
An Investigation of an Evolutionary
Approach to the Opening of Go

Graham Kendall, Razali Yaakob
School of Computer Science and IT

University of Nottingham, UK
{gxk|rby}@cs.nott.ac.uk

Philip Hingston
School of Computer and Information Science

Edith Cowan University, WA, Australia
p.hingston@ecu.edu.au

Abstract – The game of Go can be divided into three stages;

the opening, the middle, and the end game. In this paper,
evolutionary neural networks, evolved via an evolutionary
strategy, are used to develop opening game playing strategies
for the game. Go is typically played on one of three different
board sizes, i.e., 9x9, 13x13 and 19x19. A 19x19 board is the
standard size for tournament play but 9x9 and 13x13 boards
are usually used by less-experienced players or for faster
games. This paper focuses on the opening, using a 13x13
board. A feed forward neural network player is played against
a static player (Gondo), for the first 30 moves. Then Gondo
takes the part of both players to play out the remainder of the
game. Two experiments are presented which indicate that
learning is taking place.

I. INTRODUCTION

Go is an ancient game, which originated in China at
least 2000 years ago and was known originally as Weiqi
[1]. The name Go came from the shortened Japanese word
Igo. Automated Go programs began appearing in the 1970s
[2] and 1980s [3, 4, 5, 6]. Since that time, Go has been the
subject of research areas such as machine learning [7, 8,
9], cognitive science [10], and evolutionary computing
[11, 12], but automated Go programs are still far from the
standard of human experts [13].

The games of Go, chess, and checkers are similar, in
that they are finite, perfect information games, played
between two players. One of the best-known chess
programs, Deep Blue [14], achieved world champion
status when, in 1997, it beat Garry Kasparov by a score of
3.5-2.5. Utilising custom-built hardware [15], Deep Blue
executed sophisticated search algorithms to analyse up to
200 million positions per second.

Chinook, a checkers program, developed by Jonathan
Schaeffer’s team at The University of Alberta won the
world checkers title in 1994 [16, 17]. Chinook used an
opening, and endgame database and an extensive checkers
knowledge base.

Chellapilla and Fogel [18], also considered checkers,
developing Blondie24 - a checkers player, which learned
its strategy using a co-evolutionary approach. The current
board position in Blondie24 is evaluated using an artificial
neural network with the weights of the network being
evolved via an evolutionary strategy. The output of the
network is used in a minimax search. Blondie24 was not
provided with any domain knowledge. It received points
based on whether it won, lost, or drew games and was not

even told how it had performed in each individual game.
The conclusion of Fogel and Chellapilla is that, without
any expert knowledge, a program can learn to play a game
at an expert level using a co-evolutionary approach.
Additional information about this work can be found in
[19, 20, 21, 22].

Go is considered more complex than chess or checkers.
One measure of this complexity is the number of positions
that can be reached from the starting position which Bouzy
and Cazenave estimate to be 10160 [23]. Chess and
checkers are about 1050 and 1017, respectively [23].

The size of the search space is the primary reason why a
good automated Go player is difficult to produce. To
reduce the search space, the board can be scaled down
either by reducing the board size or by dividing the board
into sub-boards (decomposition). These techniques can
reduce the computational effort required for playing the
game, which is one of the main constraints in producing an
effective automated Go player. The early work for small
boards can be found in [24, 25] and decomposition
approaches are reported in [26].

The game of Go can be divided into three general
phases: the opening game, the middle game, and the
endgame [27]. Researchers have applied a variety of
techniques to the middle game, which is considered the
most difficult – yet important – phase [27]. However,
Ishigure [28] states that the opening game is the most
important phase. In order to make territory, the best place
to move is in a corner and the least valuable moves are
those in the centre of the board. The number of plays in the
opening is not predetermined [28]. Aggressive player may
start to attack the opponent (thus entering the middle
game) just a few turns after the start of the game, whilst
other openings may last longer.

Playing just the opening is the approach we adopt here.
In this paper, we are not attempting to reduce the size of
the search space or incorporate any Go knowledge. The
objective of this research is to investigate a population of
evolutionary neural networks, which play the opening of
Go and compete to survive to the next generation. A
feedforward neural network player is played against a
static player, Gondo (written by Jeffrey Greenberg [29]).
We play against Gondo for the first 30 turns (15 turns for
each player). At that time Gondo takes the part of both
players and plays out the remainder of the game to

determine the outcome. An evolutionary strategy is used to
evolve the networks. We use a 13x13 board.

Previous authors have investigated evolving neural
networks to play Go. Richard et al. evolved neural
networks using the SANE1 (Symbiotic, Adaptive Neuro-
Evolution [30]) method [27]. Board sizes of 5x5, 7x7, and
9x9 were used in evolving networks to play on small
boards against a simple computer opponent called Wally2.
Each intersection on the board has two input units and one
output unit. Any positive output indicates a good move, the
larger the value, the better the move. If none of its outputs
is positive, the network will pass its turn. SANE required
20 generations to defeat Wally on a 5x5 board, 50
generations on a 7x7 board, and on a 9x9 board, 260
generations were needed. Donelly et al. also evolved
neural networks via self-play [31].

Other researchers have used neural networks to learn to
play Go using machine learning methods such as
supervised learning (training on moves from professional
games) [32] and reinforcement learning [33, 34].

Yen et al. took a different approach to learning to play
Go openings with Jimmy 4.0, which has been ranked 4
kyu3 when they adopted 100 questions from Go books to
test the rank of their opening game [35]. Jimmy plays the
opening stage by trying to occupy the corners (called
joseki - a series of standard moves in corners or sometimes
on edges), extending the edges, and dealing with Moyo
(large potential territories). Pattern matching techniques
are used to occupy the corners and generate the Moyo
moves. In extending the edges, two techniques are used.
Pattern matching generates moves near the existing stones
on the board. A “split” method places a stone equidistant
between two stones, which are near opposite corners.

For an excellent review of the state of the art in
computer Go programming, we recommend Müller [36]
and as a starting point for further reading, Enzenberger’s
online bibliography [37]. Other reviews focussing on AI
approaches may be found in [38, 39].

II. RULES OF GO

The aim of Go is to gain as much territory as possible.
Players will try to capture an opponent’s stones and also
define areas as their own territory. At the end of the game,
the winner will be identified by counting territories using
one of two scoring methods; territory scoring or area
scoring. Japanese rules use territory scoring. Surrounded
territory is counted, plus the number of captured opponent
stones. In area scoring, used when playing under Chinese
rules, surrounded territory will be counted plus the live
stones on the board. We follow the Japanese scoring
method.

1 For more details about SANE, please refer to [30]. The source code is

available from www.cs.utexas.edu/users/nn/.
2 A simple Go program written by Bill Newman.
3 Human Go players are ranked by kyu (student) and dan (master). Players

start at high kyu grades of 20 or more, and progress towards 1 kyu and
then progress onto the lowest master grade of 1 dan and work upwards.

Differences in playing strength can be balanced by a
handicap system, which allows the Black player to place
several stones on the board before the start of the game.

Go is played between two players, Black and White.
The game starts with an empty board. Stones are placed
on any empty intersection on the board with players
making alternate moves. Black plays first. Go players can
pass their turn at any time but consecutive passes ends the
game.

A stone on an intersection has a set of liberties (empty
intersections next to a stone). Figure 1a shows a white
stone with four liberties. When the opponent places a stone
on any neighbouring intersection, white will lose one
liberty. In Figure 1b, black stones surround the white
stone, which means white has no liberties and is captured
and removed from the board (Figure 1c). This territory
now belongs to black.

 (a) (b) (c)

Figure 1: (a) White stone has 4 liberties, (b) Black stones are
surrounding a white stone, (c) White stone has been removed and
the black player gets 1 point of territory.

Placing a stone that does not make a capture, and has no

liberties, is illegal. For example, the white player cannot
place a stone in the centre of black territory in Figure 1c.
Placing a stone that results in a repeating position seen
after the same player’s previous play is also illegal. This is
called the ko-rule.

Figure 2a shows a marked white stone that has only one
liberty. Black captures the marked white stone by playing
at position k. After the marked white stone has been
removed from the board, the white player cannot place a
stone on r, Figure 2b, before the board position has
changed (i.e. white must play on another intersection
before being able to place a stone on r).

 k r

(b) (a)
Figure 2: Repeating position.

Figure 3a shows a string, which is when a number of

stones of the same colour are connected along edges or a
set of connected stones. White’s string in Figure 3a,
excluding a stone marked with 1, has eight liberties. To

capture the string, black stones must surround it until the
string has no liberties (Figure 3b). Figure 3c shows the
position once the white stones have been removed from the
board. The black player now has four points of territory.

Figure 3: (a) String of white stones excluding stone 1, (b) String
had been captured by opponent stones, (c) String of white stone
have been removed from the board.

When a string surrounds one or more empty

intersections, it will form eyes. Figure 4a shows an eye, E,
and Figure 4b shows two eyes, E and F for a white string.
To be captured, the string must first be surrounded by the
opponent and then the eye filled. Single eyes can be
captured but two eyes cannot be captured because black
player cannot place a stone either on E or F. If black tries
to place a stone in E, it is forbidden because each white
stone still has one liberty, i.e., F, and vice versa. Any
string is considered to be dead if there is no way to stop it
from being captured or considered alive if the opponent
cannot capture it. The white stones in Figure 4b are alive.

Figure 4: Eyes in Go.

Of course, the game of Go has many strategic elements
and good introductions can be found in [40, 41].

III. METHOD

We instantiate a population of neural networks and each
one plays against a static player (Gondo) for the first 15

turns (30 turns in total). After this time, the current
position for the neural network player is copied to another
version of Gondo and it plays against itself until end of the
game. Figure 5 shows the structure for our evolving
system.

 1 1

Gondo Neural Network

NN plays against
Gondo for the first 30
turns of the game

Figure 5: Go, evolutionary model.

Each intersection on the board is represented by –1, 0,

or +1 which indicates a black stone, an empty intersection
or a white stone respectively. An evaluation function is
structured as a feed forward neural network, which is used
to evaluate the current board position. A hyperbolic
tangent (tanh, bounded by ±1) function is chosen as a non-
linear function for each hidden and output node.

At the end of each game, the difference in score
between the neural network player and Gondo will be used
as a fitness for that neural network player. At the end of
each generation, players will be sorted in descending order
according to their fitness. Half the players, those with the
highest fitness, are selected and survive to the next
generation. Copies of these players are mutated to create
the new population.

Two experiments are presented. Firstly, a Go program
that uses a minimax search tree as a look ahead to predict
possible moves, and secondly, a Go program that does not
use minimax as a look ahead. The methods used in this
research are inspired from [18, 19, 20, 21, 22], with some
minor modifications.

A. Neural Network with Minimax

In the first experiment, a feed-forward neural network is
used to evaluate the current board position and a minimax
search tree is used to look ahead two-ply. The neural
network consists of 169 input nodes (i.e the intersections
on a 13x13 board), 55 hidden nodes, and an output node.
The number of hidden nodes (55) was chosen to be about
one third of the number of input nodes. This appears to be
a good rule of thumb in the absence of any other data.
Figure 6 shows this architecture.

(a) (b) After 30 turns, Gondo
plays against itself until
the end of the game 1

Gondo Gondo

(c)

E E F

(a) (b)

Sample of 3x3
intersection

Sample of 5x5
intersection

Figure 6: A structure of the feed-forward neural network.

The algorithm for this first experiment is as follows:

1. Build a search tree to two-ply, starting from the current
board position.

2. Assign a value to the leaf nodes using the output of the
neural network.

3. Propagate the values to the root of the tree (using
minimax and alpha-beta pruning)

4. Choose the best move.

B. Spatial Neural Network without Minimax

In a second experiment, we do not use a minimax search

tree. Three-layer, feed-forward neural networks are used.
The networks have 169 nodes in the input layer, 286 and
95 nodes in the first and second hidden layer respectively.
The networks have a single output node. The first and
second hidden layers, and the output node are fully
connected.

The first hidden layer is structured to cover m x m
overlapping subsections of the board, i.e. 3x3, 5x5, 7x7,
9x9, 11x11, and 13x13 (full board). The 3x3 subsections
provides input to the first 121 neurons in the first hidden
layer; it is followed with 81 neurons from the 5x5
subsections, and so on to one subsection of the 13x13
board. These resulted a total node for the first hidden layer
is 286 and the total node for the second hidden layer is
about one third of the first hidden layer.

Figure 7 shows an example of overlapping 3x3 and 5x5
subsections. This idea of using spatial information is taken
from Fogel’s work on the co-evolution of a checkers
player [22].

Figure 8 shows a spatial neural network with a part of
subsection from Figure 7. Node p in the first hidden layer
will receive inputs from intersections indexed 0a, 0b, 0c,
1a, 1b, 1c, 2a, 2b, and 2c (9 intersections from one 3x3
subsection), and their associated weights. Node q then will
receive inputs from intersections indexed 0b, 0c, 0d, 1b,
1c, 1d, 2b, 2c and 2d, and their associated weights.

 .
.
. .

Figure 7: Example of 3x3 and 5x5 subsection intersection.

Figure 8: The architecture of the “spatial” neural network with
example connections for a 3x3 subsection intersection.

The algorithm for the second experiment is given below:

1. Place a stone on any available and legal intersection.
2. The current board state is input to the neural network,

which outputs a value.

0a
0b
0c
0d
0e
…
1a
1b
1c
1d
1e
…
2a
2b
2c
2d
2e
…

.

.

.

.

.

.

Input layer

First Hidden layer
as a pre-processing
layer

Second hidden
layer

Output
layer

p

q

.

. Output neuron

55 hidden
neurons 169 input

neurons

a b c d e
0

1

2

3. Remove the stone placed in step 1.
4. Repeat step 1 to 3 until no more legal intersections are

available.
5. Select the intersection with the highest output value

from the neural network. Select randomly from equal
values.

All weights in the neural network for both experiments

are mutated at each generation using an evolutionary
strategy. Each weight has an associated self-adaptive
parameter, σ, which serves to control the step size of the
search for the mutated parameters of the neural network
[22].

Initially, a Gaussian random generator is used to
generate all weights. The self-adaptive parameter and the
weights are then adapted by

σ’j = σj . exp (τ . Nj(0,1)), (1)

w’j = wj + σ’j.Nj(0,1) , (2)

j = 1, …, Nw
Where:

Nw is a number of weights, wj, in the neural network
Nj(0,1) is a standard Gaussian random variable
resampled anew for every j
τ is a learning rate, which is τ = (2Nw

0.5)-0.5

In fact, formula (1) is taken from [19, 20, 21, 22].

IV. EXPERIMENTS AND RESULT

Below we present the results from the above two
experiments. Both were run on a Pentium 4, 512 MB
RAM.

A. Experiment on Evolved Neural Network with
Minimax Search Tree

In the first experiment, a population of 10 networks was

evolved, with the best 5 (copies and mutations) from one
generation surviving to the next. The experiment ran for
20,000 generations with an elapsed time between two
generations being about 228 seconds. This experiment ran
for about two months. Every 1000th generation, the best
player was kept and these were played against each other
at the end of the experiment. This resulted in 21 “best”
players (0th to 20,000th generation).

Table I shows the results, with x being the generation
for each 1000th generation, and y is the total points after
the best player from that generation has played against the
best player from all other generations.

TABLE I. TOTAL POINTS FOR EACH BEST PLAYER WITH MINIMAX
x (x103) y x (x103) y

0 14 10 8
1 17 11 44
2 32 12 44
3 -1 13 23
4 15 14 8
5 26 15 26
6 26 16 14
7 14 17 29
8 5 18 23
9 35 19 20
 20 26

Based on Table I, we can plot a graph (Figure 9). Each

point in the graph represents the total points for each best-
evolved player after playing against each of the other
players when played as black and white, i.e. each player
played 40 games in total. The total points are based on +2
points for win, -1 for a loss and 1 for a draw. This points
mechanism is only used to calculate the winning, losing
and drawing points for each player. It is never used for
parent selection. We did try other scoring mechanisms but
the results were similar.

-10
0

10
20
30
40
50

0 2 4 6 8 10 12 14 16 18 20

Generations (x103)

To
ta

l P
oi

nt
s

Total Points Linear (Total Points)

Figure 9: Total points every 1000th generation against each other

The graph, although looking chaotic, does indicate a
gradual improvement, as shown by the trend line.

We noted that some players could not beat players from
previous generations. For example, a player from the
10,000th generation won against a player from the 9,000th
generation but lost when playing against the 11,000th
generation. This is what we would expect (at least what we
would hope for). However, the 10,000th player lost against
the 2,000th player when playing as black. This, we believe,
is due to the fact that, due to the complexities of Go, we
are only at the very early stages of the learning process and
there is not yet a significant difference between players
just a few thousand generations apart.

B. Experiment on Evolved Spatial Neural Network
without Minimax

In the early stages of the second experiment, we did try
to use the spatial neural network with the minimax search
tree (with a population size of 10). The elapsed time
between two generations was approximately about 1548
seconds. Due to this slower processing time, we decided to
remove the minimax search tree from the program. The
objective was now to investigate whether learning will
occur without any look ahead.

In this second experiment, the size of the population is
20 and we ran for 60,000 generations, where the elapsed
time between two generations was approximately about
117 seconds. We can increase the population size and the
number of generations as there is no look ahead (i.e.
minimax search). This experiment ran for about three
months.

At each generation, copies of the best 10 players were
mutated and competed in the next generation. Every
10,000th generation, the best-evolved player was kept and
these were played against each other at the end of the
experiment. This resulted in seven best players (0th to
60,000th generations). Table II shows the results based on
the total number of points at each generations (using the
same scoring mechanism as the first experiment).

TABLE II. TOTAL POINTS FOR EACH BEST PLAYER WITHOUT
MINIMAX

x(x104) y
0 -7
1 3
2 12
3 15
4 1
5 10
6 11

Based on Table II, we can plot a graph as Figure 10 and a
linear regression line.

-10
-5
0
5

10
15
20

0 1 2 3 4 5 6

Generations (x104)

To
ta

l P
oi

nt
s

Total Points Linear (Total Points)

Figure 10: Total points every 10,000th generation against each
other.

The trend line indicates a process of learning is taking
place. Without any look ahead, the program is totally
dependent on the evaluation function. There is no
significant difference between players just a few thousand
generations apart and because of that, in the second
experiment, we only kept best player at every 10,000th
generation.

V. CONCLUSION AND FUTURE WORK

Based on the results from above, some learning has
occurred even though no Go knowledge or information
was given to the program. A positive linear regression
gradient in both experiments indicates learning has taken
place, even though the learning appears erratic. This, we
believe, is due to the fact that we are only at the initial
stages of the learning process.

We only collected data at every 1,000 games (first
experiment) and 10,000 games (second experiment). The
data, as the graphs show (figures 9 and 10) appears
chaotic, although there is an underlying upward trend.
However, due to the small number of data points collected,
we cannot calculate if these results are statistically
significant. For our future work we will collect data at
more frequent intervals so that valid statistical tests can be
conducted. Unfortunately, we cannot collect data for this
paper due to excessive run times involved.

Evolving neural networks has the potential as a
technique for evolving automated Go players. However,
more generations are needed to determine whether the
program can become a good player. We are continuing to
run our experiments and we are also seeking access to
faster machines.

Of course, a search depth of two is unlikely to be
enough to predict good moves, but deeper searches come
at the cost of increased computational time. One of the
ways to reduce the running time for each generation is by
taking out the minimax search from the program, as we did
in the second experiment. The program can still learn even
without look ahead, but the program probably needs more
generations to do so.

This research also shows that the program can learn
through experience via playing against a static player. The
program might learn more efficiently if we had access to
more than one static player or adopted a co-evolutionary
approach by allowing the players to play against each other
at some point in the learning process.

In addition to addressing the questions that we have
raised as part of this work (e.g. more computation time
(i.e. generations), deeper searches, whether we require
look-ahead, co-evolution, playing against other static
players, network architecture etc.), we would also like to
investigate the following:
Passing mechanism: If the automated player makes an
illegal move we currently consider that a pass. We would
like to give the automated player another chance to choose
a move.

Play the middle game and end game: If we can make
further progress on evolving good opening game strategies
then we would like to apply similar techniques to the
middle and end game. The middle game would be
particularly challenging, as there is a lot of strategic play in
this part of the game. For example, can the player learn
how to attack an opponent or how to save/protect its
stones?
Play with handicap: We would like to experiment with
starting with an automated player that starts with a high
handicap, which is gradually reduced as it improves its
play.
Determine strength differences among the players: The
results we have presented are only based on each player
playing against each other as black and white (i.e. two
games against each other player). We would like to carry
out more work to determine if there is a statistical
difference between the best players at each generation.

In summary, we have provided some evidence that an
evolutionary approach can produce learning for an
automated Go player. Considering that Deep Blue [15] and
Chinook [17] utilised custom-built hardware to achieve
their landmark results, and given that Go, is considered
more complex, this can be seen as an achievement. At the
present time, no computer program can play Go at human
levels and perhaps an evolutionary approach may be one
way to achieve this goal.

REFERENCES

[1] Nationmaster.com. Encyclopedia: Go (board game).
Available: http://www.nationmaster.com/encyclopedia/Go-
(board-game)

[2] A. Zobrist, “A Model of Visual Organization for the Game
of Go,” in Proceedings of AFIPS Spring Joint Computer
Conference, Boston, AFIPS Press, Montvale, New Jersey,
1969, pp. 103-111.

[3] B. Wilcox, “Computer Go,” originally published in:
American Go Journal, vol. 13, no. 4, 5, 6; vol. 14, no. 1; vol.
14, no. 5, 6; vol. 19 (1978, 1979 and 1984).

[4] W. Reitman and B. Wilcox, “Perception and Representation
of Spatial Relations in a Program for Playing Go,” originally
published in: Proceedings of the ACM Annual Conference,
1975, pp. 37-41.

[5] W. Reitman and B. Wilcox, “Pattern Recognition and
Pattern-Directed Inference in a Program for Playing Go,”
originally published in: Pattern-Directed Inference Systems
(D. Waterman and F. Hayes-Roth, Eds.), pp. 503-523, 1978.

[6] W. Reitman and B. Wilcox, “The Structure and Performance
of the INTERIM.2 Go Program,” originally published in:
Proceedings of the International Joint Conference on
Artificial Intelligence, 1979, pp. 711-719.

[7] H. Remus, “Simulation of a Learning Machine for Playing
Go,” Originally published in: Proceedings of IFIP Congress,
1962, pp. 428-432.

[8] B. Mc Quade, “Machine Learning and the Game of Go,”
Master Thesis, Middlebury College, 2001.

[9] D. Stoutamire, “Machine Learning, Game Play and Go,”
Ph.D. Thesis, Case Western Reserve University, 1991.

[10] J.M. Burmeister, “Studies in Human and Computer Go:
Assessing the Game of Go as a Research Domain for
Cognitive Science,” Ph.D. Thesis, The University of
Queensland, Australia, 2000.

[11] N. Richards, D. Moriarty, P. Mc Questen and R.
Miikkulainen, “Evolving Neural Networks to Play Go,”
Applied Intelligence, vol. 8, pp. 85-96, 1998.

[12] A. Lubberts and R. Miikkulainen, “Co-evolving a Go-
Playing Neural Network,” in Coevolution: Turning Adaptive
Algorithms upon Themselves, Birds-of-a-Feather Workshop,
Genetic and Evolutionary Computation Conference (Gecco-
2001, San Francisco), 2001.

[13] D. Fotland. The 1999 FOST (Fusion of Science and
Technology) Cup World Open Computer Go Championship,
Tokyo, 1999. Available:
http://www.britgo.org/results/computer/fost99.htm

[14] T.S. Anantharaman, M. Campbell, F.H. Hsu, “Singular
Extensions: adding selectivity to brute force searching,”
Artificial Intelligence, vol. 43, no. 1, pp. 99-109, 1989.

[15] F. Hsu, “IBM’s Deep Blue Chess Grandmaster Chips,” IEEE
Micro, (March-April): pp. 70-81, 1999.

[16] J. Schaeffer, R. Lake and P. Lu, “Chinook the World Man-
Machine Checkers Champion,” AI Magazine, 17 (1), pp.
21-30, 1996.

[17] J. Schaeffer, “One Jump Ahead - Challenging Human
Supremacy in Checkers,” Springer Verlag, 1997.

[18] Fogel D.B., 2002, "Blondie24: Playing at the Edge of AI".
Morgan Kaufmann, SF, CA.

[19] K. Chellapilla, D.B. Fogel, “Evolving an Expert Checkers
Playing Program Without Using Human Expertise,” IEEE
Transactions on Evolutionary Computation, vol. 5, no. 4, pp.
422-428, August 2001.

[20] K. Chellapilla and D.B. Fogel, “Co-Evolving Checkers
Playing Programs using only Win, Lose or Draw,” in
AeroSense99, Symposium on Applications and Science of
Computational Intelligence II, vol. 3722, 1999, pp. 303-312.

[21] K. Chellapilla and D.B. Fogel, “Evolving Neural networks
to Play Checkers Without Relying on Expert Knowledge,”
IEEE Transactions on Neural Networks, vol. 10, no. 6, pp.
1382-1391, November 1999.

[22] K. Chellapilla and D.B. Fogel, “Anaconda Defeats Hoyle 6-
0: A Case Study Competing an Evolved Checkers Program
against Commercially Available Software,” in Proceedings
of Congress on Evolutionary Computation, La Jolla Marriot
Hotel, La Jolla, California, USA, July 16-19 2000, pp. 857-
863.

[23] B. Bouzy and T. Cazenave, “Computer Go: an AI Oriented
Survey,” Artificial Intelligence Journal, vol. 132, pp. 39-103,
2001.

[24] E. Thorp and W. Walden, “A Partial Analysis of Go,”
originally published in: The Computer Journal, vol. 7, no. 3,
pp. 203-207, Heyden and Son Ltd., 1964. Reprinted

[25] E.O. Thorp and W.E. Walden, “A Computer-Assisted Study
of Go on mxn Boards,” originally published in: Information
Sciences, vol. 4, pp. 1-33, America Elsevier Publishing
Company, Inc., 1972.

[26] M. Müller, “Decomposition Search: A Combinatorial Games
Approach to Game Tree Search, with Applications to
Solving Go Endgames,” in IJCAI-99, vol. 1, pp. 578-583,
1999.

[27] N. Richards, D.E. Moriarty and R. Miikulainen, “Evolving
Neural Networks to Play Go,” Applied Intelligence, Kluwer
Academic Publishers, Boston, vol. 8, pp. 85-96, 1998.

[28] I. Ishigure, “In The Beginning: The Opening in the Game of

Go,” The Ishi Press, Japan, 1973.
[29] J. Greenberg, “OpenGo,” hosted by Inventivity.com LLC’s

Software Research, 1995-2001. Available:
http://www.inventivity.com/OpenGo/

[30] D. Moriarty and R. Miikulainen, “Forming Neural Networks
Through Efficient and Adaptive Co-Evolution,”
Evolutionary Computation, vol. 5, no. 4, pp. 373-399, 1997.

[31] P. Donelly, P. Corr and D. Crookes, “Evolving Go Playing
Strategy in Neural Networks,” AISB Workshop on
Evolutionary Computing, Leeds, England, 1994.

[32] H.D. Enderton, “The Golem Go Program,” Technical Report
CMU-CS-92-101, Carnegie Mellon University, 1991.

[33] M. Enzenberger, “The Integration of a Priori Knowledge
into a Go Playing Neural Network,” 1996. Available bye
internet: http://www.markus-enzenberger.de/neurogo.ps.gz

[34] N. Schraudolph, P. Dayan and T. Sejnowski, “Temporal
Difference Learning pf Position Evaluation in the Game of
Go,” Advances in Neural Information Processing 6, Morgan
Kaufmann, 1994.

[35] S-J Yen, W-J Chen and S-C Hsu, “Design and
Implementation of a Heuristic beginning Game System for
Computer Go,” in Joint Conference on Information
Sciences (JCIS) 1998, pp. 381-384. Association for
Intelligent Machinery, 1998.

[36] M. Müller, “Computer Go,” Artificial Intelligence, Elsevier,
vol. 134, pp. 145-179, 2002.

[37] M. Enzenberger, “Computer Go Bibliography,” Available in
internet: http://www.markus-
enzenberger.de/compgo_biblio/compgo_biblio.html

[38] B. Bouzy and T. Cazenave, “Computer Go: An AI Oriented
Survey,” Artificial Intelligence, vol. 132, no. 1, pp. 39-103,
2001.

[39] J. Burmeister and J. Wiles, “AI Techniques Used in
Computer Go,” Fourth Conference of the Australasian
Cognitive Science Society, Newcastle, 1997.

[40] E. Lasker, “Go and Go-moku: The Oriental Board Games,”
Dover Publications, Inc., New York, 1960.

[41] C. Cho, “Go: A Complete Introduction to the Game,”
Kiseido Publishing Company, Korea, 1997.

	Experiment on Evolved Spatial Neural Network without Minimax
	V. Conclusion and Future Work
	
	
	REFERENCES

