Easing collision finding in cryptographic primitives with genetic algorithms

Julio César Herndndez, Pedro Isasi and Arturo Ribagorda
Security Group & Artificial Intelligence Group, Computer Science Dpt.
Carlos III University, 28911 Leganés Madrid Spain
{jcesar,arturo } @inf.uc3m.es, isasi@ia.uc3m.es

Abstract - The finding of collisions (i.e. different inputs that
map to the same output) in cryptographic primitives (hash
functions or block ciphers) is an extremely difficult task. It
generally requires hundreds or thousands of hours of a
talented cryptanalyst. Even in this case, results are not always
guaranteed. In this work, we will present 2 new method for
easing the find of collisions, based in the use of genetic
algorithms. Our method automatically seeks for correlations
between the input and the output bits that can be used for
producing pseudocollisions (i.e. collisions of parts of the
output). These pseudocollisions are then useful for creating a
full output collision. These ideas are shown to work over a
version of the block cipher TEA reduced to one round.

1. INTRODUCTION

A cipher [1] is an algorithm characterised by a tuple (I1, I,
K, €, A) that verifies:

I is the finite set of plaintexts

T is the finite set of ciphertexts

K is the finite set of possible keys

For every « in K there is a ciphering function ¢, in €
and a deciphering function &, in A that verifies
S (e (n))=n for every plaintext «t de [1.

Falb ol e

The fundamental property here is number 4, which implies
that the original plaintext can be recovered if the ciphering
key is known. This knowledge of the ciphering key must
not only be sufficient for recovering the text, but also
necessary. Any robust cipher must not allow the recovery
of plaintext without the knowledge of the key used.

Block ciphers are a special class of ciphers, characterised
for operating over bit blocks instead of over single bits as
the stream ciphers do. This block length (typically 64, 128
or 256 bits) and the key length used to cipher (typically 64
or 128 bits) are fixed and fundamental for the block
cipher’s strength.

An ideal block cipher must behave as a random mapping
and, if we fix any given key, as a random permutation. One
of the additional properties that are needed for block
ciphers and in hash functions (functions that can take an
input of arbitrary length and generate an output of a fixed
length), is to be collision resistant. Essentially, this means
that finding inputs x#x’ such as f(x)=f(x") is

0-7803-7282-4/02/$10.00 ©2002 IEEE 535

computationally infeasible. This does not mean collisions
do not exist (they trivially exist if the input space is greater
than the output space), only that they must be extremely
difficutt to find.

If a block cipher or a hash function can be proved not to be
collision-resistant, it will immediately be disregarded for
any cryptographic use. The security of many cryptographic
protocols, notably the digital signing of documents and
some micropayments protocols, is totally reliant on this

property.

However, even if the primitives have a relatively poor
security or are simplified (i.e. the number of rounds is
reduced, etc.), finding collisions is usually quite hard. For
helping with this, we present a new technique that is based
on genetic algorithms. We will also show it is useful in
simplifying the task of finding collisions in a reduced round
version of the block cipher TEA.

1. THE TEA ALGORITHM

TEA stands for Tiny Encryption Algorithm. It is the name
of a block cipher invented by David Wheeler and Roger
Needham, members of the Computer Security Laboratory
of Cambridge University. It was presented in the 1994 Fast
Software Encryption Workshop [2].

TEA is a very fast block cipher that does not use predefined
tables or s-boxes and does not need much initialisation
time. It is a Feistel type algorithm, thus named because it
divides its input in two halves and operates over them
individually in each round and interchanges them at the end
of every round. It works over 64 bit blocks and uses keys of
128 bits, which are large enough for today’s security
standards.

As they authors say, it has a security (with 8, 16 or 32
rounds) at least comparable with DES (then the Data
Encryption Standard) and it is quite faster. However, it
seems that the block cipher TEA has some additional
advantages: it is very robust (only one academic attack [3],
that is, a theoretical attack with little or none practical
implications) in more than 7 years of existence.
Additionally, it is very portable, efficient and simple as its
compact code below shows:

Authorized licensed use limited to: Univ Carlos Ill. Downloaded on March 26, 2009 at 11:10 from IEEE Xplore. Restrictions apply.

void code(long* v, long* w, long* k)
{unsigned long y=v[0],z=v[1l], sum=0,
delta=0x9e3779b9, n=8 ;

while (n~->0)

{sum += delta ;

y += (z<<4)+k[0] " z+sum "~ (2>>5)+k[1] ;
z += (y<<4)+k[2] ~ y+sum " (y>>5)+k(3] ;
}

w[0]=y ; w[l]l=z ;

}

II. A GENERAL PROCEDURE FOR FINDING COLLISIONS

The fundamental idea is to select a subset of the output
(generally 8 or 16 consecutive bits) and then search for the
subsets of the input space that have a greater influence over
(or a higher correlation with) these observed output bits.
This knowledge can be used to produce a pseudo collision
over them, that is, to determine, if possible, a subset of the
input that always generates the same output over the
observed bits. After this, we must select other subsets of the
output bits (normally disjoint with the previous) and repeat
the search for input subsets that produce a pseudo collision
on them.

Repeating this procedure, we will eventually cover all the
output bits. Then, we would have found a full-output
collision if the previously computed input subsets have a
common intersection with cardinality greater than one.

Before implementing this general technique, it is clear that
we have to choose a representation of the input subsets, and
also a way to measure the influence of these input subsets
over the observed output bits. Our proposed answer to these
two questions is detailed in the next section.

IV. FINDING COLLISIONS WITH GENETIC ALGORITHMS

In this preliminary implementation, we propose the use of
binary bitmasks to represent input subsets. Such bitmasks
will be used to perform a logical AND with all randomly
generated input vectors, effectively fixing some of the input
vector values to zero. In this way, we will be able of
representing any subset of the input which members are
characterised by the fixing of some of their bits to zero.
Although this first representation is quite simple and
limited, it is also very convenient (these bitmasks have a
straightforward codification as individuals in the population
of our genetic algorithm) and produces very interesting
results.

The influence of a given input subset over the observed
output can be measured as a deviation between two
probability distributions. One is the observed probability
distribution over the output bits. The other is the uniform

0-7803-7282-4/02/$10.00 ©2002 IEEE 536

probability distribution one should expect of the output of a
random mapping. This difference between two probability
distributions can be measured in many ways. But a simple
and convenient procedure for reflecting it in a single value
is to use a chi-square test. So our first proposal for the
fitness function of the genetic algorithm is a chi-square
statistic that measures the difference between the observed
probability distribution and the theoretical (uniform) one.
Obviously, we will try to maximise this difference.

However, this deviation cannot increase indefinitely. It will
reach a maximum when an input subset produces an output
distribution that is as far as possible from the uniform. This
degenerate distribution occurs when all possible output
values collapse in a single one, that is, when having a
pseudocollision of the output. This is exactly what we are
looking for.

By repeating this procedure over all the output bits we will
eventually be able of finding a full output collision.

V. GENETIC ALGORITHM IMPLEMENTATION

We are trying to find which fixing of the input bits
(performed by ANDing input vectors with the appropriate
bitmask) helps in the process of fixing the output value,
thus producing a pseudocollision of the observed bits.

But how to decide which bits to fix in the input is a very
complex problem. It is, essentially, a search in a huge space
with 2 elements. For TEA this space has 2% possible
values, so an exhaustive search is completely infeasible.
For finding good bitmasks in those huge spaces we propose
the use of genetic algorithms, where individuals will codify
bitmasks. These bitmasks will be used to perform a logical
AND with every random input, fixing some of the input
bits to zero. It is important to mention that this fixing of
some bits in the input must be reasonable in length to allow
for enough different inputs for producing statistically
significant deviations from uniformity in the output.

We decided to start observing the distribution of the 16
more significant bits of the first output word of TEA (that is
w[0]>>16 using the notation of the TEA code shown
before, where the operator >> designates a right shift).

These 16 bits can be interpreted as the binary representation
of the integers between 0 and 2'6.1=65535, and their
distribution should uniformingly take all these values. The
distribution of the computed statistic should follow a chi-
square distribution with 65536-1=65535 degrees of
freedom. The values for different percentiles of this
distribution are shown in Table I:

Authorized licensed use limited to: Univ Carlos Ill. Downloaded on March 26, 2009 at 11:10 from IEEE Xplore. Restrictions apply.

TABLE]
VALUES OF THE CHI-SQUARE DISTRIBUTION WITH 65536 D.O.F. FOR

DIFFERENT PERCENTILS
p-value 0.5 0.90 0.95 0.99
X 65534.3 65999.3 66131.6 | 66380.1

Our objective is to find bitmasks for the TEA input (both
the input block of 64 bits and the key block of 128 bits) that
provoke a value in the chi-square statistic as high as
possible.

We also need to know what to search for when finding a
bitmask that produces a collapse (or pseudocollision) of the
output, or analogously, how to decide which bitmask is
better if the are two that produce a collapse of the output. In
this case, we must prefer the heavier bitmask, the one that
has a higher number of ones. A zero value in a given
position of the bitmask implies that every input vector, after
the AND process with the bitmask, will have a zero in this
position, so more nonzero values in the bitmask allow for
more input diversity because represent more cardinality in
the input set. This is preferable because in general, the
bigger the input subsets, the better. This will significantly
increase the probability of having a common intersection
with cardinality greater than one, that is, the probability of
being useful for finding a full collision. Once the maximum
possible deviation is reached, this preference towards
bitmasks with greater weight will be reflected in the fitness
function of our genetic algorithm.

Once we have found a bitmask that produces a collapse on
w{0]}>>16 and has a high weight, we proceed to search for a
different bitmask producing a collapse in w[0]&OxFFFF
and as heavy as possible. Repeating this for w[1]>>16 and
w[1)&0xFFFF we would have four bitmasks m;, m;, mj,
my such as m = m&m,&m;&my will produce a full output
collision providing w(m)>1.

There are some problems with this- approximation. The
harder one is related with the uncertainty over the weight of
the resulting mask. Only we would succeed in finding a full
collision if this weight were greater than zero (thus
allowing at least two different inputs that map to the same
output). Using this approach, we do not have a direct way
of being sure of this weight. The only thing we can do is
trying to find the heaviest possible bitmasks for every
output bits, in order to increase the probability of ones after
the AND process.

The second one is related with the difficulty of finding
bitmasks that produce pseudocollisions. In some cases, this
would not be possible at all, or would be extremely
difficult. When this happens, only partial solutions may be
obtained and no direct way of finding a full output collision
is got.

0-7803-7282-4/02/$10.00 ©2002 IEEE 537

However, the application of this procedure can always, if
not find a full collision, at least reduce significantly the
search space for it thus making its finding much easier. This
is exactly the case with TEA. The results are presented
below.

VI. RESULTS

We have used the implementation of the genetic algorithm
of William M. Spears, from the Navy Center for Applied
Research. After a number of preliminary tests, we
determined that a 0.95 probability of crossover, a 0.02
mutation probability and a population size of 100
individuals were adequate for our problem and we decide to
fix them to these values.

Every bitmask (codified as individuals in the genetic
algorithm population) was evaluated by performing an
AND with 2'°"" inputs generated at random, different for
every individual and every generation. This makes
convergence much harder, but drastically improves the
generality of the results obtained, because it makes
overfitting nearly impossible.

The maximum value for the chi-square statistic under these
assumptions will occur when the observed distribution is as
far from uniformity as possible, that is, when only one of
the 65536 possible values really occurs. The fitness value in
this degenerated case will be ’

65536

2= Y (0,-8)/8=
i=0

65535

=} (8)*/8+(2" —8)* /8 = 34359214080
i=0

We started our search seeking for the heavier bitmask able
of producing a collapse on w[0]>>16. The fitness function
we used was

If x*=34359214080
then fitness = x*/10° + weight’
else fitness = x*/10°

The preference for heavier bitmasks is reflected in the
fitness function for improving the probabilities of heavier
masks after the AND operation. The normalisation of the
chi-square statistic is optional.

Authorized licensed use limited to: Univ Carlos Ill. Downloaded on March 26, 2009 at 11:10 from IEEE Xplore. Restrictions apply.

Using this approach, we managed to obtain the following
bitmask that fixes the 16 more significant bits of w[0] to a
value 0of 1001111000110111:

{00000000000000000111101101111111,
00000000000000000000101111110111,
0000000000000000001 1111111111111,
0000000000000000001 1111111111111,
11111011111111101111111111011111,
11111111010101111011101111101111}

This bitmask has length 192 bits (192=64+128) and weight
106. This implies that we can generate up to 2'% different
inputs to the block cipher TEAI that collapse over the
observed output. This makes the bitmask useful and
applicable.

This procedure can also be used to produce a collapse of the
output of w{0]&0xFFFF to the value 0111100110111001
by using the following bitmask, which has a weight of 108.

{11111011111110110000000000000000,
11111011111000000000000000000000,
01111111101111010000000000000000,
11111111110111110000000000000000,
11111111111111111111011110111111,
O01110111111110110111110111111011}

But obtaining a mask for producing a pseudocoilision on
any part of the second output word of TEA (w[1]>>16 or
w{1]&0xFFFF) appears to be much harder. In fact, after
many executions of the genetic algorithm we were unable
of getting any of them. Obviously this is not impossible,
only computationally harder.

When this happens, we have to change our objective from
the initial ambitious aim of directly finding full collisions to
a more realistic attempt of easing or simplifying in some
way this search for collisions. We must decide if we have
made any progress by finding the masks shown above. All
depends on a very simple fact: the weight of the AND of
these masks. Let the value of this weight be w. This means
that we have found a subset of the input of size 2" in which
every element produce a pseudocollision of all w[0] (it
produces a collision of both w[0]>>16 and w[0]&O0xFFFF).
The important question here is if we can prove that there is
at least one element in this subset that produces a full
output collision. If this can be done, we would have made
some progress reducing the search space (w<192) for
finding a collision.

For this, all we need is to be sure that w>32. This is
because, when applying the bitmask to the TEA input, we
can consider TEA] as a function from 2" to 2°* (the masks
effectively fixes the first 32 output bits, the first output
word w[0]) and only the last 32 (w[1]) change. If only 32
bits change, then there are only 2*’ possible different

0-7803-7282-4/02/$10.00 ©2002 IEEE 538

outputs and if the input subset has more than 2*? elements
we can be sure we will find a collision.

This is our case. The mask produced by the AND of the two
masks shown before is

{00000000000000000000000000000000,
00000000000000000000600000000000,
00000000000000000000000000000000,
00000000000006000000000000000000,
11111011111111101111011110011111,
01110111010100110011100111101011}

and has weight 47, which is bigger than 32. This means
that there will be at least 2*7-2% full collisions in our input
subset.

After these results, finding collisions now is no longer a
computationally infeasible task. In fact, it is quite trivial.
Furthermore, the calculations made in the past paragraph
are quite pessimistic because we suppose that the bitmask
that fixes all bits of w[0] has no effect over the distribution
of the bits of w[l]. If this were not the case, finding
collisions would be even easier.

Unfortunately, this is not the case for TEA. Both the
distribution of w[1]>>16 and the distribution of
w[1]&0xFFFF are not affected by the bitmask that
produces a pseudocollision of half of the TEA output, as
shown in the table below

Now that we have extracted all the benefits our technique
can give, it is time to use the classical ways of searching for
collisions, with the advantage a reduced-sized problem. We
will use another technique based in what is called the
birthday paradox. It basically consists in generating outputs
and storing them so that every output obtained is compared
with all the previously generated. In this way, there is a
probability greater than 0.5 of finding a collision after 2%
operations if 2' is the size of the output space. Applied to
our case, we can expect to find a collision after only

2'%=2%%7 operations, when initially TEA would have
required 2°°=2%*? operations. Now the problem is at our
hands.

VII. CONCLUSIONS

This is a preliminary work with the use of genetic
algorithms in the finding of collisions. In this paper, we
have presented a new technique for generating collisions.
Then we have proven it is useful at simplifying the initially
computationally infeasible task of finding collisions in a
reduced round version of a robust cryptographic primitive
such as TEA.

Authorized licensed use limited to: Univ Carlos Ill. Downloaded on March 26, 2009 at 11:10 from IEEE Xplore. Restrictions apply.

Furthermore, the results obtained in this paper have other
implications. A closer look at the bitmask that fixes all the
32 bits of w[0] reveals that the distribution of its 47 non-
zero bits is far from random. All the 1’s are at positions that
only affect the last part of the input key, namely k[2] and
k(3]. This points out that the influence of these input bits
over the first half of the input is close to none. We can
reach this conclusion even without knowing the code of
TEA, which confirms this, and in a completely automated
way. The fact that the output of w[1] is much harder to fix,
also points out that it is, in some way, better encrypted.
This is also true, and can be deduced from the code, but it is
not trivial at all.

In this way, this technique could be used to verify the
strength or find weaknesses of new cryptographic
primitives like block ciphers or hash functions.

VIII. FUTURE WORK

Some improvements and extensions to this preliminary
work are possible, and some of them are being developed
now or will be tested in a near future. For example, the
fixing of some of the input bits to zero, although it has
proved their usefulness and has produced interesting
results, can be easily generalised. We can use a ternary
([0,1,*] for example) representation of the individuals
instead of the more common binary representation. It is
conceivable that a cryptographic algorithm can be more
sensible to the fixing of some of its input bits to zero than
to the fixing of these bits to zero and only using a ternary
representation we will be able of discovering this.

Another point that probably deserves more research is the
election of the output bits we will analyse to discover a
deviation from the expected distribution. Although we have
motivated and justified the election of the 10 rightmost bits
of the first output word we have to acknowledge that this
election is somehow arbitrary. An interesting possibility
would be to codify in the genetic algorithm which bits to
observe, so this could also evolve towards the bits that
suffer a greater influence by a given input fixing.

IX. REFERENCES

[1] Douglas R. Stinson, Cryptography, Theory and Practice, CRC Press, 1995.

[2] D. Wheeler, R. Needham, TEA, A Tiny Encryption Algorithm, en
Proceedings of the 1995 Fast Software Encryption Workshop. pp. 97-110
Springer-Verlag. 1995

[3) John Kelsey, Bruce Schneier, David Wagner, Related-Key cryptanalysis of

3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2 and TEA, Proceedings
of the ICICS97 Conference, pp. 233 -246, Springer-Verlag, 1997.

0-7803-7282-4/02/$10.00 ©2002 IEEE 539

Authorized licensed use limited to: Univ Carlos Ill. Downloaded on March 26, 2009 at 11:10 from IEEE Xplore. Restrictions apply.

