to mate or not. When the evaluation is static, this
means that the observations are evaluated as such, in contrast
to relative evaluation where observations are compared with
global averages.

2.3 Performance measures
Average population size is used as a measure for the

performance of a population. Because not all simulations last
15000 cycles (the maximum), this has to be taken into
account too. There are several ways to cope with simulations
that do not last 15000 cycles. One of them is to consider a
population that has not survived as a population that has zero
individuals in the remaining cycles. In this way, the average
population size decreases. A disadvantage of this method is
that the average population size depends very much on the
length of the experiment. Another disadvantage is that am
unsuccessful simulation may well have been caused by
improper initialisation. “Top” simulations are simulations that
last for 15000 cycles. Although statistics have been created
for all simulations as well, in this paper only the results of
“top” simulations are presented. This choice does not
influence the conclusion in Section 4, see
www.cs.vu.nl/~wai/projects/dea.

3 EXPERIMENTS

In each DEA experiment, one or more parameters of the
system are varied. Within one experiment for each set of
parameters fifty simulations have been performed. For
example, in the experiment called "time between food
injections" the time between food injections was varied from

one to forty-six cycles with steps of five cycles. In that
experiment fifty simulations were performed with a time
between food injections of one, fifty simulations with six
cycles between food injections, and so on.

Many experiments have been done, however, due to space
limitations only a representative selection of experiments is
presented in this paper. Experiments not included here
concern the initial energy of the agents, the maximum age, a
maximum number of children, a maximum number of agents,
the visual and mating range. The results of those experiments
can be found on http://www.cs.vu.nl/~wai/projects/dea.

Section 3.1 discusses the experiment "local maximum of
agents" which shows that agents overreact on their
environment. In section 3.2 the "time between food
injections" experiment is discussed. That experiment
motivates the main conclusion of this paper, i.e., that PS
agents perform worse than EE agents when timing is
important. The "randomness of the food distribution"
experiment presented in Section 3.3 refutes the hypothesis
formed after performing initial DEA experiments that a
random distribution of food would be the basis for the
difference between EE and PS agents.

3.1 Local maximum of agents
Initial experiments showed that PS agents outperform EE

agents. The hypothesis was that EE agents reproduce too
much when there is much food in the neighbourhood. This
could be caused by the fact that EE agents can see when there
is much food. Simulations have been conducted to test
whether this is true. In the simulations a local agent
maximum was used, inhibiting reproduction of an agent when
the number of agents in its direct surroundings is too high.
Without a local agent maximum, EE agents may find a
situation with a lot of food a good moment to reproduce,
unaware of the fact that all other agents in the neighbourhood
are about to do the same thing. When this happens, the
number of agents in the neighbourhood would rise sharply.
This may cause a food shortage that causes agents to die. In
these situations a lot of energy is wasted on reproduction that
does not result in a population that is just as large as when the
energy would have been used for reproduction at a better
moment.

The simulation settings to test this idea the maximum
number of agents in the neighbourhood and the size of the
neighbourhood were varied. The size of the neighbourhood is
determined by a variable called the maximum agent range.
Varying the visual range enable the prevention of the
maximum agent being larger than the visual range. Below are
the results of simulations with a visual range of 7 (default)
and maximum agent range of 3 and 4.



FIGURE 2 LOCAL MAXIMUM OF AGENTS WITH RANGE 3

FIGURE 3 LOCAL MAXIMUM OF AGENTS WITH RANGE 4

The experiment shows that preventing reproduction if the
number of agents in the neighbourhood is too large has a
positive influence on the average population size. This is true,
not only for EE agents, but also for PS agents. To measure
which type of agents suffers most from this, the best results
(highest average population size) of each agent type are
compared to result of that type in simulations with default
settings. This is the same as measuring which type of agents
suffers most from not restricting reproduction. The graphs in
Figures 2 and 3 present the best results for each agent type.
More simulations have been done, but for clarity only those
graphs are shown in which the difference with default
simulations is the greatest. These differences are presented in
Table 2. For instance, the highest average population size
under restricted reproduction for EE relative agents is 118.1,
normally this average is 94.6, the difference between the two
is 23.5.

TABLE 2 EFFECT OF LOCAL MAXIMUM OF AGENTS

Agent type Difference with default simulation

EE relative 23.5

EE static 23.7

PS relative 18.8

PS static 20

Table 2 shows that the PS relative agents have the smallest
advantage when reproduction is restricted. This means that
the PS relative agents suffer least from unrestricted
reproduction, whereas EE static agents suffer most.

The graphs show a low average population size when the
maximum agent range is 4 and the maximum number of
agents is 3. In the graphs with a maximum agent range of 3
this does not occur. This difference might be explained by the
fact that a maximum of 3 agents in a range of 4 is far more
restricting than a maximum of 3 agents in a range of 3.
Restricting the agents more in a setting with a maximum
agent range of 3 (by decreasing the maximum number of
agents) will probably lead to a worse performance. This idea
has not been tested.

3.2 Time between food injections
In this experiment, the time between food injections has

been varied from 1 (default) to 46 cycles with steps of 5. The
amount of food that is injected is 15 * <time between food
injections>. In this way, the agents receive the same amount
of food in all simulations. To find out what the influence of
looking into the future is, two additional agents have been
created: the EErelativeFuture and EEstaticFuture agent.
These agents are the similar to the EE agents, except for their
observations:

EE relative future
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Where tfi stands for the time until the next food injection.

EE static future
o1 = avr

o2 = amr

o3 = tfi

The difference between these agents and normal EE agents
is that these agents can observe the time until next food
injection. However, they cannot observe the number of agents
in mating range, which makes it hard to determine whether
differences in results are caused by the fact that future agents
can observe the time until the next food injection or by the
fact that they cannot observe the number of agents in mating
range.



FIGURE 4 VARYING TIME BETWEEN FOOD INJECTIONS

It needed to be investigated whether knowing when the
next food injection will come is positive for EE agents.
Results of the experiments are shown in Figure 4.

It can be observed that the time between food injections
has a positive influence on EE agents, while it has a negative
influence on PS agents. Furthermore, the ability to look into
the future does not have a positive effect on EE agents. As
expected when the time between food injections is small,
there is little difference between normal EE agents and their
paranormal counterparts. However, when the time between
food injections increases, normal EE agents outperform the
EE future agents. Therefore, EE agents do not benefit from
the ability to look into the future.

From Figure 4 it follows that EE agents outperform PS
agents, when timing of reproduction is important. This similar
to findings in [2, 7] that a good timing is obtained by
observing the environment.

3.3 Randomness of the food distribution
Early experiments were criticised because in the default

setting food is injected at random places in the environment.
To investigate this criticism, an experiment has been
conducted with a world in which food injections vary from
totally random to very structured. In the structured setting the
food is placed on 9 locations that are equally space over the
environment, as shown in Figure 5

FIGURE 6 FOOD DISTRIBUTION

The more deviation from these points is allowed, the more
random the food distribution becomes. Because environment
evaluation is outperformed in almost all other experiments it
is expected that EE agents would have more difficulty in
surviving when isolated from each other.

Figure 6 shows that the performance of all agents decreases
when the randomness is decreased (low deviation). This
result is more obvious for EE agents than for PS agents.

Compared to the agents of Todd et al. [11], the DEA agents
in these experiments react less to diversity with respect to
spatial distribution of food. The DEA agents determine the
direction of their movements themselves, this is not
influenced by evolution, opposed to the agents of Todd,
which depend on the environmental structure to adapt their
movements.

This experiment shows that randomness of food
distribution does not explain the difference between PS and
EE agents.

4 DISCUSSION AND CONCLUSIONS

The DEA experiments show that in general partner
selection (PS) agents outperform environment evaluation
agents (EE). There is one major exception: EE agents
outperform PS agents when the time between food injection
is increased. This suggests that EE agents are better in timing
their reproduction than PS agents, when food is not injected
every cycle.

A reason that EE agents perform worse than PS agents
when food is injected every cycle could be that EE agents
over-react when they see much food. This conclusion is
supported by the local agent maximum experiment in which it
was shown that when reproduction is inhibited if there are too
many agents in the neighbourhood, the EE agents perform
better than in simulations without such a restriction.
Furthermore the result is greater for EE agents than for PS
agents.

FIGURE 5 ORDERED
ENVIRONMENT

The black patches in the world represent
the availability food. When the deviation
around these points is increased, the food
is placed more randomly around the
world. Thus, making it possible to
investigate the influence of ordering in the
environment on the agents’ behaviour.



From the fact that PS agents perform better than EE agents
when food is injected every cycle, it can be concluded that
partner selection is also important. An obvious improvement
would be to integrate both strategies into one agent; which
uses environment evaluation for the timing of reproduction
and partner selection for finding a proper mate. However, this
was not the main focus of this research.

Translating the DEA results back to nature is notoriously
difficult due to the performed abstraction from nature. On the
other hand, the emergent behaviour of artificial systems
might well help to evaluate theories from biologists. In case
of the DEA project the results correspond to the conjecture
from research of evolution in nature [2, 7] that environmental
clues are used to determine the appropriate time for
reproduction.

In both the work of Fletcher et al. [4, 5], and in the DEA
project the agents cannot observe the environmental structure
completely. The environmental structure consists of a
temporal and a spatial structure. The agents in [4, 5] cannot
observe the spatial structure. In the DEA experiments, the
agents cannot observe the temporal structure.

Comparing the DEA project to Ventrella’s work [14, 15]
the following two remarks can be made. First, Ventrella’s
agents select their mates on the basis of physical properties
such as colour or body weight. DEA partner selection agents
select their mates on the basis of measures that could indicate
their fitness, like age. Being old means that the agent is at
least capable of surviving.

Secondly, in both Ventrella’s work and in the DEA project
the agents’ preferences with respect to attractiveness are
evolved. Both sets of experiments show that agents evolve in
such a way that they are not attracted to unfit agents. During
the evolution process agents that are attracted to unfit mates
produce unfit children and agents with this preference are
quickly replaced by agents that are attracted to fit mates.
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