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Abstract- Darwinian evolution, which is character- 
ized in terms of particular macroscopic behavior that 
emerges from microscopic organismic interaction, con- 
siders populations as  units of evolutionary change. We 
formalize these concepts in evolutionary computation by 
developing notion of quotient evolutionary space(Q.E.S). 
We map set of all finite populations to a set of macro- 
scopic properties of population those are chosen a pri- 
or;; and we call this mapping as evolufionary criteria. 
On the ‘quotient set of populations’ that is induced by 
evolutionary criteria, we define mathematical structures 
to define evolutionary change with respect to chosen 
macroscopic parameters at populational level. This al- 
lows us to transform the objective defined on the search 
space that is imposed by the fitness function to an ob- 
jective on the population space. We call quotient set 
of populations along with the mathematical structures 
the quotient evolutionary space. Tn demonstrate the ah- 
straction we consider fitness distribution of population 
as evolutionary criteria and give a detailed analysis of 
resulting spaces and basic convergence results. 

1 Introduction 

Most theories of evolutionary algorithms stress on particu- 
lar aspects of evolutionary computation by means of spe- 
cific mechanisms. Evolutionary algorithms can he modeled 
as Markov chains in  a very natural way. For detailed analy- 
sis of evolutionary algorithms using Markov chains one can 
refer to [ I ,  2, 31. This approach can be applied to evolu- 
tionary algorithms with finite population based on any kind 
of selection mechanism and evolution operators. The most 
difficult issue, however, is that it is impossible or at least 
impractical to formulate the details of the related transition 
probability matrix and, therefore, analysis of the properties 
of the matrix is difficult [4]. 

Statistical mechanics based theory of genetic algorithms 
makes use of fitness distributions and analyzes change in the 
distrihution of fitnesses in  the population from one genera- 
tion to the next [5 ] .  Changes in the fitness distrihutions are 
studied through the average evolution of the first few cumu- 
lants of the fitness distrihutions. For the detailed theory, one 
can refer to [6, 7, 81. Denoting the distribution of fitnesses 

at generation t by pt, the approach is based on the schematic 
representation: 

This approach is developed for genetic algorithms and can 
be extended to other paradigms of evolutionary computa- 
tion, however, it  considers only specific selection mecha- 
nisms (for example, Boltzmann selection). This approach 
depends on the particular fitness functions (fitness is a func- 
tion of the magnetization or  Hamming distance to all-ones 
optimum [91). 

In general, theoretical models of evolutionary computa- 
tion formalize evolutionary process as a process composed 
of selection and evolutionary operators. This approach as- 
signs the ’mechanism’ status to natural selection rather than 
one of a generalized process which brings in ‘evolutionary 
change’. But the modern evolutionary perspective views 
“natural selection” as an abstract process which brings in 
evolutionary change rather as a particular mechanism by 
which evolution is carried out. These aspects are important 
to develop a ‘unified’ theory of evolutionary computation. 

Fitness landscape, the concept which was introduced 
in evolutionary biology to view evolutionary process as a 
hill-climbing-like process (one can consider fitness func- 
tion as a fitness landscape in  the framework of evolution- 
ary algorithms) is of growing interest today in  the fields of 
evolutionary computation and theoretical models of molec- 
ular evolution. There have been theoretical frameworks 
to characterize fitness landscapes. These frameworks im- 
pose a ‘neighborhood’ relation on individuals with respect 
to particular evolutionary operators like selection, mutation 
etc. [lo]. In general, this approach introduces some sort of 
additional geometric, topological or algebraic structure on 
the search space that allows one to define closedness. sim- 
ilarity of individuals in the search space [ I  I ] .  The main 
drawbacks of the above approach to comprehend the evoh- 
tionary process are the following: 

At any given time, elements of a population are dis- 
tributed all over the fitness landscape and it is very 
difficult to get the population dynamics as a whole. 
The concept of fitness landscape should he indepen- 
dent of any particular evolutionary mechanism. (For 
example, in evolutionary algorithms, fitness function 
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as fitness landscape is independent of the evolution- 
ary mechanism. Fitness landscape is considered inde- 
pendent of mechanism in some molecular evolution- 
ary models also [ 121). 
Evolutionary process is a populational process [ 131. 
Hence evolutionary change should be defined at the 
population level rather than at individual level. 

In this paper we develop a mathematical abstraction of 
evolutionary computation, where we give ‘strict’ status of 
populational process for evolutionary algorithms by posing 
mathematical structure on the space of populations rather 
than on the search space. We deal with the populations by 
mapping these to their macroscopic properties, which we 
call ‘criterion set’ and we call this map as ‘evolutionary cri- 
teria’. Based on this concept, we develop notion of ‘quo- 
tient evolutionary space’ (Q.E.S) with respect to which we 
abstract evolutionary process. The features of abstraction 
that we are going to present in this paper are: 

Main difference between evolutionary algorithms and 
stochastic search methods is that the former main- 
tain a population of candidate solutions, instead of 
one candidate solution at any given point of time. 
Hence we abstract evolutionary process as a popula- 
tional process. 
Abstraction is independent of any particular macro- 
scopic structure of population; it is based on the con- 
cept of evolutionary criteria which can be instantiated 
with any specific macroscopic properties of popula- 
tion. 
Mathematical structures are posed on the set of all 
populations so that the objective (due to fitness func- 
tion) defined on the search space is transformed to 
an objective on the population space and to measure 
the evolutionary changes with respect to the chosen 
macroscopic properties. 
Many theories of evolutionary algorithms deal with 
infinite populations. Since computational complexity 
of these algorithms is defined in  terms of number of 
fitness evaluations, we assume that population size is 
finite. 
Evolutionary process is defined as an abstract pro- 
cess which brings in evolutionary changes instead of 
defining it in  terms of particular evolutionary mecha- 
nism. 

The outline of paper is as follows. In 5 2, we give basic 
definitions and some assumptions for the framework that 
we are going to develop. In 3 we formalize the concept 
of evolutionary criteria. We give a formal definition of quo- 
tient evolutionary space and abstract notion of evolutionary 
process in 5 4. Finally in 5, we give a detailed analysis of 
resulting spaces and evolutionary process when evolution- 

ary criteria is fitness distribution 

2 Towards Abstraction 

2.1 System under consideration 

Evolutionary computation uses the metaphor of mapping 
“problem solving” onto a simple model of evolution as 
shown below [141. 

Evolution Problem Solving 

organism - candidate solution 
environment ci problem 

fitness H quality 
Set of all candidate solutions is called the search space 

which is denoted by R. The problems which we intend to 
solve by evolutionary computation technique offer (or one 
should design) a fitness function (or objective function) f : 
R + R. The goal of an evolutionary algorithm is: 

given a search space R, objective function f : 
R i R, find wo E R such that, 

f(.) 5 f b o )  WJJ E 0. 

P is a set of all non empty multi-subsets of 0. P represents 
the set of all possible populations and P. E P is a particular 
population. n p  E Z+ denotes the population size and is 
assumed to be finite. 

2.2 Basic Definitions 

The most important mechanism for evolutionary algorithms 
is selection. Selection mechanisms depend only on the fit- 
ness distribution of the population [6].. In this paper, we 
consider fitness distribution as an example of instantiation 
of evolutionary criteria (i.e., macroscopic property of popu- 
lation). 

One important property of fitness distribution of a finite 
population is that only for finitely many points its value is 
non-zero, since population size is assumed to be finite. Here 
we give a generalized definition of fitness distribution which 
is independent of population. 
Definition 2.1 ‘Fitness distribution’ is a function p : R + 

Z+ U { 0 }  which is boundedand.satisfies 

(1) 

where ti denotes the cardinalii? of a set. 
Definition 2.2 ‘Fimess distribution of a population ’ P = 
{wk}:rl is n function pp : R 4 Z+ U ( 0 )  defined as 

nix : p(z) # 0 ,  < m, 

where 6 : R i { O .  1)  is fhe Kronecker deltafunction de- 
fined as 6(z) = 1 ifz = 0, 6 ( 2 )  = 0 otherwise. 
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p p  assigns each x E R to the number of individuals in 
a population P carrying x as the fitness value. Since we 
assume that population size is finite, fitness distribution of 
a population is indeed a fitness distribution. The finite set 
of values associated with the fitness distribution which are 
mapped to non-zero values is called support of fitness dis- 
tribution of population. 
Definition 2.3 Let p p  be thefitness distribution of popula- 
tion P, then 'support' of p p  is defined as 

support(pP) = E~ = {X : p P ( z )  + 0): (3) 

which is afinite set. 
Size of population can be expressed in  terms of fitness dis- 
tribution as follows: 

The most important statistical properties of the population 
are the mean p, and the variance u2 of fitness distribution 
of population [7]. 
Definition 2.4 Meail offitness distribution of a population 
P t P withfitness distribution p p  is definedas 

Definition 2.5 Val-iance offitness distribution of a popula- 
tion P E P withfitness distribution p p  is defined as 

2.3 The Approach 

Darwinian evolution, which substituted typological think- 
ing with populational thinking, considers population as the 
basic unit of evolutionary change. One naive approach lo 
formalize evolutionary process in  evolutionary algorithms 
is to consider each ingredient of population. For example, 
the state of a genetic algorithm can he described as a vector 
on the simplex of a high-dimensional Euclidean space [15]. 
The genetic algorithm dynamics is specified by a nonlinear 
matrix operator that acts on this vector to produce the slate 
at the next time step. Although this formalism exactly cap- 
tures the detailed 'microscopic' dynamics of the algorithm, 
in practice the large size of these matrices makes it impossi- 
ble to obtain quantitative results [16]. Also the difficulty is, 
however, that the precise expression for the related nonlin- 
ear mapping can be obtained only for very few cases (e.g., 
a binary GA with proportional selection). 

Modeling of evolutionary algorithms based on the 
macroscopic properties of population is not a new concept 
and has been given in  [ 5 ] ,  based on the specific macroscopic 

parameters like 'cumulants of fitness distributions'. In this 
paper, instead of choosing specific macroscopic parameters 
of population, we introduce a concept called 'evolutionary 
criteria' which comprises all macroscopic properties of pop- 
ulation that one can choose. Note that the macroscopic 
properties or criteria we choose should be able to charac- 
terize the population, by means of which, in an ideal case, 
we should be able to predict and control the evolutionary 
process. For example, for an evolutionary algorithm for op- 
timization problems, one can choose maximum fitness of 
population as a criterion. Though one would be interested 
in observing maximum fitness, it is not enough to capture 
the evolutionary process. 

Formally we define evolutionan criteria as a function 
defined from set of all populations to criteria set. Criteria 
set is a set of all macroscopic properties one would choose. 
We establish a bijection from the quotient set (set of all 
classes of populations with the same criteria) that is given 
by evolutionary criteria to a subset of criteria set. Hence we 
pose a mathematical structure on criteria set which induces 
the same on the quotient set of populations. Two impor- 
tant mathematical structures that we pose on criterion set 
are evolutionary order and evolutioiian metric. Evolution- 
ary order is a partial order that is defined on criteria set to 
define a objective on the population space based.on the ob- 
jective that we already have on the search space. Evolution- 
ary metric is a metric defined on the criteria set to measure 
the evolutionary change. Quotient set of populations along 
with evolutionary order and evolutionary metric is called 
quotient evolutionary space (Q.E.S). 

After formalizing above concepts we define evolution- 
ary process with respect to chosen criteria, implicitly as an 
optimization process. 

3 Evolutionary Criteria: From search space to 
population space 

3.1 Formalization of Evolutionary Criteria 

Let Q be the criteria set which represents the macroscopic 
properties of population, that are chosen apriori. Since one 
can choose more than one macroscopic property, Q can be 
written as Q = (el: Q z ~ .  . . Q L ) :  where Q, represents a 
macroscopic property V i  = 1. .  . l .  We define evolutionary 
criteria as follows. 
Definition 3.1 Evolutionary criteria is afunction 3 : P i 
Q, where P is set of all populations and Q is a criteria set. 
Note that choice of evolutionary criteria F depends on the 
fitness function f : Q + R since the important macro- 
scopic properties of a population depends on the fitness val- 
ues of individuals (see Figure 1). 

Function 3 partitions the set of all populations P into 
equivalence classes according to kernel equivalence -& 
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Figure 1: Evolutionary criteria: from search space to popu- 
lation space 

P x P defined as, 

Pl-FPZ Q +(PI) = F(P2) VPl,P2 E P. 

Respective quotient set (set of all equivalence classes) 
P1-3 is defined as, 

PI-3 ={[PI : P E P } ,  

[PI = {P’ : P‘ -3 P }  VP E P 

where [PI c P is an equivalence class i.e., 

We call P1-3 as, quotient set of popu1ations.w.r.t evolu- 
tionary criteria 3. The quotient map x~ : P + PI-3  is 
defined as 

x3 (P)  = [PI ‘VP E P. 

Quotient map is nothing but a function which maps each el- 
ement to its corresponding equivalence class. Observe that 
x 3  is an “on-to” function. 

3 I ?  

Figure 2: Getting the, bijective mapping from quotient pop- 
ulation space P/  -3 to subset of criteria set F ( P )  c Q 

But we would need, a bijective function which maps 
PI-3 to F ( P )  to assign unique criteria value to each class 
of populations. Existence and uniqueness of this function is 
confirmed by the followinitheorern: 
Theorem 3.2 Let F : P - Q be a function and -3 be 
the kernel equivalence of the map F. Let P1-F be the 
corresponding quotient set and x 3  be the quotient map. Let 
j : F(P) + Q be or1 “in-to” function dejiriedas j ( Q )  = 

Q. VQ E 3 ( P )  (which is termed as cononicol injection). 
Then there is a unique map [3l : P1-F + 3 ( P )  such that 

(7) F = j  o 131 o x ~ .  
Funher [3l is bijective. 
(For the proof of Theorem 3.2 see Appendix 5 A) 

Figure 2 demonstrates all the mappings involved in get- 
ting the bijection 14, which allows one to identify each 
class of populations with an element from the criteria set. 
Note that [A only maps P/ -3 to subset of criteria set 
4 namely F(P) .  Also the definition of. function [3l : 
P / - 3  + 3 ( P )  can be deduced as (see Appendix f A): 

[3l([Pl) = 3 ( P )  VIP1 E P l - 5 .  (8) 
A trivial example of choosing Q is to set 4 = R and as- 

sign average fitness or maximum fitness to.each population 
as an evolutionary criteria. 

Note that evolutionary criteria can have more than one 
macroscopic property of population. In thispaper we have 
considered only one macroscopic property, i.e., fitness dis- 
tribution and have given the analysis for it. 

Since the aim of this abstraction is to capture evolution- 
ary change at populational level in terms of macroscopic 
parameters, we pose two basic mathematical structures on 
the quotient set of populations viz., evolutionary order and 
evolutionary metric. 

3.2 Evolutionary Order 

Not every change in the system can be termed as an evolu- 
tionary change [ 171. One candefine evolutionary change as 
“sustainable change over a succession of generations” [18]. 
In this paper we consider, ‘sustainable change’ as a direc- 
tional change towards a particular goal. Evolutionary pro- 
cess is a populational process hence, one has to define sus- 
tainable change at the level of populations. Since from 
the evolutionary algorithms perspect<ve ‘objective’ is de- 
fined on the search space imposed by a fitness function, 
we have to transform the objective on the search space to 
an objective on the population space. For this purpose 
we pose mathematical order on the quotient’set of popu- 
lations which induces the same on P /  -3 by the function 
[F] :. P /  -3- F(P) ,  i.e., if & is partial order defined on 
Q then, V[P& [Pzl E PI ~3 

[Pll 33 I P Z I  Q [Fl(pIl) 53 [31([P21). 
By (8) we define evolutionary order as follows. 
Definition 3.3 A partial order 53 defined on Q, which is 
induced on P /  -3 by evolutionary criteria 3 : P + Q 
according to 

1 4 1  5F [PZI 6 F(P1) 5 F  +(&)V[Pll, [P21 € PI -F 
is called evolutionary orde,: 
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Note that the definition of 5~ should he compatible with 
the objective in the search space, for instance, maximization 

If we have Q = R and Fas assigning average fitness or 
maximum fitness of the population, the 'usual' order on R 
would define evolutionary order on P /  -7. 

3.3 Evolutionary Metric 

Evolutionary metric is the measure'of changes that take 
place in the system with respect to chosen criteria. To mea- 
sure the evolutionary change with respect to chosen criteria 
3 we define metric on' the set Q which induces same on 
P /  -F by the function IF] : P /  -F- F(P), i.e., if d 3  is 
metric defined on Q then, VIPl]: [Pz] E P /  -r 

off  : R i m .  

dr(Ip11. [Sl) = dr(l3I(Ip11), [fl([Pzl)) .  (9a) 

From the Equation (8) we get 

d ~ ( [ P i ] ,  [Ed) =dr(3(pi),F(Pz)). (9h) 

Note that as the left side of (9a) and (9h), the metric d r  is 
defined on Q while on the right side, the same is defined on 
P /  -3. It should he clear from the context on which set 
the metric d r  is defined: Now the definition of evolutionary 
metric follows. 
Definition 3.4 A nietric d r  : Q x Q -+ R dejined on Q, 
which is induced or1 P /  -.r by evolutionary criteria IF : 
P - Q according to 

d r ( [ P ~ ] : ( P z ] )  = ! F ( 3 ( p l ) : + ( p z ) )  v[p1]. [PZ] E p /  -F 

is called evolutionary metric. 
In 5 3.1, we defined criteria set Q as the tuple Q' = 

(Q1, Qz, . . . 41) where Qi~is  acriterion (macroscopic prop- 
erty) Vi = 1 . . . 1 .  But it is not easy to define a metric on Q, 
because each Q, reptesents'a particular macroscopic prop- 
erty of populition. Hence we can define metric d r  on Q as 
a product metric of metrics d r i  defined on Q,, V i  = 1 . . .1. 
One can choose metric d r  on Q as d r  = max(dFi)l,l or 
d r  = d=, dr,. 

If the choice of evolutionary criteria is average~fitness 
or maximum fitness of the population the metric would be 
'usual' metric on IR. 

. .  

. . 

4 Evolutionary Process on Q.E.S 

4.1 Q.E.S 

Based on the mathematical structures that we imposed on 
the quotient set of populations on the basis of the concept of 
evolutionary criteria, in this section we define evolutionary 
process, implicitly as an optimization process - the ahstrac- 
tion we developed is sufficient enough to do so. Figure 3 

gives the summary of the abstraction we developed. For- 
mally we define Q.E.S as follows. 
Definition 4.1 Q.E.S with respect to evolutionary criteria 
3 : P i Q is quotient set of populations P /  w r  induced 
by 3, along with the evolutionay order 53 and evolution- 
a y  metric d r ;  and it is denotedas (PI  -7, $=, d3) .  

Figure 3: Population space to quotient evolutionary space 

4.2 Evolutionary Process 

A process in. the evolutionary system can he written as as a 
sequence {P,)~where P, E P, V n  = 0,1,2.. . and PO is 
the initial population. But with respect to the evolutionary 
criteria F, the process is equivalent to { [P"] } .  
Definition 4.2 Given a sequence {Pn} c P, n = 0 , l . .  ., 
the equivalent process with respect to evolutionary criteria 
3 is dejined as: 

{[P,,]) c P /  -r n = 0: 1,. . . . 
Since objective on search space is transformed to an oh- 

jective on quotient set of populations by evolutionary order, 
we define 'monotone evolutionary process' as follows. 
Definition4.3 A sequence {Pn} c P, n = 0 , l . .  . in the 
evolutionatysysten~ (PI -r, 3 ~ :  d 3 )  issoid to be amono- 
tone evolutionaryprocess if 

IS] 5~ [Pn+1I V n  

Definition 4.4 An evolutionaryprocess {Pn) c P is said 
to be convergent with respect to evolutionary criteria 3 if 
the sequence {(P,]) converges in P /  -7, i.e., LIP* E P 3 

Ve z 0,3N = N(e)  E 2+ 3 

n 2 N * d d [ P , l ,  [PSI) < c. 

Remark 4.5 Evolutionaryprocess {P,,) converges with re- 
spect to evolutionary criteria iff { 3 (P , , ) )  converges in the 
space Q. 
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5 Fitness Distribution as an Evolutionary Cri- 
teria 

5.1 (PI  y P ,  5,, d p )  

Let Q denote the set of all fitness distributions and F : P - 
Q be defined as F(P) = p p .  V P  E P where pp is  fitness 
distribution of P. Also, quotient set with respect to this par- 
ticular criteria is denoted by P/ - P .  To define QES with 
respect to chosen evolutionary criteria we have to specify 
evolutionary order 5o and evolutionary metric d, on quo- 
tient set of populations. 

Given that one is attempting to solve a maximization 
problem using evolutionary algorithms, one would expect 
that mean of the fitness distribution of population should 
shift towards right and one can also pose the condition that 
variance of population should decrease as the evolutionary 
process takes place. Hence we define partial order 5,  as 
follows. 
Definition 5.1 Lei Q represent the set of allfiiness distribu- 
tions. Partial order dpC_ Q x Q is dejined as Vpl , pz E Q, 
p1 dp  PZ iff 

d P l )  5 P(PZ) (W 

U 2 ( P d  2 U2(PZ) ,  (lob) 
and 

where p and 6' are the mean and variance offitness disrri- 
bution respectively. 
One can easily see that d p  is an partial order and hence it 
is an evolutionary order. Note that one can have different 
definitions, what we have given here is one of the possible 
instantiationsof &. Definition 5.1 is illustrated in Figure4. 

Figure 4: Partial order on set of all fitness distributions: 
p1 3, pz according to Definition 5.1 

Metric d, on Q is defined as follows: 
Definition 5.2 Let Q represent the set of allfiiness distri- 
butions. Metric d, : Q x Q +R is defined as 

d p ( p i , p z )  = IPI(Z) - pz (~ ) l  VPI ,  PZ € Q; 
s€E,., UE,,Z 

where E,, and Epz arefitness value sets of p1 and p2 re- 
spectively. 
It is easy to see that d ,  is indeed a metric on Q since 

c ' I P l ( Z )  - PZ(2)I = 0 - P l b )  = P Z ( 4  

V P I 3 P 2  E Q. 
Z€E,>,U€,,,  

Also the remaining axioms of metric space are easy to ver- 
ify. Metric d, on Q induces same on P/ -, and hence 
(PI -,, d,) is a metric space. We discuss properties of this 
metric space in $5 .2 .  

5.2 Properties of metric space (PI - P :  d,) 

One property of d, is that it  takes only nonnegative integer 
values according to definition of fitness distribution p. We 
state this formally as a remark. 
Remark 5.3 

range(d,) C Z+ U {0] 

Also from (E), 

p'P' = pp V[P]  ,€ P/ No, (1 1) 

which means that we can extend the definition of fitness dis- 
tribution to equivalence classes of populations. 

Note that if Pl -, Pz, then any value of macroscopic 
parameter of population derived from fitness distribution is 
equal for Pl and P2. From (4) all the populations in an 
equivalence class due to -, have the same size. 

Now we prove a important properly of the space (PI -, 
, d o ) ,  which results due to properties of fitness distribution 
of population. 
Theorem 5.4 (Pi -,, d,) is complete. 

Proof To prove that ( P i  -,, d,) is complete, we 
have to prove that every Cauchy sequence defined on P /  -, 
converges. 
Let {Cn} be a Cauchy sequence defined on P/ -, i.e., 

VE > 0,3N = N ( E )  E Z+ 3 

n ,m> N + d , ( C , . C , ) < t .  

Choose E = 1 i.e., 

3 N = N ( 1 ) € Z + 3 V n , r n 2 N ( 1 ) + d p ( C , : C , ) < 1 .  

Since d ,  takes only nonnegative integer values (Re- 
mark 5 . 3 ,  the above statement can be written as, 

3N = N ( 1 )  E Z+ 3 Vn,m 2 N(1) + dp(Cn:Cm) = 0 

i.e., 
C" = c, Vn,m 2 N(1) 
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Thus 
n 2 N(1) =+ C” = C,,,, E P/  N P .  

which proves the convergence of Cauchy sequence {C-} in 

One important property that one would look for in a met- 
ric space is ‘compactness’. But a metric space is compact 
if and only if i t  is complete and totall! bounded [19]. But 
note that (Pi -,,, d,,) need not he a hounded metric space 
since we have not given any hound on the population size 
though we simply assumed that it is finite. Unfortunately, 
even i f  we give a bound on the population size, ( P /  - P :  d,,) 
is hounded hut not totally hounded unless we assume that 
P/ wP is finite because (PI - P !  d,,) is a discrete metric 
space (since d, takes only integer values). We state this as 
a remark. 
Remark 5.5 Metric space (PI  - P .  do)  is conipact tj 
P /  -P isfinife. 

5.3 Convergence of monotone evolutionary process 

Now we give a simple result on convergence of monotone 
evolutionary processes. In the following theorem, we as- 
sume that R is finite, which is a valid assumption for genetic 
algorithms and many other evolutionary algorithms. 
Theorem 5.6 Let R be finite and let {Pn} be a nionotone 
evolutionay process, then {Pn} converges with respect to 
evolutionay criteria p. 

To prove the .result we, have to prove that 
{ [P&]} c P/ -P converges with respect to metric d,,. Since 
{Pn} is a monotone evolutionary process, we have the con- 
dition that [P,] 5 [P,+l], Vn. First we establish conver- 
gence of {[P,,]}. 

P/ -P.  The claim now follows. 

Proof: 

{[P,,]} has finite number of distinct elements. 
Let that set be PSet. 
Since PSet is finite (since R is finite) and { [Pn]} 
is a chain, i t  has a supremum. Let the supre- 
mum be [P*] E P/ N,,. 
[P.] E PSet,  since PSct is finite. 

Let iV E Z’ he the smallest integer such that 

Then 
[ P N ]  = [pel .  

n:m 2 N =+ dp([P,J. [Pm]) = 0 

i.e.; 

Ve > 0,3N = N ( e )  E Z’ 3 

n,m 2 N * dp([Pnl. [pml) < C,  

which implies {[P,]} is Cauchy. 
From Theorem 5.4, {[P”]} converges. 

Now we prove that [Pn] 3 [P.]. 

Note that 

Ve > 0,  n 2 N * d p ( [ P , ] ,  [P*]) = 0 < E. 

The claim follows. 

rn 

6 Conclusion 

In this paper we proposed a new mathematical framework 
to develop theory for evolutionary computation, based on 
the concept called evolutionary criteria. After formalizing 
evolutionary criteria we developed the notion of quotient 
evolutionary space on which we defined evolutionary pro- 
cess. The main characteristic of the proposed mathematical 
abstraction is to transform the objective that is defined on 
search space by fitness function to an objective defined on 
the population space and to measure evolutionary change in 
terms of macroscopic properties of the population. 

The main advantages of the given framework are 
No fixed macro-propertiesof population are assumed; 
the framework is general enough to consider any 
macroscopic properties of population that one would 
be interested in observing. 
Evolutionary process is treated as a strict populational 
concept, by treating unit of evolutionary change as 
population. 
By transforming the goal on the search space to pop- 
ulational space, i t  is easy to understand the evolution- 
ary process. 
Evolutionary process is implicitly treated as an opti- 
mization process. 
To achieve the ohjective on the search space, one can 
design the algorithm in such a way that evolutionary 
process is reinforced towards the ohjective that is in- 
duced on the population space with respect to evolu- 
tionary criteria, at each iteration. 

To demonstrate the abstraction, we have given a detailed 
analysis of fitness distrihution as evolutionary criteria and 
presented the convergence results. 

To develop theories for specific evolutionary algorithms, 
based on.the mathematical abstraction that we proposed in 
this paper, one needs to  explore the best possible evolution- 
ary criteria that can he chosen to analyze the specific algo- 
rithms. The abstract concepts evolutionay criteria and quo- 
tienr evolutionary space we proposed in this paper would be 
useful to develop an unified theory of evolutionary compu- 
tation. 
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Appendix 

A Proof of Theorem 3.2 

Suppose that there is a map [F] which satisfies (7) then 

[Fl“Pl) = j(IFI(IP1)) = j([FI(TdP))) 
= ( j  0 I.F 0 V ) ( P ) .  

From (7), we have 

( j  0 [FI 0 VHP) =+(PI. 

Thus, if it exists, [F] is uniquely determined and it must be 
defined by 

[F]([P]) = F(P) VP E P. (12) 

Now we observe that VPl ~ P, E P 

[PI] = [P2] * PI -y P* *+(PI) = F(P2). (13) 

Thus the map [F] : P /  -y+ F ( P )  is well defined by ( I  2). 
Clearly [F] is on-to; and from ( 1 3 ,  [F] is one-one and 
hence [F] is bijective. 
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