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Abstract— The distribution of the Pareto-optimal solutions
often has a clear structure. To adapt evolutionary algorithms to
the structure of a multi-objective optimization problem, either an
adaptive representation or adaptive genetic operators should be
employed. In this paper, we suggest an estimation of distribution
algorithm for solving multi-objective optimization, which is able
to adjust its reproduction process to the problem structure. For
this purpose, a new algorithm called Voronoi-based Estimation of
Distribution Algorithm (VEDA) is proposed. In VEDA, a Voronoi
diagram is used to construct stochastic models, based on which
new offspring will be generated. Empirical comparisons of the
VEDA with other estimation of distribution algorithms (EDAS)
and the popular NSGA-II algorithm are carried out. In addition,
representation of Pareto-optimal solutions using a mathematical
model rather than a solution set is also discussed.

I. INTRODUCTION

The search behavior of evolutionary algorithms (EAS)
strongly depends on the representation and the genetic opera-
tors. The adaptation of the representation and/or the operators
have been very successful for adjusting the search behavior
to the local structure of the search space, examples are the
self-adaptation principle in evolution strategies [21], operator
adaptation in the structure optimization [8] or adaptive repre-
sentations in design optimization [18]. For the area of multi-
objective optimization (MOO), a hybrid representation (HR)
has been proposed to utilize different search behavior in one
algorithm in [15]. The HR showed better performance than
the state-of-the-art multi-objective optimizers. As a natural
extension of the HR algorithm, we consider in this paper
another class of evolutionary algorithms, often known as
Estimation of Distribution Algorithms (EDAS) [12], which are
believed to have the ability to adapt their search distributions
to the problem structure efficiently. The basic idea of EDAs
is to build a stochastic model from the parental distribution
in the parameter space and to generate offspring individuals
by sampling from the model. Thus, crossover and mutation
in standard genetic algorithms are replaced by estimation of
the distribution and offspring generation from the estimated
distribution.

A new algorithm, termed as Voronoi-based estimation of
distribution algorithm (VEDA), will be proposed in this paper.
It is motivated from the observations on the intrinsic interplay
between the distributions in the parameter space and in the
fitness space [14], [15]. The main purpose is to take advantage
of the regularities (problem structure) in MOO by directly

estimating the most appropriate search distribution. In estimat-
ing the search distribution, not only the selected individuals,
but also those that are not selected are taken into account.
The reason is that inferior solutions are also able to provide
useful information for efficient search. This is of particular
importance when fitness evaluations are computationally ex-
pensive. In contrast, other EDAs as well as EAs often neglect
the information contained in the inferior individuals because
only information of selected individual are used to generate
offspring. An illustration is drawn in Figure 1. In the upper-
right figure, only information of selected individuals are used
to generate offspring. Since non-selected (inferior) individuals
are not taken into account, the probability to generate offspring
near inferior individuals is rather high. Our basic idea is to
exploit all available information to overcome this drawback
(see the bottom figures), so that the probability to generate
offspring near inferior individuals is accordingly low.
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Fig. 1. Basic ldea of Voronoi-based Estimation of Distribution Algorithm
(VEDA). All available information are used to generate promising offspring
efficiently. In other evolutionary algorithms (EAS) including other EDAs, only
information from selected individuals are used.

The VEDA employs Voronoi diagrams to generate stochas-
tic models, which cover the parameter space. A \Voronoi
diagram is a method for partitioning a space related to the
nearest-neighbor partition, which can be defined as follows

[7]:



Definition: Voronoi mesh

Given a set S of m data points in ®™, Voronoi mesh is
the partition of R®™ into m polyhedral cells, v(p) (p €
S). Each cell v(p), namely Voronoi mesh of p, is
defined as the set of points in ®™ which are closer
to p than to any other points in S, or more precisely,
v(p) = {z € R"; dist(z,p) < dist(z,q) Vg € S\ p},
where dist is the Euclidean distance.

Clustering techniques [11] have been used to divide the
selected individuals into a number of groups and then one
\oronoi diagram (one model) will be generated for one group.
Meanwhile, principal component analysis (PCA) [10] has
been employed to reduce the dimensionality. Both measures
are very important in higher dimensional cases, where it
becomes more time-consuming to generate stochastic models.
Finally, new offspring will be generated by sampling from the
generated models.

The rest of this paper is organized as follows. Related work
is explained in Section Il. Section Il describes the main steps
of VEDA in detail. The proposed method is tested on several
MOO test functions and the results are shown in Section V.
Finally, a summary of the paper will be given in Section V.

Il. RELATED WORK

Genetic algorithms (GAs) are well known to be powerful
tools to obtain optimal solutions for complex optimization
problems. As a variance of GAs, estimation of distribution
algorithms (EDAS) have recently received considerable atten-
tion [23].

According to recent surveys [12], [20], they can be classified
into three classes according to the interactions in the models,
i.e., no interaction, pairwise interaction and multivariable
interaction. The first class of models does not consider any
epistasis. Thus, each locus can be treated independently. The
second class considers only pairwise dependency. Finally,
models with multivariable interaction are able to take any
type of dependency between variables into account. Since
the model proposed in this paper belongs to the class of
multivariable interaction, some of the popular methods in this
category will be discussed next.

Bayesian Optimization Algorithm

To learn the linkage between parameters and therefore the
structure of the problem, Bayesian networks are used, e.g. in
[13]. With the Bayesian networks, the conditional probability
is approximated. Each node and connection in the Bayesian
networks correspond to the parameters and the conditional
probability, respectively. Finally, the factorized probability is
used to generate offspring. Recently, this method has been
applied to MOO problems [13].

Iterated Density Estimation Evolutionary Algorithm
(IDEA)

Bosman and Thierens have proposed four types of EDAS
that all belong to the class of IDEA [1]. The first one is
for the discrete domain where the conditional probability is
used to build up the stochastic model. The others are for

the continuous domain. A normalized Gaussian, a histogram
method and a kernel method are used to generate stochastic
models. They have mentioned that the use of a mixture
distribution gives a powerful representation of complicated
dependencies. The kernel-based method has been also applied
to MOO, which is termed mixture-based IDEA [22].

Parzen-Based Estimation of Distribution Algorithm

To generate stochastic models, a Parzen estimator is used
to approximate the probability density of solutions [3]. The
Parzen method pursues a non-parametric approach to kernel
density estimation. This method has been used for MOO [3].

Marginal Histogram Model

For each parameter, the search space is divided into small bins
[23]. The ratio of the number of individuals in each bin to the
whole number is assigned as the selection probability. With
this probability, a bin is selected randomly. In the selected
bin, an offspring is generated uniformly. Tsutsui et al. [23]
have also pointed out the problem of an exponentially growing
number of bins in higher dimensional cases.

I1l. VORONOI-BASED ESTIMATION OF DISTRIBUTION
ALGORITHM

In this section, details of the VEDA will be presented. The
basic flow of the VEDA is shown in Figure 2. As pointed out
in [20], construction of the stochastic model and generation
of new offspring from the stochastic model are the two main
issues in EDAs. Therefore, we show more details of these
steps in Figures 3 (a) and (b), respectively.

In Figure 2, a stochastic model will be generated from a
database. If the database does not exist, initial data will be gen-
erated randomly and evaluated. Based on the stochastic model,
new promising individuals will be generated and evaluated.
With the fast ranking method [5], the rank of the individuals
will be calculated. Using the crowded tournament selection
[5], individuals will be selected and stored in the database. The
non-selected individuals will be stored in a different database
as "bad examples”. Note that when new data are added to the
database, the stored rank information can become incorrect
and thus should be updated. The maintenance of the databases
will be explained in Section IlI-F in more detail. If a given
termination condition is met, the VEDA will stop, otherwise
the same procedure will be repeated. In the database, design
parameters, fitness values and ranks are stored.

Figure 3 explains the details of the approach for building
up the model and for generating offspring. To construct
stochastic models, a clustering method [11] is used. In each
cluster, principal component analysis (PCA) [10] is carried
out to reduce the dimensionality and to build up a stochastic
model efficiently. The data points will be projected to a new
coordinate system of a lower dimensionality determined by
PCA. The minimum and maximum value for each axis will
be calculated. Since PCA was carried out, linear dependency
among the design parameters should be minimal. In the new
coordinate system, a Voronoi diagram will be generated as
the stochastic model. Based on the rank of each mesh in



the diagram, the probability for generating offspring will be
calculated for each mesh. To generate a new individual, a
mesh will be selected based on the assigned probability and
a new individual will be generated within the selected mesh
with a uniform probability. Finally, the new individual will be
projected back to the real coordinate system.

Although the Voronoi diagram seems to be similar to the
histogram method, the method is different in the following
aspects: (1) The shape of a mesh in the Voronoi diagram
changes with the distribution of the data. (2) The number
of data points in a mesh will not be counted. Whereas the
histogram method needs a large amount of data in high-
dimensional cases, the Voronoi approach in VEDA requires
only a small amount of data. The reason is that VEDA uses the
rank instead of the number of data points in a mesh to estimate
the probability; (3) A bin without data has a probability of
zero in the histogram method. In contrast, the probability in
the region where no data points exist is approximated using the
nearest data point in a Voronoi diagram. Thus, the probability
of the unexplored region is not always zero.

The model construction and the offspring generation will be
explained in more detail in the following sections. Addition-
ally, maintenance of the databases will be explained in Section
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Fig. 2. The basic flow of VEDA.

A. Clustering

In the VEDA, the selected individuals are grouped into a
number of clusters at first. Local models instead of a global
model will be constructed for each cluster. For this purpose, a
clustering method is needed to group the data. Refer to Figure
4. In this paper, the k-means clustering proposed by MacQueen
[11] has been used. To use the k-means clustering, one has to
determine the value of &, i.e., the number of clusters. In this
paper, the value of & will be determined at random within a
range of [1, 10]. Better performance can be reached when & is
set using some a priori knowledge about the Pareto front in the
parameter space. For example, the number of clusters can be

Generate Model Generate Offspring

|

Select Meshwith
Assigned Praobabilit

[Clustering (k—means)

[Principal Component Analysis|

Pr&){ject Data on
ew Coordinate System
3

Add Perturbation

[Calculate Min—Max Values|

Generate Offspring in
Selected Mesh Uniforml

[Calculate Coordinatein PS]

3
[ Make Voronoi Mesh |

Assign Probabilit

(@) (b)

Fig. 3.  The detailed flow in VEDA. (a) Flow for generating a stochastic
model. (b) Flow for generating offspring.

determined by the number of disconnected pieces of the Pareto
front. This implies that k£ could be equal to 1. However, this
kind of a priori knowledge is often not available in real-world
applications. In simulations, we do not use such knowledge to
allow for a fair comparison with other algorithms.

Globa Model

Local Model

Fig. 4. Three clusters determined by k-means clustering. It is obvious that it
will be easier to identify stochastic models for each of the clusters separately
instead of for the whole data set.

B. Principal Component Analysis

To reduce the dimensionality and to construct models more
efficiently, PCA is used in this paper. Figure 5 shows two
different data sets. If there is epistasis between the variables,
refer to Figure 5 (b), it is reasonable to map them onto a
coordinate system that can minimize the linear correlations,
see Figure 5 (a). Thereby, we can reduce the dimensionality
and build models more efficiently.

C. Perturbation of Offspring Distribution

In real-coded genetic algorithms (RCGAS), e.g. [6], [19],
the PCA or Gram-Schmidt orthogonalization have also been
used. Unimodal normal distribution crossover (UNDX) [19]
and parent-centric recombination (PCX) [6] are examples in
which orthogonalization is used. However, the use of orthog-
onalization in MOO may give rise to problems. In Figure
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Fig. 5. Sample data sets. (a) Data without epistasis. (b) Data with epistasis.

6, the results of UNDX on SCH1! with 50 dimension are
shown?. Clearly, the solution sets are not on the Pareto front.
However, they seem to be on similar curves. Taking a closer
look, we find out the reason for this problem. If all solutions
are on one line in the parameter space, the algorithm loses its
search ability in the orthogonal direction. A rough illustration
is drawn in Figure 7. Since all solutions lie on one line which is
not the Pareto front, all offspring will be generated on this line.
Thus, there is no way to find the Pareto front. This happens in
the VEDA too, which can be regarded as a kind of premature
convergence.

Parameter Space
Principal Axis

! No Search Capability

Pareto Front

Fig. 6.  The results of UNDX on
SCH1 (n = 50) with 30 runs. The
crowded tournament selection is used.
Dotted curve is the Pareto front.

Fig. 7. The search power for the
orthogonal direction will be lost, if
all solutions are on one line.

To avoid this premature convergence, perturbation in the
orthogonal direction® is introduced, see Figure 8 for two
dimensional case. In Figure 8, the “obtained area” is given
by the maximum and the minimum value in each direction.
The widths of the obtained area are 8 and « in the principal
direction and the orthogonal direction, respectively. Basically,
offspring will be generated in this obtained area. However, if
offspring are generated in this area only, the above problem
can occur. Thus, perturbation is introduced. The "obtained
area” is shifted in the orthogonal direction by an offset §
given by § = +£0.25+. The direction, i.e., ”+” or ”-”, is chosen

1Al test functions in this paper can be found in Appendix.

2The used algorithm is NSGA-II proposed in [5]. But, the UNDX is used
instead of simulated binary crossover (SBX).

3In the reduced space, we term the axis with the maximum spread the
principal axis (direction) and the others orthogonal axes (directions).

randomly. Furthermore, the width 3 is enlarged: a = 1.258.
The new "generative area” is given by a times ~y shifted by é.
Although several parameters were introduced and empirically
determined, the performance of VEDA seems to be robust
against these parameters. Thus, we fix these parameters and
leave them unchanged throughout this paper.

Parameter Space  optained Area

Principal Axis

‘«— Generative Area

Fig. 8. Perturbation added in the orthogonal direction and extension in the
principal direction. 8 and -y are the differences between the maximum value
and the minimum value in the principal and the orthogonal direction. § is the
perturbation in the orthogonal direction. « is the extension for the principal
direction.

D. Voronoi-based Stochastic Model

To simplify the generation of the Voronoi diagram, a dis-
crete Voronoi diagram is used, see Figure 9.

The procedure for generating a discrete Voronoi diagram for
a cluster is illustrated in Figure 10. In generating a discrete
diagram, the concerned space is at first divided into a number
of small grids. The number of discretization level in each axis
(in the reduced space), D, is determined as follows:
D, =€ x |N¢|, here, € and |N¢| are a predefined parameter
and the number of data points in a cluster.

tl Voronoi mesh
—— ‘ Discrete Voronoi mesh

Fig. 9. A discrete Voronoi diagram.

One grid contains at most one individual (data point), which
is denoted by a filled circle in the figure. In this step, all
available data points, i.e. selected and non-selected data, are
used. If there is an individual in a grid, its rank is assigned to
the grid. Then, this rank is also assigned to the neighboring
grids in the same row or in the same column. This step is
indicated by 1 in Figure 10. Next, the neighboring grids of the
grids indicated by 1 are also assigned the same rank, which are
now indicated by 2. This procedure continues until all grids
which do not contain a data point are assigned with the rank.
If a grid is in the neighborhood of more than one individual
(data point), the worst rank will be assigned to this grid. All



grids with the same rank is grouped into a mesh, in which
only one individual exists.
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Fig. 10. The sample flow of generation of the Voronoi diagram. The thicker
lines show the boundary of the Voronoi meshes. Each square is a grid.

E. Generate Offspring

In the previous subsection, all meshes in the Voronoi dia-
gram are assigned a rank. With the assigned rank, the selection
probability can be calculated. To calculate the selection prob-
ability P, the geometry distribution is used. Mathematically,
the geometry distribution is calculated as follows:

P = Pg(1 — Pg)"1, here, Pg and r are the given value in
the range [0.0,1.0] and the rank, respectively.

For P = 0.2,0.5,0.8, the geometry distributions are shown
in Figure 11. In this paper, P = 0.8 is used. To generate
offspring, a mesh is randomly selected according to the above
selection probability first. In the selected mesh, an offspring
is generated with a uniform probability. This is repeated until
all offspring have been generated.

Probability

5 6
Rank

Fig. 11. Geometry Distribution with Pg = 0.2,0.5,0.8.

F. Database Maintenance

In VEDA, a fast ranking method, namely, non-dominated
sorting proposed by Deb et al. [5] is used. Even with this
method, an increase in the number of data results in expensive
computational cost to evaluate the rank of all data in the
databases. To avoid this increase, we take the following
measure: Two databases are prepared in VEDA: one is for
storing promising data namely G-database; the other is for
non-promising data namely B-database. The number of data
in the G-database is the number of individuals in a population,
. This means that only the number of data in the B-database

is increasing during an optimization. In the beginning, the G-
database is empty. Thereafter, u parents and p offspring are
stored in the G-database, i.e. the number of data is 2u. The
non-dominated sorting method is carried out for 2u data. The
best u data can stay in the G-database. The worst u data move
to the B-database. In the B-database, all data are assigned the
same rank which is the worst rank increased by one in the G-
database, so that all data in the B-database have worse rank
than the ones in the G-database.

IV. SIMULATION RESULTS
A. Comparison of VEDA with NSGA-II

The proposed method is tested on SCH1 (n = 2,5), FON2
(n = 2,5) and OKA4 (n = 2). For a comparison, NSGA-I1I
proposed in [5] is also tested. The used parameters are shown
in Table I. In many real-world applications, only a limited
number of fitness evaluations can be carried out. Thus, only
1000 fitness evaluations are allowed in the simulation. In Table
I, the e corresponds to the accuracy of a model. To reduce the
computational cost for n = 5, the accuracy is reduced from
e =1.01t0 0.5.

TABLE |
PARAMETERS USED HERE.
VEDA
Parameter Value
Number of Data 100
Population size 100

Maximum iterations | 10

Parameter 1.0 forn =2

(See Section I11-D) 05forn=75
NSGA-II

Population size 100

Maximum iterations | 10

Coding Gray coding
Crossover One-point crossover
Crossover rate 0.9

Mutation (GA) Bit flip

Mutation rate (GA) | 0.01

Number of bits per 20
a design parameter

In order to give an impression of the generated models,
the models for OKA4 (in the parameter space) in the first
generation and the fifth generation are shown in Figure 12.
The color corresponds to the rank, i.e., the darker the color,
the higher the rank. Clearly, the generated model has a higher
probability near the Pareto front in the parameter space.

The results of SCH1, FON2 and OKA4 are shown in Figure
13. Since OKA4 is designed with a non-linear Pareto front in
the parameter space [17], the solutions in the parameter space
on OKA4 are also shown in Figure 14.

In the figures, all parents are plotted. Since many parent
individuals in NSGA-11 have not converged to the shown area
within 10 generations, the number of individuals seems to be
smaller than VEDA. On test functions SCH1 and FON2 with a
dimension of 2, the difference in performance between NSGA-
Il and VEDA is minor, although VEDA seems to perform a bit
better than NSGA-I1. On test functions SCH1 and FON2 with
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Fig. 12. Generated stochastic models for OKA4 in the parameter space. The
Pareto front is 2 = z1 + 4\/z1 + 4.

a dimension of 5, the performance of both is not sufficient.
However, VEDA shows a better performance than NSGA-II.
On the OKA4, the difference is more obvious. VEDA achieves
almost a complete Pareto front but NSGA-II does not. From
these results, VEDA shows better performance than NSGA-II
when only a limited number of fitness evaluations is allowed.
This indicates that VEDA is very promising for solving real-
world optimization problems where only a limited number of
fitness evaluations can be afforded, see e.g. [16].

B. Comparison of VEDA with Other EDAs for MOO

We compare VEDA with two EDAs for MOO, the
mixture-based iterated density estimation evolutionary algo-
rithm (MIDEA) [22] and the Parzen-based EDA (PEDA) [3].
Since both of them have used the same test functions, we use
these test functions for the comparison. Since MIDEA [22]
did not show a sufficiently good quality on ZDT4 (n = 10),
ZDT4 is not used. The maximum number of iterations is set
as shown in Table Il. In VEDA, the numbers of initial data
and offspring are 100 and the value of ¢ is 1.0 for FON2 and
KUR1 and 0.1 for DEBA4.

TABLE I
MAXIMUM NUMBER OF ITERATIONS. SEE [22] FOR MIDEA AND [3] FOR
PEDA.
Method FON2 (n =3) | KUR1 (n = 3) | DEB4 (n = 10)
MIDEA [22] 3754 10762 8426
PEDA [3] 3100 11000 8300
VEDA 1000 5000 8300

The results of VEDA are shown in Figure 15. By comparison
with the results reported in [3], [22], one can conclude that
the performance of VEDA with fewer fitness evaluations is
similar to MIDEA and PEDA on FON2 and KURL. But
VEDA is inferior to them on DEB4. Taking a closer look, it is
found that VEDA generated many infeasible solutions in the
DEB4 function. Since the current VEDA has no restrictions
in perturbing the orthogonal direction, VEDA is very likely to
generate offspring in the infeasible region where the variables
are smaller than zero. By adding additional constraints in
perturbation, the performance could be improved.
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Fig. 13. The results in the fitness space by VEDA and NSGA-II. Only 1000
fitness evaluations are allowed.

C. Modeling Pareto Front with VEDA

In the literature, most MOO methods output a set of
solutions to represent the Pareto front. It is argued that this
is not the best representation because the structure of the
Pareto-optimal solutions is completely lost [9]. To address this
problem, a new way to represent Pareto optimal solutions is
suggested by modeling Pareto-optimal solutions using piece-
wise linear functions in the parameter space in [9]. Since the
Pareto front in the parameter space of most MOO problems
has a simple structure, it is possible to improve the accuracy
by modeling the Pareto-optimal solutions.

One of the implicit characteristics of VEDA is the availabil-
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Fig. 15. Comparison of VEDA with the literature [3], [22].

ity of a mathematical description instead of just a solution set.
Since VEDA uses the PCA and the maximum and minimum
values in each axis, VEDA can output a model for representing
the Pareto-optimal solutions. As an example, the parameters of
the mathematical model obtained by VEDA on SCH1 (n = 2)
are given in Table I11 and its graphical description is shown in
Figure 16. In the figure, the dotted line is the Pareto front in the
parameter space. The principal axis shows the gradient of the
solution set and the minimum and maximum values indicate
the range of the solution distribution. Since the true Pareto
front of SCH1 in the parameter space is z2 = z1, z1 € [0,2],
the VEDA seems to be successful in obtaining a mathematical
description of the Pareto-optimal solutions.

TABLE 111
MATHEMATICAL OUTPUT OF VEDA.

0.701764, 0.712410}
0.712410, —0.701764}

Principal Axis
Orthogonal Axis

Minimum Value in Principal Axis —0.042017
Maximum Value in Principal Axis 2.841821
Minimum Value in Orthogonal Axis | —0.166802
Maximum Value in Orthogonal Axis | 0.208333

35 o o0s 1 15 2 25
x1

Fig. 16.  Graphical output of VEDA. The solid rectangle is the output of
VEDA. The dotted line is the true Pareto front in the parameter space.

V. SUMMARY

In this paper, a Voronoi-based estimation of distribution
algorithm (VEDA) has been proposed for solving MOO prob-
lems. In VEDA, the offspring distribution in terms of ranking
is directly used to generate new individuals. Information from
not only the selected individuals but also from those that
are not selected is included in the model. Using the concept
of Voronoi mesh, a stochastic model is constructed and the
promising solutions are generated according to the model. The
performance of VEDA has been compared with the NSGA-II
on several test functions. It is shown that the performance
of VEDA is better than NSGA-II when a limited number
of fitness evaluations is allowed. This implies that VEDA is
very promising for solving real-world problems where fitness
evaluations are very time-consuming.

Although VEDA shows good performance on several test
functions, a drawback of VEDA as well as other EDAS is
that the computational complexity increases rapidly with the
increase of the dimensionality. In addition, proper constraints
should be included in perturbing the orthogonal search di-
rection. In the next step, we would also like to verify the
performance of VEGA for real-world applications.
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APPENDIX

Test functions used in this paper are as follows:

SCHL1 test function

1
fi==) =}
n
i=1
1 n
fa== (z; —2)2
n
i=1
z; €[—4,4], (i=1,2,..,n). @)

Pareto front in the fitness space

fr=fi-4/fi+4, 0<f <4 @
Pareto front in the parameter space
0<z <2 )

1 =22 = ... = Tn,

FON2 test function

1 2
for e (<3 (- L)
n
i=1
fo=1—exp | — (zi—l—— ,
n
=1
—4<z;<4, (i=1,2,..,n). (4)

Pareto front in the fitness space

fo=1-— 1= exp{4\/—log(1—f1)}

84
0<fi<l—e ™ ®)
Pareto front in the parameter space
1 1
Il = T2 = oo = T, 7%S$1S%. (6)
o OKAA4 test function
1
1 = 271(.1:1*:624-4)
1
+ Z\/fw% ,wg — 16 + 2z122 + 8x1 + 8z2
1
fo = Z(:cl —z2 +4)
1
=+ Z\/—m% —mg — 16 + 2z122 + 81 + 82
subject to
1 —4/z1+4< 22 <z1+4yz1+4
0< 21,22 <8. @)
Pareto front in the fitness space
fa=2-fi, 2-2V2< fi,f2 <2V2. ®)
Pareto front in the parameter space
o =21 421 +4, 0< 21,220 <8. 9)
e KURL test function
n—1
fi= Z <710 exp (70.2\ /w? + w?+1))
i=1
f2 = Z (|zi|0'8 + 5sin(.1:i)3)
i=1
z; €[-5,5], (i=1,2,..,n). (10)
See [2], [4] for the Pareto front in the fitness and parameter space.
« DEB4 test function
f1 =1 —exp(—4z;)sin* (57z1)
f2 = g(@)h (f1(=), 9(2))
_J 1=(f1/(Bg)* if f1<Bg
h(@see) = e
g(z) =1+ 1022, a=4.0, =1.0
0.0 <z; <1.0. (11)
Pareto front in the fitness space
fa=1—ff, 0.3242* < f1 <1. 12)
*. Obtained empirically.
Pareto front in the parameter space
z2 =0, 0<z; <1. (13)



