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Abstract-Boltzmann selection is an important selection mech- 
anism in evolutionary algorithms as it has theoretical properties 
which help in theoretical analysis. However, Boltzmann selection 
is not used in practice because a good annealing schedule for 
the ‘inverse temperature’ parameter is lacking. In this paper we 
propose a Cauchy annealing schedule for Boltzmann selection 
scheme based on a hypothesis that selection-strength should 
increase as evolutionary process goes on and distance between two 
selection strengths should decrease for the process to converge. 
To formalize these aspects, we develop formalism for selection 
mechanisms using fitness distributions and give an appropriate 
measure for selection-strength. In this paper, we prove an 
important result, by which we derive an annealing schedule 
called Cauchy annealing schedule. We demonstrate the novelty of 
proposed annealing schedule using simulations in the framework 
of genetic algorithms. 

I. INTRODUCTION 

Selection is a central concept in evolutionary algorithms. 
There are several selection mechanisms in genetic algorithms, 
like proportionate selection, ranking selection, tournament 
selection, truncation selection and Boltzmann selection [l]. 
Among all these selection mechanisms, Boltzmann selection 
has an important place because it has some nice theoretical 
properties in some models of evolutionary algorithms [2 ] .  For 
example, Boltzmann selection is extensively used in statistical 
mechanics theory of evolutionary algorithms [3]-[6]. 

Moreover, Boltzmann selection scheme is not used often 
in solving practical problems because, similar to simulated 
annealing, it needs an annealing schedule for perturbing the 
value of inverse temperature parameter used in Boltzmann 
selection, which is difficult to choose [ 2 ] .  This problem is 
well known from simulated annealing [7], an optimization 
algorithm where noise is introduced by means of a formal 
temperature. Lowering, or “annealing,” the temperature from 
high to low values in the course of the optimization leads to 
improved results compared to an optimization at fixed temper- 
ature [SI. However, there remains the problem of choosing a 
suitable annealing schedule for a given optimization problem. 
The same problem occurs in population-based optimization al- 
gorithms, and this paper address this problem for evolutionary 
algorithms. 

Usually, in evolutionary algorithms, probabilistic selection 
mechanisms are characterized by selection probabilities [9]. 
For a population P = {w,}:Ll. selection probabilities {p;}:L1 
are defined as, 

p;  = F’rob(q E selection(P)lw, t P) Vz = 1.. . n p  , 

and satisfies the condition: p ;  = 1. 
Let {f(w;)}:z9 be the corresponding fitness values. The 

proportionate selection assigns selection probabilities accord- 
ing to the relative fitness of individuals as [lo]: 

Similarly Boltzmann selection is represented as [I I]: 
,7f(w.) 

where y is called inverse temperature. The strength of selec- 
tion is controlled by the parameter y. A higher value of y (low 
temperature) gives a stronger selection, and a lower value of y 
gives a weaker selection. For details of representation of other 
selection mechanisms refer [l], [91, [121. 

Some properties of selection mechanisms that are desirable 
in order to control the search process are [9] :  

The impact of the control parameters on selective pressure 
should be simple and predictable. . One single control parameter for selective pressure is 
preferable. . The range of selective pressure that can be realized 
by varying the control parameter should be as large as 
possible. 

Boltzmann selection satisfies above properties. Boltzmann 
selection gives faster convergence, but without good annealing 
schedule for y. it  might lead to premature convergence. 

In this paper we propose Cauchy criteria for choosing the 
Boltzmann selection schedule. Based on this we derive an 
annealing schedule for the inverse temperature parameter y. 
using a result we proved. Since selection depends only on the 
fitnesses of candidate solutions of population, in this paper we 
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characterize the selection using nornializedfitness distribution 
(normalized fitness distribution is precisely normalization of 
fitness distribution of population) instead of selection proba- 
bilities which are defined for all the members of population. 
We also give a new measure for selection-strength which is 
suitable for the theoretical analysis presented in this paper. 

11, we present 
the formalization of selection methods. We present our main 
results regarding Cauchy criteria for Boltzmann selection 
schedule in 5 111. We present simulation results in 

The outline of the paper is as follows. In 

IV. 

11. A FORMALIZATION OF SELECTION SCHEMES 

A. Definitions 
Let f : $1 + R+U{O} be a fitness function, where R is the 

search space. Let P = {Wk)zzl denote the population. Here 
we assume that the size of population at any time is finite and 
need not be a constant. 

Fitness distribution is an important macroscopic property 
of population. Formal definition of fitness distribution of a 
population is given below 1131. 

Definition 2.1: Fitness distribution of a population P = 
{Wk}zzl is a function p p  : R + Z+ U {o} defined as 

nP 

P p ( Z )  = c b ( z  - f ( w k ) )  , (3) 
k = l  

where 6 : IR * [ O ,  1) is the Kronecker delta function defined 
as b ( z )  = 1 if x = 0, b(z)  = 0 otherwise. 
p p  assigns each x E R, the number of individuals in 
a population P carrying z as the fitness value. The finite 
set of values associated with the fitness distribution which 
are mapped to non-zero values is called support of fitness 
distribution of population. 

DeBnition 2.2: Let p p  be the fitness distribution of popu- 
lation P ,  then ‘support’ of pp is defined as ’ 
For any population P ,  supp(pp) is finite set, since population 
size is finite. We can write size of a population P in terms of 
its fitness distribution p p  as, 

~ ~ p p ( p ‘ )  = Ep(0rEp) = [Z : pP(z)  # 0 )  . (4) 

n P =  P P ( Z )  (5)  
Z E E P  

We now define normalizedfitness distribution (NFD). 
Definition 2.3: Normalized fitness distribution (NFD) of a 

population P = { w t } E 1  with fitness distribution p p  is a 
function ‘pp : R + [0, l] defined as 

‘p (4 = p p ( Z )  - , V X E I R  (6) 
np 

One can see that ‘pp is well defined. From (3, we have 

(7) 

Note that supp(‘pP) = supp(pp) .  Support of a NFD ‘p of 
population P is represented by E,. 

‘The acNal definition of support of pp is {z : p p ( z )  # 0). The overline 
denotes the closure of the set. Since {r : p p ( s )  # 0 )  is finite {I : p p ( s )  # 
0 )  = {% : / ( z )  # 0) 

E. Representation of Selection Schemes Via NFD 

Instead of giving a mechanistic view of selection, we define 
selection as an operator on fitness distribution (hence on NFD). 
For that we need to specify the corresponding space. 

Definition 2.3 gives the definition of “NFD of a population”. 
To define space of all N F D s  we give a generalized definition 
of NFD, similar to the generalized definition of fitness diatri- 
bution given in 1131. 

Definition 2.4: ‘Normalized fitness distribution’ (NFD) is a 
function ‘p : R -t [0,1] which satisfies 

it{z : 4.) # 0 )  < 03 ( i . e . ,  # s w ~ ( v )  < 03) , @a) 

4+) = 1 > (8b) 
z E s V P ( 9 )  

where ti denotes the cardinality of a set. 
From Definition 2.3, one can easily see that every “NFD of a 
population” is indeed an “NFD? Space of all NFDs is denoted 
by U i.e., 

U = {‘p : IR + [o, i] : nsupp(’p)  < cu, ip(z) = 1) 
z E s w P ( 9 )  

(9) 
We define selection as an operator r on the space U i.e., 
r : U + U. At generation k, for a population Pk, with fitness 
distribution pk and population size Nk, Boltzmann selection 
r can be represented in terms of fitness distribution as 

where Nk+1 is the population size after the selection r and 
E = supp(pk). From Definition 2.3, we have 

Hence Boltzmann selection operator r on 0 is defined ;as 

where y E IR+ U {0} corresponds to inverse tempemture. 
Similarly we can define proportionate selection using operator 
rprop as follows: 

Through out this paper we represent Boltzmann selection by 
r unless mentioned otherwise. 
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C. Metric on Spnce of NFDs 111. CAUCHY CRITERIA FOR BOLTZMANN SELECTION 
SCHEME One can view NFD as a probability distribution and one can 

use various distance measures on it. For example, one can use 
Kullback-Leibler distance measure but it is not a metric [141. 
We define a metric d : 0 x 0 + IR according to 

d ( V ' ~ , i p z )  = c l i p l ( X )  - i P z ( X ) l  1 vPI,Lp'2 E , 0 - 0  and is defined as: 

A. Boltzmann Selection Scheme 
pn is popula. 

tion at generation n. We represent corresponding Boltzmann 
selection scheme as {r(=)} where r(,,) is an operator r(,,) : 

Let {pn) be the evolutionary process, 

vn-l (x)e'-" zEE,,UE,, 
(13) v '~ (z )  = r(nl~n-l(~) = 

It is easy to verity that d is indeed a metric on U. 

D. Selection Strength 

CUEE,"-,  ipn-l(Y)e7nU ' 
vx E IR , vn = 1 , 2 , .  . . , (18) 

There have been several variants to m e s u r e  selection where 'f'n E is for the 
strength in evolutionary algorithms. The terminology "selec- {r(n)) and Yn 2 = ', 2 .  ' .. Also 
tion intensity,, or '.selection pressure,. is often used to describe 
this property of selection. 

The concept of "take over time" quantifies selection pressure 
by the number of generations required by repeated application 
of selection, to fill the complete population with copies of 
the single initially best individual 1151, There have been 
some adaptations of definitions from population genetics for 
selection intensity. The change in average fitness of the pop- 
dat ion due to selection is a reasonable measure of selection 
intensity 1161. Also note that several of these measures depend 
on fitness distribution at that instance. Details of selection 
intensity measures can be found in [9], [15], [16]. 

We measure selection strength w.r.t an NFD using the metric 
d as distance between the NFD before the selection after 
selection. k t  r : 0 --t 0 be [he operator. The 
selection strength can be measured as: 

is a non-decreasing sequence since -/,, represents the inverse 
temperature [2]. 

B. Cauchy criteria 
Our Hypothesis for Boltzmann selection schedule is: 

The difference between successive selection pres- 
sures should decrease 's the evolutionary process 
proceeds. 

We formalize above hypothesis as Cauchy criteria for B o k -  
" selection schedule as follows: 

Definition 3.1: A Bolt"nn selection schedule {r(nl} is 
said to satisfy Cauchy criteria if {r(,,)ip} c U is Cauchy 
with respect to metric d, ViP E 0. 
We justify the fact that Cauchy criteria for Boltzmann selection 
schedule captures the hypothesis by the following lemma. 

Lemma 3.2: Let rl and rz be two Boltzmann selection 
operators. Then for any 'p E U, difference between these 

(19) 

(14) selection strengths satisfies 46 rip) = I d 4  - rP(z)I ' 

isv(rl) - sv(rz)i 5 wlP, rz ip)  . * € E ,  

We give the formal definition of selection strength as Proof: From Definition 2.5 we have 
follows. 

with respect to an NFD ~p E 0 is denoted by &(r) and is 
defined as 

(15) 
For example, for proportionate selection the NFD 'p selection 
strength can be measured as: 

Definition 2.5: Selection strength of a selection scheme r isv(rl) - sv(rz)i = I ~ ( P , ~ ~ P )  - d(p,rzv)i . 

d(p, rip) 5 d(pp, rzp) + w l P ,  rzP) , 

From triangular inequality we have 

svm = 4% rip) ' 
which gives 

d w ,  rzlp) 2 d(ip,rlp) - +, r2q) . (20d 

C s E E ,  pP(x) I& - 
d(ip, rFopq) = . (17) Hence decrement in d ( T l q ,  I1zip) results in decrement in the 

difference between selection strengths. From the definition of 
Cauchy sequence justification is clear. 

Note that above criteria is stated in terms of the selection 
operator. Based on this we derive an annealing schedule for 
inverse temperature parameter vn in the next section. 

Pv 

where pv = CzEEv zip(.) is expectation of p. The numerator 
is nothing but mean absolute error of 'p. If one observes (17) 
carefully, it justifies the definition of selection strength as 
d((o, bP). 
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C. Derivafion of Cauchy Annealing Schedule 

We summarize Cauchy criteria for Boltzmann selection 

(CBI) IT,,} is non-decreasing sequence 
(CB2) {17(n)'p} c U IS Cauchy V'p t U 

schedule as: 

For {r(")} to satisfy (CB1) we define 

n 

Yn = , where{gk} C R'UO, V7l = 1 , 2 , .  . . . (21) 
k = l  

Clearly {T,,} is non decreasing sequence. Then Boltzmann 
selection schedule {r(,,)} defined as 

for arbitrary {gk} C R+U{O} satisfies (CB1). Now we derive 
annealing schedule for {yn = Xi=, gk}, for the selection 
schedule {i?(,,)} to satisfy (CB2). First we prove following 
inequality. 

Lemma 3.3: Let {r(n)} be a sequence of Boltzmann selec- 
tion operators defined as in (22) ,  then for any NFD 'p E U, 
we have 

d(r(n)(v),r(m)(v)) 5 (ew(% 2 gk) - 1) 
ZEE,  k=m+l 

whenever n > m and n, m E Z+. 
Proof: Denote 

n 

Cn(s) = ~ ( z )  exp(z gk) Vz E E, . 
k = l  

Then, 

W(")( 'p)>r(m)( 'p) )  = 

I .  Cn(z) - Cm (5) 

= ~ ~ r ( m ) l d J E r ( m , ( d  c I C y E E ,  'n(Y) C y E E -  ',(U) 

Since su.pp(ip) 2 wp(rn(Lp)) U sw(rm(lp)) and 
supp(Cn) = supp('p) V n  we can write 

since for n > m, Cn(s) 2 C,(z), Vz > 0 

We have, 

n 

Hence we can write (23) as 

by Cauchy-Schwartz-Bunyakovsky inequality. 
Since Cm(z) andexp(zC;=;,+, gk)-1 are positive, we have 

n 

(25) 
E 

We now give our main result which gives condition on 
annealing schedule {^(n} for Boltzmann selection to satisfy 
Cauchy criteria. 

Theorem 3.4: Let {r(,,)} be a sequence of Boltzmann 
selection operators defined as in (22). Then, 

1 d(r(n)(p),r(m)(v)) i exp(z gk) - 1 . 
%€E, ( k=m+l 



Now consider d(r'(n)(p), r(m)(p)). With out loss of general- 
ity assume that n > m. From Lemma 3.3 we have 

it is enough if 

n e + l  
Note that E" can be chosen as e" = 
and E" is arbitrary since e' is arbitrary. 
Since e" is arbitrary (32) can be asserted if the sequence 

for a fixed z E E 

w(n)(P)>r(7n)(v)) < e (26) 

Hence it is enough to prove that 

3N = N ( c )  E z+ 3 n,m 2 N * 
(27) 

Now let E,+, = {z~};=~. T < cx? since E,+, is finite. We thus 
have to prove that 

is Cauchy by the definition of Cauchy sequence. 

IV. SIMULATION RESULTS 

A. Choice of { g k }  
3 N = N ( e )  E & 3  n,m 2 N J  

As a specific case, for { g k }  to satisfy (21), we choose 

Sk = go-, (33) 
1 
kU 

(28) 

Now it is enough if we show that 
I 

e where go is any constant and (Y > 1. Since {E:==, &}" is a 
Cauchy sequence for any a > 1 [171, {go &}n is also 

an important role in the annealing schedule (see Figure 1). 

(29) 3Ni = Ni(-) t z+ 3 n,m 2 N, ==+ 
T 

n a Cauchy sequence. In this specific choice of sequence, (Y plays e exp(zi C g k ) - 1 < ; ,  V ~ = I  . . .  T .  

k=m+l 

For N = max{N, : i = 1.. . T }  

n 

n , m > ~ * e x p ( z i  g k ) - l < f ,  V ~ = I  ... r ,  
T k=m+l 

(30) 
which gives us 

n 

n , m > N = + k e e x p ( z i  g k ) - l < k f = e .  T (31) 
i=l k=mtl i=l 

Now to assert (29) it is enough, for a fixed z E E,+,, if we 
have following 

I 
(generations) n 

We' > 0,3N' = N'(e') E Z+ 3 rq m 2 N' j 
Fig. 1. 
defined according to (34) 

Cauchy Annealing Schedules for Different Values of a where 7 is 

Here we give simulation results using the annealing sched- 
Note that e' can be chosen as E' = f. and E' is arbitrary since e arbitrary. Since defined as 
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B. Results 
We discuss the simulations conducted to study the annealing 

schedule for Boltzmann selection proposed in this paper. 
We compare three selection mechanisms viz., proportion- 
ate selection (proponionate), Boltzmann selection with con- 
stant y (Boltmann) and Boltzmann selection with proposed 
Cauchy annealing schedule {y,,} (Cauchy-Boltmann), We 
study multi-variable function optimization in the framework 
of genetic algorithms. Specifically, we use the following 
functions 1161: 

Rastrigin’s function: 
.fe(Z) = 1A + Et=, z: - A c o s ( Z ~ z i ) ,  
where A = 10 ; -5.12 5 z, 5 5.12 
Griewangk’s function: 
.f&) = & - n;=l cos(?) + 1, 
where -600 5 xi 5 600 

j g ( ~ )  2 - 2 o e x p ( - 0 . 2 j / G )  
- exp(+ E:=, cos(~azi))  + 20 + e ,  
where -30 5 z, 5 30 

j7(9 = E:=, -z, s i n t m ) ,  
where -500 _< zi _< 500 

Ackley’s function: 

m Schwefel’s function: 

The  following parameter values have been used in all the 

Each z, is encoded with 5 bits and 1 = 15 i.e search 

- Population size np = 150 
For Boltzmann selection the inverse temperature y = 300. 
For Boltzmann selection with annealing, we vary a = 
1.0001,1.1,1.5,2 and we chose go for each value of oi 
in such a way that, 7100 = 300 where 100 is the total 
number of generations for each process. Figure 2 shows 
the plots of values of Y,, for a = 1.0001,1.1, 1.5,2. 
For all the experiments probability of uniform crossover 
is 0.8 and probability of mutation is below 0.1 
Each simulation is performed 17  times to get the average 
behavior of the process 

experiments: 

space is of size 275 

Fig. 2. T,, for a = 1.0001, 1.1,1.5,2 where is defined according to (34) 

From various simulations we observed that when the prcib- 
lem size is small (for example smaller values of 1) all the 
selection mechanisms perform equally well. Boltzmann sehr -  
tion is effective when we increase the problem size. In the case 
of Boltzmann selection with constant y. one has to increase the 
value of y when the problem size is large. Note that choice of 
parameter oi is very important for Cauchy annealing schedule 
and it depends on the specific problem. Here we have given 
results corresponding to the best values of a. Figures 3,4,5,6, 
show the plots for behavior of the process when averaged over 
multiple runs. Figures 7 and 8 show plots for single run. Our 
simulations showed that Boltzmann selection with the Cauchy 
annealing schedule performs better than other mechanisms. 

V. CONCLUSIONS 

In this paper we derived an annealing schedule for inverse 
temperature parameter in the Boltzmann selection scheme, 
which is based on Cauchy criteria for Boltzmann selection 
schedule. Usage of Cauchy criteria for Boltzmann select.ion 
schedule is justified by the hypothesis: as process goes on 

selection strength should increase, - difference between the selection strengths should de- 

We have given alternative formalism for selection mecha- 
nisms based on the fitness distributions. We have also given 
a new measure for selection strength which is suitable for 
theoretical analysis. 

Using the above formalism, we presented an important 
mathematical result for Boltzmann selection schedule; uiring 
which we derived the annealing schedule. Cauchy annealing 
schedule is a generalized mechanism from which one can 
choose different specific sequences for annealing based on the 
problem at hand. 

Our simulation results justify the hypothesis we presented 
and the utility of techniques we used; they also support 
usage of the mathematical results we presented, in practice. 
We conducted experiments using specific annealing schedule, 
where one can choose the speed of (inverse) annealing. We 
compared our results with algorithms with proportionate: se- 
lection, Boltzmann selection without annealing schedule and 
Boltzmann selection with the proposed annealing schedule. We 
found that with an appropriate choice of speed of annealing, 
algorithms with annealing schedule outperform other methods. 

This analysis does not consider any of the genetic operators. 
Our future work would involve comprehensive analysis which 
leads to more generalized selection schedules based on the 
techniques presented in this paper. 

One important consequence of techniques we developed in 
this paper would be proving convergence of the procers. If 
one can show that the underlying space, for example sgNaces 
of NFDs, is complete (see Appendix for the definition of 
complete metric space), one can conclude the convergence of 
evolutionary process, based on the Cauchy criteria. 

crease. 
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APPENDIX 
METRIC SPACES 

Here we present some basic concepts of metric spaces used 

Let X be any set. A function d : X x X + IR is said to 

I)  d ( z , y ) > O a n d d ( z , y ) = O e z = y  , V z , y e X  

3) d(z,  :y) 5 d(z,  z )  + d(z ,  y) , Vz, y, t E X (Triangular 

in this paper. 

be metric on X if 

2) d(z,:J4) = q Y , z )  , VZ,Y E x 
inequality) 

Example of metric space is IR with I . 1 as a metric. 
A sequence {z,,} is said to be Cauchy sequence if 

V t  > 0,3N = N(€) E z+ 3 
n,m > N =+ d(z,,z,) < t . 

We say metric space ( X , d )  is complete if every Cauchy 
sequence in X converges. 
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