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Abstract— We proposed a new search heuristic using thescuba
diving metaphor. This approach is based on the concept of
evolvability and tends to exploit neutrality in fitness landscape.
Despite the fact that natural evolution does not directly select
for evolvability, the basic idea behind thescuba search heuristic
is to explicitly push the evolvability to increase. The search
process switches between two phases:Conquest-of-the-Waters and
Invasion-of-the-Land. A comparative study of the new algorithm
and standard local search heuristics on the NKq-landscapeshas
shown advantage and limit of the scuba search. To enlighten
qualitative differences between neutral search processes, the
space is changed into a connected graph to visualize the pathways
that the search is likely to follow.

I. I NTRODUCTION

In this paper we propose a novel heuristic calledScuba
Searchthat allows to exploit the neutrality that is existing in
many real-world fitness landscapes.

This section presents the interplay between neutrality in
fitness landscapes and metaheuristics. Section II describes the
Scuba Searchheuristic in detail. In order to illustrate the
efficiency of this heuristic, we use theNKq-landscape as a
model of neutral fitness landscape. This one is developped
in section III. The experiment results are given in section IV
where comparisons are made with standard heuristics. Section
V analyzes the neutral search process of scuba search. We
point out in section VI the shortcoming of the approach
and propose ageneric scuba searchheuristic. Finally, we
summarize our contribution and present plans for future work.

A. Neutrality

The metaphor of ’adaptative landscape’ introduced by
S. Wright [1] has dominated the view of adaptive evolution: an
uphill walk of a population on a mountainous fitness landscape
in which it can get stuck on suboptimal peaks. Results given
by molecular evolution has changed this picture: Kimura [2]
establishes that the overwhelming majority of mutations are
either effectively neutral or lethal and in the latter case purged
by negative selection. This theory is called the theory of
molecular evolution. This theory can help us to revisit the
metaphor of adaptive landscape and define a neutral landscape.
In neutral landscape population can walk on mountain but also
on plateaus (neutral networks). The dynamics of population
evolution is then a metastable evolution as proposed by Gould
and Eldredge [3] characterized by long periods of fitness
stasis (population stated on a ’neutral network’) punctuated
by shorter periods of innovation with rapid fitness increase.

In the field of evolutionary computation, neutrality plays an
important role. Under the assumption that the neutral networks
are nearly isotropic1, Barnett [4] proposes an heuristic adapted
to neutral landscape: theNetcrawler process. It is a random
neutral walk with a mutation mode adapted to local neutrality.
The per-sequence mutation rate is optimized to jump to one
neutral network to another one. When the isotropic assumption
is not verified, for a population based algorithm, Nimwegenet
al. [5] show the population’s limit distribution on the neutral
network is solely determined by the network topology. The
population seeks out the most connected areas of the neutral
network.

In real-world problems as in design of digital circuits
[6][7][8], in evolutionary robotics [9] or in genetic program-
ming [10], neutrality is implicitly embedded in the genotype to
phenotype mapping. Another possibility in evolutionary opti-
mization is to introduce artificial redundancy into the encoding
[11][12]. This may improve the evolvability of genotype or
create neutral paths to escape from suboptimal peaks.

B. Evolvability

Evolvability is defined by Altenberg [13] as ”the ability of
random variations to sometimes produce improvement”. This
concept refers to the efficiency of evolutionary search; it is
based upon the work by Altenberg [14]: ”the ability of an
operator/representation scheme to produce offspring thatare
fitter than their parents”. Smith et al. [15] focus on the ideas
of evolvabilityandneutrality; they plot the average fitness of
offspring over fitness of parents (considering 1-bit mutation
as an operator). As enlighten by Turney [16] the concept of
evolvability is difficult to define. As he puts it: ”ifs ands′ are
equally fit, s is moreevolvablethans′ if the fittest offspring
of s is more likely to be fitter than the fittest offspring ofs′”.
Following this idea we define evolvability as a function (see
section II-B).

II. SCUBA SEARCH

A. The conquest of the waters

Keeping the landscape as a model, fill each area between
two peaks (local optima) with water allow lakes to emerge.
Thus, the landscape is bathed in an uneven sea; areas under
water represent non-viable solutions. So now there are paths
from one peak to the other one for a swimmer. The key, of

1same neutral degree and same probability to jump
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course, remains to locate an attractor which represents the
system’s maximum fitness. In this framework, the problem
is how to cross a lake without global information. We use the
scuba diving metaphor as a guide to present the principles of
the so-calledscuba search(SS). This heuristic is a way to
deal with the problem of crossing between peaks and so avoid
to be trapped in the vicinity of local optima. The problem is
what drives the swimmer from one edge to the opposite edge
of the lake? The classic view is the one of a swimmer drifting
at the surface of a lake. The new metaphor is a scuba diver
seeing theworld above the water surface. We propose a new
heuristic to cross a neutral net getting information above-the-
surface (ie. from fitter points of the neighborhood).

B. Scuba Search Algorithm

Despite the fact that natural evolution does not directly
select for evolvability, there is a dynamic pushing evolvability
to increase [16]. As Dawkins [17] states, ”This is not ordinary
Darwinian selection but it is a kind of high-level analogy
of Darwinian selection”. The basic idea behind theSS
heuristic is to explicitly push evolvability to increase. Before
presenting this search algorithm, we need to introduce a new
type of local optima, thelocal-neutral optima. Indeed with
SS heuristic, local-neutral optima will allow transition from
neutral to adaptive evolution. So evolvability will be locally
optimized.

Given a search spaceS and a fitness functionf defined on
S, some more precise definitions follow.

Definition: A neighborhood structure is a function
V : S → 2S that assigns to everys ∈ S a set of neighbors
V(s) such thats ∈ V(s)

Definition: The evolvability of a solution s is
the function evol that assigns to everys ∈ S the
maximum fitness from the neighborhoodV(s): ∀s ∈ S,
evol(s) = max{f(s

′

) | s
′

∈ V(s)}

Definition: For every fitness functiong, neighborhood
structureW and genotypes, the predicateisLocal is defined
as:
isLocal(s, g,W) = (∀s

′

∈ W(s), g(s
′

) ≤ g(s))

Definition: For everys ∈ S, the neutral setof s is the
set N (s) = {s

′

∈ S | f(s
′

) = f(s)}, and theneutral
neighborhoodof s is the setVn(s) = V(s) ∩N (s)

Definition: For every s ∈ S, the neutral degreeof s,
noted Degn(s), is the number of neutral neighbors ofs,
Degn(s) = #Vn(s)− 1

Definition: A solution s is a local maximum iff
isLocal(s, f,V)

Definition: A solution s is a local-neutral maximumiff
isLocal(s, evol,Vn)

There are two overlapping dynamics during the Scuba
Search process. The first one is identified as a neutral path.
At each step the scuba diving remains under the water surface
driven by the hands-down fitnesses; that is fitter fitness values
reachable from one neutral neighbor. At that time theflatCount
counter is incremented. When the diving reaches a local-
neutral optimum, that is if all the fitnesses reachable from one
neutral neighbor are selectively neutral or disadvantageous,
the neutral path stops and the diving starts up theInvasion-of-
the-Land. Then thegateCountcounter increases. This process
goes along, switching betweenConquest-of-the-Watersand
Invasion-of-the-Land, until a local optimum is reached.

Algorithm 1 Scuba Search
flatCount← 0, gateCount← 0
Choose initial solutions ∈ S
repeat

while not isLocal(s, evol,Vn) do
M = max{evol(s

′

) | s
′

∈ Vn(s)− {s}}
if evol(s) < M then

chooses
′

∈ Vn(s) such thatevol(s
′

) = M

s← s
′

, flatCount← flatCount +1
end if

end while
chooses

′

∈ V(s)− Vn(s) such thatf(s
′

) = evol(s)
s← s

′

, gateCount← gateCount +1
until isLocal(s, f,V)

III. M ODEL OF NEUTRAL LANDSCAPE

In order to study the Scuba Search heuristic we have to
use landscapes with a tunable degree of neutrality. TheNKq

fitness landscapes family proposed by Newmanet al. [18]
has properties of systems undergoing neutral selection such
as RNA sequence-structure maps. It is a generalization of the
NK-landscapes proposed by Kauffman [19] where parameter
K can tune the ruggedness and parameterq the degree of
neutrality of the landscape.

A. Definition

The fitness function of aNKq-landscape is a functionf :
{0, 1}N → [0, 1] defined on binary strings withN loci. Each
locus i represents a gene with two possible alleles,0 or 1.
An ’atom’ with fixed epistasis level is represented by a fitness
componentsfi : {0, 1}K+1 → [0, q − 1] associated to each
locus i. It depends on the allele at locusi and also on the
alleles atK other epistatic loci (K must fall between0 and
N − 1). The fitnessf(x) of x ∈ {0, 1}N is the average of the
values of theN fitness componentsfi:

f(x) =
1

N(q − 1)

N∑

i=1

fi(xi;xi1 , . . . , xiK )

where{i1, . . . , iK} ⊂ {1, . . . , i−1, i+1, . . . , N}. Many ways
have been proposed to choose theK other loci fromN loci in



TABLE I

AVERAGE NEUTRAL DEGREE ONNKq-LANDSCAPE WITHN = 64

PERFORMS ON50000 GENOTYPES

K
q 0 2 4 8 12 16
2 35.00 21.33 16.56 12.39 10.09 8.86
3 21.00 13.29 10.43 7.65 6.21 5.43
4 12.00 6.71 4.30 2.45 1.66 1.24

100 1.00 0.32 0.08 0.00 0.00 0.00

the genotype. Two possibilities are mainly used: adjacent and
random neighborhoods. With an adjacent neighborhood, theK

genes nearest to the locusi are chosen (the genotype is taken
to have periodic boundaries). With a random neighborhood,
the K genes are chosen randomly on the genotype. Each
fitness componentfi is specified by extension, ie an integer
numberyi,(xi;xi1

,...,xiK
) from [0, q−1] is associated with each

element(xi;xi1 , . . . , xiK ) from {0, 1}K+1. Those numbers
are uniformly distributed in the interval[0, q − 1].

B. Properties

The parameters ofNKq-landscape tune ruggedness and
neutrality of the landscape [18][20]. The number of local
optima is link to parameterK. The largest number is obtained
whenK takes its maximum valueN − 1. The neutral degree
(see tab. I) decreases whenq increases and whenK increases.
The maximal degree of neutrality appears whenq takes the
value2.

IV. EXPERIMENT RESULTS

A. Algorithm of Comparison

Three algorithms of comparison are used: two kinds ofHill
Climbing and one heuristic adapted to neutral landscape, the
Netcrawler Process.

1) Hill Climbing: The simplest type of local search is
known asHill Climbing (HC) when trying to maximize a
solution.HC is very good at exploiting the neighborhood; it
always takes what looks best at that time. But this approach has
some problems. The solution found depends from the initial
solution. Most of the time, the found solution is only a local
optima. We start off with a probably suboptimal solution. Then
we look in the neighborhood of that solution to see if there
is something better. If so, we adopt this improved solution as
our current best choice and repeat. If not, we stop assuming
the current solution is good enough (local optimum).

Algorithm 2 Hill Climbing
step← 0
Choose initial solutions ∈ S
repeat

chooses
′

∈ V(s) such thatf(s
′

) = evol(s)
s← s

′

, step← step + 1
until isLocal(s, f,V)

2) Netcrawler Process:We also compareSS to Netcrawler
Process(NC) proposed by Barnett [4]. This is a local search
adapted to fitness landscapes featuring neutral networks2.
Netcrawler uses a mutation per-sequence mutation rate which
is calculated from the neutral degree of neutral networks [4].
In the case ofNKq-landscapes, experimentations and esti-
mations of neutral degree given by [20] yields as mutation
flips only one bit per genotype. The algorithm 3 displays the
Netcrawler process.

Algorithm 3 Netcrawler Process
Require: stepMax> 0

step← 0
Choose initial solutions ∈ S
repeat

chooses
′

∈ V(s) randomly
if f(s) ≤ f(s

′

) then
s← s

′

end if
step← step+1

until stepMax≤ step

3) Hill Climbing Two Steps:Hill Climber can be extended
in many ways.Hill Climber two Step (HC2) exploits a
larger neighborhood of stage 2. The algorithm is nearly the
same asHC. HC2 looks in the extended neighborhood of
stage two of the current solution to see if there is something
better. If so,HC2 adopts the solution in the neighborhood
of stage one which can reach a best solution in the extended
neighborhood. If not,HC2 stop assuming the current solution
is good enough. So,HC2 can avoid more local optimum than
HC. Before presenting the algorithm 4 we must introduce the
following definitions:

Definition: The extended neighborhood structure3 from V
is the functionV2(s) = ∪s1∈V(s)V(s1)

Definition: evol2 is the function that assigns to every
s ∈ S the maximum fitness from the extended neighborhood
V2(s). ∀s ∈ S, evol2(s) = max{f(s

′

)|s
′

∈ V2(s)}

Algorithm 4 Hill Climbing (Two Steps)
step← 0
Choose initial solutions ∈ S
repeat

if evol(s) = evol2(s) then
chooses

′

∈ V(s) such thatf(s
′

) = evol2(s)
else

chooses
′

∈ V(s) such thatevol(s
′

) = evol2(s)
end if
s← s

′

, step← step + 1
until isLocal(s, f,V2)

2More exactly toǫ-correlated fitness landscapes
3Let’s note thatV(s) ⊂ V2(s)



B. Parameters setting

All the four heuristics are applied to a same instance of
NKq fitness landscape4. The search spaceS is {0, 1}N , that
is bit strings of lengthN . In this paper all experiments are led
with N = 64. The selected neighborhood is the classical one-
bit mutation neighborhood:V(s) = {s

′

| Hamming(s
′

, s) ≤
1}. For each triplet of parametersN , K andq, 103 runs were
performed. For netcrawler process, stepMax is set to3005.

C. Average performances

Figure 1 shows the average fitness found respectively by
each of the four heuristics as a function of the epistatic
parameterK for different values of the neutral parameterq.
In the presence of neutrality, according to the average fitness,
Scuba SearchoutperformsHill Climbing, Hill Climbing two
stepsand Netcrawler. Let us note that with high neutrality
(q = 2 andq = 3), difference is still more significant. Without
neutrality (q = 100) all the heuristics are nearly equivalent,
exceptNetcrawler.

The two heuristics adapted to neutral landscape, Scuba
Search and Netcrawler, have on average better fitness value
for q = 2 and q = 3 than hill climbing heuristics. These
heuristics benefit in NKq-landscapes from the neutral paths
to reach the highest peaks.

D. Evaluation cost

Table II shows the number of evaluations for the different
heuristics except for Netcrawler. For this last heuristic the
number of evaluations is constant whateverK and q values
are; and we get the smallest evaluation cost from all the
heuristics (maxStep = 300 evaluations). For all the other
heuristics, the number of evaluations decreases withK. The
evaluation cost decreases as ruggedness increases. ForHC

andHC2, the evaluation cost increases withq. For HC and
HC2, more neutral the landscape is, smaller the evaluation
cost. Conversely, forSS the cost decreases withq. At each
step the number of evaluations isN for HC and N(N−1)

2
for HC2. So, the cost depends on the length of adaptive
walk of HC andHC2 only. The evaluation cost ofHC and
HC2 is low when local optima are nearby (i.e. in rugged
landscapes). ForSS, at each step, the number of evaluations
is (1 + Degn(s))N which decreases with neutrality. So, the
number of evaluations depends both on the number of steps
in SS and on the neutral degree. The evaluation cost ofSS

is high in neutral landscape.

V. A NALYSIS

According to the average fitness found, Scuba Search out-
performs the others heuristics on theNKq fitness landscapes.
However, it should be wondered whether efficiency of Scuba
Search does have with the greatest number of evaluations. The
neutral search process of Netcrawler and Scuba marked by
dissimilarity. We will analyze their own strategy.

4With random neighborhood
5In our experiments netcrawler stops moving before this limit

TABLE II

AVERAGE NUMBER OF EVALUATIONS ONNKq-LANDSCAPE WITHN = 64

K
q 0 2 4 8 12 16

HC 991 961 807 613 491 424
SS 2 35769 23565 15013 8394 5416 3962
HC2 29161 35427 28038 19192 15140 12374
HC 1443 1159 932 694 546 453
SS 3 31689 17129 10662 6099 3973 2799
HC2 42962 37957 29943 20486 15343 12797
HC 1711 1317 1079 761 614 500
SS 4 22293 9342 5153 2601 1581 1095
HC2 52416 44218 34001 22381 18404 14986
HC 2102 1493 1178 832 635 517
SS 100 4175 1804 1352 874 653 526
HC2 63558 52194 37054 24327 18260 15271

A. Exploration neighborhood size

The number of evaluations for Scuba Search is greater
than the one forHC or for Netcrawler. But it lesser than the
one forHC2. This last heuristic realizes a larger exploration
of the neighborhood thanSS: it pays attention to neighbors
with same fitness and all the neighbors of the neighborhood
too. However the average fitness found is less good than
the one found bySS. So, the number of evaluations is not
sufficient to explain good performance ofSS. Whereas there
is premature convergence towards local optima withHC2,
SS realizes a better compromise between exploration and
exploitation by examining neutral neighbors.

B. Neutral search process

Difference between the two neutral heuristics can be ex-
plained analyzing the respective neutral search process.

For Netcrawler, as mutation is uniform on the neighborhood,
the probability of neutral mutation is proportional to the
neutral degree: PneutralMut(s) = Degn(s)

N
. Neutral mutation

depends on the neutral degree only. If a mutation is neutral,no
way is preferred, all the neutral paths have the same probability
to be chosen. The Netcrawler promotesneutral drift.

For Scuba Search, the probability of neutral mutation in-
creases with the neutral degree (see fig. 2); without however
be proportional. This probability is larger forSS than for
Netcrawler and depends on parametersq andK also. Contrary
to our intuition about neutral mutation, the probability of
neutral move decreases as neutrality increases. The probability
of neutral mutation for one given neutral degree increases
with q and K as well. SS performs a neutral move from
genotypes to s

′

if s
′

have a strictly greater evolvability than
s. When neutrality is large, all the neutral neighbors have
a strong probability to have the same evolvability. In other
words, neutral networks are few connected to neutral sets and
then neutral moves are not frequent. When neutrality is a little
more important, evolvability of neutral neighbors become quite
different and thenSS have a larger probability to move while
maintaining the same fitness.

Figure 3 shows the average number of steps (gateCount+
flatCount) and the average number of neutral mutations
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Fig. 1. Average fitness found onNKq-landscapes as function ofK, for N = 64 andq = 2 (a), q = 3 (b), q = 4 (c), q = 100 (d)
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Fig. 2. Probability of neutral mutation for Scuba Search andNetcrawler as a function of neutral degree forN = 64, q = 3 (a) andK = 4 (b)
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Fig. 3. Number of steps (gateCount+ flatCount) and neutral mutations
(flatCount) for Scuba Search Heuristic onNKq-landscape withN = 64
andq = 3 as a function ofK.

(flatCount) as a function of the epistatic parameter K com-
puting by the scuba heuristic. The total number of mutations
(steps) decreases as epistasis (K) increases. The maximum
number of neutral mutations is reached for intermediate degree
of epistasis (K = 4); and then the number of neutral moves
decreases, but as the probability of neutral move increases, the
number of steps decreases faster than the number of neutral
moves. So,SS can keep a high number of neutral mutations.

To enlighten differences between the search processes, we
map the landscape onto a 2-dimensional space. This technique
inspired by Layzeel [21] allows to visualize the pathways
within a search space that a heurictic is likely to follow.
The space is transformed into a connected graph. Vertices are
connected if their Hamming distance from each other is one.
According to the heuristic used,HC, SS orNC, salient edges
are picked out, and the rest discarded. Each genotype (vertice)
is shaded according to its fitness6. This allows to ”see” all the
neutral sets. To illustrateHC, SS, NC, andHC2 potential
dynamics, a small NKq-landscape, with intermediate epistasis
and high neutrality, is considered (N = 5,K = 2, q = 2).

Figure 4 shows all theHill Climbing paths through the
landscape. According to the fitness functionf , each arrow
connects one individual to one of the fittest genotypes in
its neighborhood. We can see eight local optima as well the
corresponding basins of attraction for this landscape.

Figure 5 shows all theScuba Searchpaths. According to the
fitness functionf , each solid arrow connects one individual to
one of the fittest genotypes in its neighborhood. According
to the evolvability functionevol, each dotted arrow connects
one individual to one of the fittest genotypes in its neutral
neighborhood. The choice between neutral path andHC path
is specified by the scuba algorithm (see algorithm 1). There are
two types of change fromHC to SS. First, some new neutral
paths appear (see for example the path from node 8 to node

6In our example, low-fitness genotypes are black
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24). Second, someHC paths can be replaced by a neutral
path (see for instance the new neutral path from node 11 to
node 10). Globally the number of local optima and basins of
attraction tends to reduce (equal to five here).

According to the fitness functionf , each solid arrow in
figure 6 connects one individual to a strict fitter genotype inits
neighborhood and dotted arrows connect two neighbors with
the same fitness. So, aNetcrawler Searchpath is a subgraph
of this graph.

Figure 7 shows all theHill Climbing two stepspaths.
According to the fitness functionf , each solid arrow connects
one individual to genotype as defined in algorithm 4. As might
be expected, compared toHC, the number of local optima
is smaller (equal to five). But our experiments have shown
that coarsely increasing neighborhood size is not sufficient
to improve performance. Comparison betweenHC2 andSS

performances on NKq-landscape suggests that exploiting neu-
trality is a better way to guide search heuristics.
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VI. D ISCUSSION

A. Limit of the Scuba search

The main idea behind Scuba Search heuristic is to try to
explicitly optimize evolvability on a neutral network before
performing a qualitative step using a local search heuristic.
Optimized evolvability needs evolvability not to be constant
on a neutral network. For example in the well-known Royal-
Road landscape, proposed by Mitchell et al. [22], a high
degree of neutrality leads evolvability to be constant on each
neutral network. A way to reduce this drawback is to modify
the neighborhood structureV induced by the choice of per-
sequence mutation rate; for example we could use the per-
sequence mutation rate suggested by Barnett [4].

B. Generic Scuba Search

As previously shown, the evaluation cost ofSS is relatively
large. In oder to reduce this cost, one solution would be to
choose a ”cheaper” definition for evolvability: for example,
the best fitness ofn neighbors randomly chosen or the first
fitness of neighbor which improves the fitness of the current
genotype. Another solution would be to change either the local
search heuristic which optimizes evolvability or the one which

allows jumping to a fitter solution. For instance, we could
use Simulated Annealing [23] or Tabu search [24] to optimize
neutral network then jump to the first improvement meets in
the neighborhood.

More generally, the Scuba Search heuristic could be ex-
tended in three ways:

• evolvability definition,
• local search heuristic to optimize neutral network,
• local search heuristic to jump toward fitter solution.

From these remarks we propose to defined theGeneric Scuba
Search(alg. 5).

Algorithm 5 Generic Scuba Search
flatCount← 0, gateCount← 0
Choose initial solutions ∈ S
repeat

while terminal condition1 not metdo
s← Improve1(s, evol,Vn(s))
flatCount← flatCount + 1

end while
s← Improve2(s, f,V(s))
gateCount← gateCount+1

until terminal condition2 met

VII. C ONCLUSION AND PERSPECTIVES

This paper represents a first step demonstrating the potential
interest in using scuba search heuristic. According to the
average fitness found,SS outperforms hill climbing heuristics
and netcrawler on theNKq fitness landscapes. Comparison
with HC2 algorithm has shown thatSS efficiency does not
have with the number of evaluations only. Mapping the land-
scape onto 2-dimensional space allows qualitative difference
between neutral search processes to emerge.

When neutrality is too high the scuba search stops in the
’middle’ of neutral networks. In future work, we would like to
replace Improve1 heuristic by a tabu search allowing to drift
on neutral networks.

As our implementation uses hill climbing as Improve1 and
Improve2 heuristics,SS is more to be compare to a local
search heuristic without deleterious mutation. Thus usingTabu
Search on neutral landscape it could be useful to replaceHC

by SS. At each iteration of tabu search we choose a new better
solution which is not in the tabu list. This better solution is
a neutral neighbor if its evolvabilty is greater than evolvabilty
of current solution. If not, it is the fittest neighbor.

Performance of heuristics adapted to neutral landscape
depends on the difficulty to optimize neutral networks and
the connectivity between networks. It would be interestingto
have a measure of neutral networks optimization difficulty.
Moreover if we are able to measure the difficulty to jump from
one neutral network to another one then we can compare the
efficiency of neutral exploration.

Last but not least we obviously have to study scuba search
on other problems thanNKq-landscapes, in particular on



real-world fitness landscapes where neutrality already naturaly
exists.
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