
A Genetic Algorithm Applied to Graph
Problems Involving Subsets of Vertices

 Yaser Alkhalifah Roger L. Wainwright
 Department of Mathematical Department of Mathematical
 and Computer Sciences and Computer Sciences
 University of Tulsa University of Tulsa
 600 South College Avenue 600 South College Avenue
 Tulsa, OK 74104 USA Tulsa, OK 74104 USA
 rogerw@utulsa.edu

Abstract - Many graph problems seek subsets of their vertices
that maximize or minimize objective functions on the vertices.
Among these are the capacitated p-median problem, the
geometric connected dominating set problem, the capacitated
k-center problem, and the traveling tourist problem. Prior
genetic algorithms research in this area applied a simple
mutation of an allele by random replacement. Recently an
enhanced operator called hypermutation was developed,
proving to be very effective for solving the capacitated p-
median problem. We propose a GA with a new heuristic
called the nearest four neighbors heuristic (N4N) for solving
graph problems requiring a subset of vertices It is an
extension of the hypermutation operator. Genetic algorithms
that use each of these three mutation operators (simple,
hypermutation, N4N) are applied to instances of the four
graph-subset problems listed above. Results show that our
N4N heuristic obtained superior results compared to the
hypermutation and the simple mutation operators in every
test case.

I. INTRODUCTION

 There are numerous graph problems where the search
for the optimal solution involves obtaining a subset of the
vertices of a graph to minimize or maximize some
objective function. This paper investigates a genetic
algorithm (GA) using the nearest four neighbors mutation
operator (N4N), designed specifically for solving graph
problems requiring a subset of vertices. The N4N
heuristic is an extension to the hypermutation heuristic
operator developed recently by Correa, et al. [4]. We
applied the N4N mutation operator to four representative
problems involving subsets of vertices: the capacitated p-
median problem, the geometric connected dominating set
problem, the capacitated k-center problem, and the
traveling tourist problem. All four of these problems have
been shown to be NP-hard [3, 8].
 The rest of this paper is organized as follows: Section
II formally describes the capacitated p-median problem,
the geometric connected dominating set problem, the
capacitated k-center problem, and the traveling tourist
problem. In Section III the fitness functions are reviewed
for the four graph problems. In Section IV a genetic
algorithm for graph problems is presented including a
discussion of the simple mutation operator, the

hypermutation heuristic, and our N4N mutation operator.
Section V reports the computational results, and Section
VI gives the conclusions.

II. THE GRAPH PROBLEMS

A. The Capacitated P-Median Problem
 The p-median problem is a facility location problem
which can be applied to telecommunications,
transportation, scheduling, and distribution problems.
Informally, the goal of the p-median problem is to
determine p facilities in a predefined set with n (n > p)
candidate facilities such that the total sum of the Euclidean
distances between each demand point and its nearest
facility is minimized. The p facilities composing a
solution for the problem are called medians. Formally,
assuming all vertices of a graph are potential medians, the
p-median problem can be defined as follows. Let G = (V,
E), be an undirected graph, where V are the vertices and E
are the edges. The goal is to find a set of vertices Vp � V
(median set) with cardinality p, such that the sum of
distances between each remaining vertex in {V-Vp} (the
demand set) and its nearest vertex in Vp is minimized. The
capacitated p-median problem has the additional constraint
that each candidate facility has a fixed capacity, that is
each facility can handle a maximum number of demand
points. Correa et al. [4] describe a real-world application
of the capacitated p-median problem. They describe a
university's admission examination where 26 facilities
must be selected among 43 available facilities. Each
facility has a fixed number of students it can handle to take
the examination. There are 19,710 students and each
student must be assigned to a facility. The 26 facilities are
selected such that the total sum of the distances between
each student's home and the facility assigned to the student
is minimized.

B. Geometric Connected Dominating Set Problem
 The geometric connected dominating set (GCDS)
problem is defined as follows. Given a graph G = (V, E),
find a minimal subset S of vertices, such that the subgraph
induced by S is connected and S forms a dominating set in
G. A dominating set is one in which each vertex of the

graph is either in the dominating set, or adjacent to some
vertex in the dominating set.
 For example, there are a set of cities we want to send a
radio signal to, and each city has a receiver. However,
some cities could have a transmitter as well, and the
transmitter will have a known distance for transmitting a
signal, called the cover length. Given a fixed number of
transmitters, the problem is to determine which cities
should be assigned to a transmitter such that all of the
cities are covered by at least one transmitter, and each
transmitter is covered by another transmitter. The
geometric dominating set problem in graph terms asks for
a minimal subset of vertices with the following property:
each vertex is required to be either in the dominating set,
or adjacent to some vertex in the dominating set. The
problem is to find a connected dominating set of minimum
size, where the graph induced by vertices in the
dominating set is required to be connected [6]. The
geometric connected dominating set problem can be
applied to various wireless communication and network
testing problems [6]. Guha and Khuller [6,7] describe an
approximation algorithm for the geometric connected
dominating set problem. Additional work concerning the
geometric connected dominating set problem can be found
in [5,9,11].

C. The Capacitated K-Center Problem
 The capacitated k-center problem (CKC) is a facility
location problem, where it is required to locate k facilities
in a graph, and assign vertices to these facilities, in order
to minimize the maximum distance from a vertex to the
facility to which it is assigned. In addition, each facility
may be assigned at most L vertices. The capacitated
k-center problem is defined as follows: given an
edge-weighted graph G = (V, E) find a subset S of V with
size at most k such that each vertex in V is "close" to some
vertex in S [8]. Formally, the objective function is defined
as follows in Equation (1):

),(minmaxmin vud
SvVuVS ��� (1)

where d is the distance function.
 As an application, one may wish to install k fire
stations and minimize the maximum distance (response
time) from every location to its closest fire station.
Khuller and Sussmann [8] give an excellent polynomial
time approximation algorithm for the capacitated k-center
problem. For further reading concerning the capacitated
k-center problem see [2,5]

D. The Traveling Tourist Problem
 The traveling tourist problem is defined as follows:
given a graph G = (V, E) find the shortest walk visiting a
subset of vertices, such that each vertex is either visited, or
has at least one of its neighbors visited. For example, the
vertices of the graph could correspond to attractions a
tourist might like to see, and an edge between two vertices
denotes visibility of one attraction from another. The
shortest such walk would guarantee that the tourist sees all

points of interest. This problem is closely related to the
geometric connected dominating set problem. The
difference is that we are not only looking for a connected
subset that covers all of the points, but also we are looking
for the shortest connected subset that cover all the points
[6].

III. FITNESS FUNCTIONS

A. Capacitated p-Median Problem
 Once the medians are selected, each vertex is assigned
to the median that is the nearest one to it. However, since
each median has a fixed capacity, some vertices will have
to be assigned to the second (or third, fourth, ...) nearest
median to it. Once each vertex is assigned, the fitness of a
chromosome can be computed by calculating the sum of
Euclidean distances between each vertex and its assigned
median. The minimum sum is the optimal solution.
 Correa, et al. [4] used the ranking-based selection
method proposed by Mayerle (1996), given by Equation
(2) below:

��

�
�
�

��

�
�
�

�
�

	

�

�

 ���

���

2
)(.411

/)(
2 PPrnd

PjRrRSelect j

 (2)

where R is a list R=(r1,r2, …, rP), with P individuals sorted
in increasing order by fitness value, rnd � [0,1) is a
uniformly-distributed random number. The symbol � � is
the floor function. The formula returns the position in the
list R of the individual to be selected. The formula is
biased to favor the selection of individuals with smaller
fitness values.

B. Geometric Connected Dominating Set Problem
 The fitness evaluation for the geometric connected
dominating set problem needs to differentiate between any
two chromosomes based on the number of points that the
subset covers, and also the number of points in the subset
which are connected. This is because it is possible to find
a solution that covers all of the points, but perhaps not all
of the subset points are connected.
 Therefore, the fitness function we developed for this
problem is shown below in Equation (3):

)2.0()8.0(
1

���

�

YX
fit (3)

where X is the number of points covered in the solution,
and Y is the size of the connected subset. We arrived at
the weighting factors of 0.8 and 0.2 after an extensive
number of runs and trials. This seems to be the "best"
combination of weights for the type and size of problems
we were solving. The weights represent the importance of
the components in the candidate solution. Hence, we are
concerned more about the number of points covered in the
solution (X), than the size of the connected subset, (Y).
These weighted factors can be adjusted depending on the
data set and the type of problem. For example, if we had a

problem in which we do not care about covering all the
points as much as we care about how many points we can
cover, then we can give Y a larger (or equal) weight in the
formula.

C. Capacitated K-Center Problem
 In the capacitated k-center problem, the best solution is
the one with the minimum sum of edges distances. Hence
the fitness function we developed is the summation of the
lengths for all the edges.

D. Traveling Tourist Problem
 In the traveling tourist problem there are two main
factors to consider when determining the fitness function.
First, the number of points that have been covered in the
solution, and secondly the length of the edges of the
connected subset. Hence the fitness function we propose
for this problem is shown below in Equation (4):

X
Yfit 1)10(5

���
�

 (4)

where X is the number of points that have been covered in
the solution, and Y is the sum of the length of the edges of
the connected subset. The smaller the fitness value the
better the solution. The reason we gave Y a small weight
is because we want to cover as many points as possible in
the solution. To differentiate between solutions that cover
the same number of points, we use the length of the
connected subset (Y). If Y is given more weight in the
formula, the GA will try to look for the shortest length for
the subset, ignoring the number of points that have been
covered in the solution.

IV. A GENETIC ALGORITHM FOR
GRAPH PROBLEMS

A. Problem Representation
 The chromosome used for all graph problems is simply
a list of vertices in the subset. In this GA the genome is
interpreted as a set of vertices, in the mathematical sense
of a set. That is, there are no duplicated vertices and there
is no ordering among the vertices. The vertices are
represented as integers in the chromosome, and every
chromosome is the same length. We assume the reader is
familiar with the fundamental concepts of evolutionary
computation and in particular, genetic algorithms. An
excellent introduction to genetic algorithms can be found
in [10].

B. Crossover
 After two parents (chromosomes) have been selected
for crossover, the GA computes two exchange vectors, one
for each parent, as follows. For each gene of parent 1, the
GA checks whether the allele of that gene is also present
(in any position) in parent 2. If not, that allele is copied to
the exchange vector of parent 1. This means that this allele
could be transferred to parent 2 as a result of crossover,
since this transfer would not create any duplicate alleles in
parent 2’s genotype. The same procedure is performed for

each allele in parent 2. For instance, let the two parents be
{1, 2, 3, 4, 5, 6, 7} and {2, 5, 7, 9, 10, 12, 20}. Their
respective exchange vectors are: vp1 = {1, 3, 4, 6} and
vp2 = {9, 10, 12, 20}. Once the alleles that can be
exchanged have been identified, the crossover operator
can be applied.
 Crossover is performed as follows. A random natural
number r, varying from 1 to the number of elements in the
exchange vectors minus 1, is generated. This number r
determines how many alleles of each exchange vector will
be swapped between the two parents. Note this procedure
guarantees that there will be no duplicate alleles in any of
the two children produced by crossover [4].
 Crossover is performed whenever the two parents are
not identical, i.e. whenever there is at least one vertex in
the exchange vectors of parent 1 and parent 2. If the two
parents are identical, (that is, their exchange vectors are
empty), then one of the duplicate parents is reproduced
unaltered for the next generation.

C. Mutation Operators
 The main motivation of this research is the
implementation and comparison of the GA mutation
operators in solving graph problems involving subsets of
vertices. The mutation operators are described below.

1 The Simple Mutation Operator
 The simple mutation operator simply selects one vertex
in the subset of vertices and replaces it with another vertex
randomly selected from vertices not in the subset.

2 Hypermutation Heuristic
 The hypermutation heuristic proposed by Correa, et al.
[4] is described below. This operator starts by randomly
selecting a percentage of the chromosomes of the
population. Correa suggests randomly selecting 10% of
the population. Recall a chromosome represents a subset
of the nodes of the graph problem. The algorithm then
tries to improve the fitness of each of the selected
chromosomes as follows. For each node of the
chromosome, the algorithm tries to replace it with each of
the nodes that are not currently present in the
chromosome. For a given node, the replacement that most
improves the chromosome’s fitness is performed. This is
a computationally expensive operator, since a large
number of fitness functions must be performed each time
it is applied. In precise terms, the hypermutation heuristic
operator is implemented as follows:

Procedure Hypermutation [4]
Step1:
Randomly select a subset of 10% of the
chromosomes from the entire population

Step2:
FOR EACH chromosome X selected in Step1
 DO
 Let H be the set of nodes in the graph that are not
 currently present in chromosome X
 FOR EACH node index "i" included in set H
 DO

 BEST = X
 FOR EACH node index "j" that is currently
 present in chromosome X
 DO
 Let Y be a new chromosome with the set of
 nodes given by: (X - {j}) � {i}
 Calculate the fitness of Y
 If fitness(Y) < fitness(BEST) then BEST = Y
 END FOR
 if fitness(BEST) < fitness(X) then X = BEST
 END FOR
 Insert the new X into the population replacing the old X
 END FOR

 To illustrate the use of the hypermutation operator,
consider a simple graph problem with seven nodes, labeled
{1, 2, 3, 4, 5, 6, 7}, out of which we want to select a subset
of three nodes. Consider a chromosome X, selected to
undergo hypermutation, containing the subset of nodes {1,
3, 6}. The set H is {2, 4, 5, 7}, and initially BEST = X =
{1, 3, 6}. The algorithm first considers node {2} in H, so
that the following new chromosomes are evaluated: {2, 3,
6}, {1, 2, 6} and {1, 3, 2}. Next, the algorithm considers
node {4} in H, so that the following chromosomes are
evaluated: {4, 3, 6}, {1, 4, 6}, {1, 3, 4}. A "running"
BEST is kept considering all options tested. Next node
{5} and then node {7} are considered as the algorithm
marches through H producing respectively the following
additional options to consider: {5, 3, 6}, {1, 5, 6}, {1, 3,
5}, and {7, 3, 6}, {1,7, 6}, {1, 3, 7}. The current value of
BEST from this process replaces the original chromosome
X in the population. This process is performed for each
individual undergoing hypermutation.

3 N4N Heuristic
 We developed an enhancement to the hypermutation
operator, which we call the nearest four neighbors
algorithm (N4N). As described above, the hypermutation
operator takes the entire chromosome and mutates it node
by node with all nodes not included in the chromosome.
Even with the good results that this produces, it wastes a
lot of time calculating all possible solutions, good and bad.
As a response to this observation we developed a modified
algorithm called the nearest four neighbors algorithm
(N4N). The idea behind this new algorithm is motivated
by the question: what if the best solution comes by
mutating a gene with its neighbor, or what if we are in the
right neighborhood of the best solution, but can not reach
the best solution fast enough because we were too busy
looking everywhere else? The N4N algorithm is a local
optimization rather than a global optimization technique.
The main idea is to mutate every gene with only its
neighbors, and not with the entire graph as in the
hypermutation operator. This is a very simple concept, but
proved to be extremely significant in performance. We
tested our algorithm extensively using from one to seven
neighbors. The result of our extensive empirical testing
showed that using four neighbors proved to give
significantly better results compared to using one, two or
three neighbors. Our tests also showed that using five, six
or seven neighbors did not significantly improve the

results over four neighbors. Thus we decided to use four
neighbors. Note for extremely large problems, larger
number of neighbors might prove to be successful. The
N4N algorithm is the same as the hypermutation algorithm
except we only consider mutation with the nearest four
neighbors to a node as defined by Euclidean distance. We
calculate the nearest four neighbors for every vertex in the
graph a priori. The N4N algorithm is in fact a form of a
hybrid optimization. Hybrid optimization techniques are
extremely popular. For a general discussion on hybrid
optimization techniques see [1]. The N4N algorithm is
described below.

Procedure N4N
Step1:
Randomly select a subset of 10% of the
chromosomes from the entire population

Step2:
FOR EACH chromosome X selected in Step1
 DO
 FOR EACH node "i" included in set X
 DO
 BEST = X
 Let H be the set (of up to four) of the neighbors of
 node “i” that are not currently present in
 chromosome X
 FOR EACH node index "j" that is currently
 present in the set H
 DO
 Let Y be a new chromosome with the set of
 nodes given by: (X - {i}) � {j}
 Calculate the fitness of Y
 If fitness(Y) < fitness(BEST) then BEST = Y
 END FOR
 if fitness(BEST) < fitness(X) then X = BEST
 END FOR
 Insert the new X into the population replacing the old X
END FOR

 Note set H is calculated for each node in a
chromosome. For a given node, i, H will contain, among
the four closest neighbors to i, those neighbors that are not
already present in the chromosome. If H is empty, that is,
all four neighbors of a node are already in the
chromosome, then this node is not mutated.

V. COMPUTATIONAL RESULTS

 We developed genetic algorithms for the capacitated p-
median problem, the geometric connected dominating set
problem, the capacitated k-center problem, and the
traveling tourist problem. We used the ranking-based
selection method (described above) for the capacitated p-
median problem, and roulette selection for the other
problems. We used the same crossover operator
(described above) in all problems tested. In each problem
three different mutation operators (as described above)
were applied. In all cases we used a population size of
100 and crossover rate of 0.9. Data sets used to test our
graph problems came from ftp://ftp.zib.de/, specifically

ftp://ftp.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsp/.
Each entry in all four tables in this section depicts the
average results from executing each algorithm ten times.
 Table 1 depicts the results of the geometric connected
dominating set problem, applying the simple mutation
operator, a GA with the hypermutation heuristic, and a GA
with the N4N heuristic on two different datasets. Dataset
1 has 656 nodes with a cover length of 300, and dataset 2
has 318 nodes with a cover length of 400. These datasets
are called d657.tsp and lin318.tsp, respectively in the
above ftp site. Using dataset 1 we tested various subsets
sizes of vertices ranging from 43 down to 39. A solution
for 38 vertices could not be found. The GA with the
simple mutation operator never did find a solution in any
of the cases tested. The GA with hypermutation found a
solution for a subset of 43 and 42 vertices, but nothing
smaller. The N4N algorithm found a solution in every
case, and in addition required significantly less
generations. In dataset 2 the best solution found was 40
vertices. The N4N algorithm found the solution taking on
the average 48 generations, while the GA with the simple
mutation operator and the GA with hypermutation took an
average of 609 and 106 generations, respectively
 Table 2 depicts the results of the capacitated k-center
problem, applying a GA with the simple mutation
operator, a GA with the hypermutation heuristic, and a GA
with the N4N hypermutaton on the same dataset 1 and
dataset 2. In each data set we used k (number of facilities)
= 15, with L (capacity) = 44. As shown in Table 2,
considering both data sets, the N4N hypermutation
algorithm gave superior results (smaller distances).
 Table 3 depicts the results of the traveling tourist
problem, applying a GA with the simple mutation
operator, a GA with the hypermutation heuristic, and the

N4N hypermutaton algorithm on dataset 1 and dataset 2.
In dataset 1 a solution using 51 vertices was found, and in
dataset 2 a solution using 50 vertices was found. As
shown in Table 3, considering both data sets, the N4N
hypermutation algorithm again gave superior results
(smaller distances).
 We tested the capacitated p-median problem using
three large datasets with 15,112, 18,482 and 33,750 nodes
respectively. In each case p = 30, n = 60, and the capacity
is 525, 650, and 1150, respectively. As in previous
examples we ran each algorithm ten times using the GA
with the simple mutation operator, a GA with
hypermutation, and with the N4N heuristic. The results
shown below in Table 4 indicate the average distance over
all executions. Clearly, the N4N heuristic provided
superior results in every instance (smaller distances). As a
time comparison, the GA with hypermutation for the
33,750 size problem ran in six hours, and the GA with the
N4N for the same problem ran in four hours on the same
computer.
 So why does the N4N heuristic perform better than the
hypermutation when the hypermutation is trying all of the
options that the N4N algorithm is trying plus additional
options? Our best conjecture is that it is a combination of
two factors: First speed; considerably more work
(generations) can be done in the same amount of time if
only four neighbors are considered, and in addition these
four neighbors are most likely to produce the best results
anyway. Secondly it is well known among combinatorial
problems that a sequence of locally optimal moves may
not always lead to a global optimal solution. How much
this contributes to the superior performance of N4N is not
known for sure.

.
TABLE 1. GEOMETRIC CONNECTED DOMINATING SET PROBLEM RESULTS WITH THE N4N ALGORITHM
Data
Set Size Chrom.

Length
Cover
Length

GA with
Simple Mutation

GA With
 Hyper-mutation GA With N4N

1 656 43 300 No Solution Solution found
after 70 generations

Solution found
 after 17 generations

1 656 42 300 No Solution Solution found
after 52 generations

 Solution found
after 18 generations

1 656 41 300 No Solution No Solution Solution found
after 248 generations

1 656 40 300 No Solution No Solution Solution found
after 289 generations

1 656 39 300 No Solution No Solution Solution found
after 412 generations

2 318 40 400 Solution found
after 609 generations

 Solution found
after 106 generations

 Solution found
after 48 generations

TABLE 2. CAPACITATED K-CENTER PROBLEM REAULTS WITH THE N4N ALGORITHM
Data
Set Size Chromosome

Length Capacity GA with
Simple Mutation

GA With
Hypermutation

GA With
N4N

1 656 15 44 Length 161,044 Length 159,997 Length 158,725
2 318 15 44 Length 100,674 Length 94,777 Length 90,843

TABLE 3. TRAVELING TOURIST PROBLEM RESULTS WITH THE N4N ALGORITHM
Data
Set Size Chromosome

length
GA with
Simple Mutation

GA With
Hypermutation

GA With
N4N

1 656 51 No Solution Tour length 25,779 Tour length 23,630
2 318 50 Tour length 36,752 Tour length 32,227 Tour length 31,994

TABLE 4. THE CAPACITATED P-MEDIAN RESULTS WITH THE N4N ALGORUTHM
Data
Set Size Chromosome

length Capacity GA with
 Simple Mutation

GA With
Hypermutation

GA With
N4N

1 15,112 30 out of 60 525 57,680 30,064 29,232
2 18,452 30 out of 60 650 14,104 10,407 9,343
3 33,750 30 out of 60 1150 1,189,869 873,047 838,554

VI. CONCLUSIONS

 We implemented the hypermutation heuristic concept
presented by Correa, et al. [4]. The hypermutation
heuristic represents one of the best known heuristics to
date for solving graph problems involving subsets of
vertices. We developed a modification to the
hypermutation heuristic called the nearest four neighbors
(N4N) algorithm. We developed genetic algorithms that
applied the traditional simple mutation operator, the
hypermutation mutation operator, and the N4N mutation
heuristic to four representative graph problems:
capacitated p-median problem, the geometric connected
dominating set problem, the capacitated k-center problem,
and the traveling tourist problem. Results show that our
N4N heuristic obtained superior results compared to the
hypermutation and the simple mutation operators in every
test case.

REFERENCES

 [1] Baeck, T., Fogel, D. and Zbigniew, M., editors,
Handbook of Evolutionary Computation, Chapter D:
Hybrid Approaches, IOP Publishing, 2000.

 [2] Bar-Ilan, J., Kortsarz, G., and Peleg, D. “How to
allocate network centers", J. Algorithms, 15:385-415,
1993.

 [3] Carey, M. R. and Johnson, D. S., "Computers and
Intractability: A guide to the theory of NP-
Completeness", Freeman, San Francisco, 1978.

 [4] Correa, E. S., Steiner, M. T. A., Freitas, A. A.,
Carnieri, C. A Genetic Algorithm for the P-median
Problem In: Genetic and Evolutionary Computation
Conference - GECCO 2001, 2001, San Francisco,
California. Proceedings of the Genetic and
Evolutionary Computation Conference GECCO 2001.
San Francisco, California: Morgan Kaufmann
Publishers, 2001.

 [5] Feige, U. “A threshold of ln n for approximating set-
cover", 28th ACM Symposium on Theory of
Computing, pages 314-318, 1996.

 [6] Guha, S., and Khuller, S., “Approximation algorithms
for connected dominating sets", Proceedings of the
4th Annual European Symposium on Algorithms,
pages 179-193, 1996.

 [7] Guha, S., and Khuller, S., “Improved approximation
algorithms for node weighted Steiner trees",
manuscript,1997.

 [8] Khuller, S., and Sussmann, Y. J. The capacitated k-
center problem. In Proceedings of the ,4th Annual
European Symposium on Algorithms, Lecture Notes
in Computer Science 1136, pages 152-166, Berlin,
Springer, 1996.

 [9] Mata, C. S., and Mitchell, J. S. B. “Approximation
algorithms for geometric tour and network design
problems", Proceedings of the 11th Annual
Symposium on Computational Geometry, pages 360-
369, 1995.

 [10] Mitchell, M. An Introduction to Genetic Algorithms
MIT Press, 1996.

 [11] Slavik, P. “A tight analysis of the greedy algorithm
for set cover", 28th ACM Symposium on Theory of
Computing, pages 435-441, 1996.

	I. INTRODUCTION
	II. THE GRAPH PROBLEMS
	
	A. The Capacitated P-Median Problem
	B. Geometric Connected Dominating Set Problem
	C. The Capacitated K-Center Problem
	D. The Traveling Tourist Problem

	III. FITNESS FUNCTIONS
	
	
	
	A. Capacitated p-Median Problem

	B. Geometric Connected Dominating Set Problem
	C. Capacitated K-Center Problem
	D. Traveling Tourist Problem

	IV. A GENETIC ALGORITHM FOR
	GRAPH PROBLEMS
	
	A. Problem Representation
	B. Crossover
	C. Mutation Operators
	1 The Simple Mutation Operator
	2 Hypermutation Heuristic
	3 N4N Heuristic
	V. COMPUTATIONAL RESULTS

	VI. CONCLUSIONS

