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Abstract – The game of Go can be divided into three stages; 

the opening, the middle, and the end game. In this paper, 
evolutionary neural networks, evolved via an evolutionary 
strategy, are used to develop opening game playing strategies 
for the game. Go is typically played on one of three different 
board sizes, i.e., 9x9, 13x13 and 19x19. A 19x19 board is the 
standard size for tournament play but 9x9 and 13x13 boards 
are usually used by less-experienced players or for faster 
games. This paper focuses on the opening, using a 13x13 
board. A feed forward neural network player is played against 
a static player (Gondo), for the first 30 moves. Then Gondo 
takes the part of both players to play out the remainder of the 
game. Two experiments are presented which indicate that 
learning is taking place. 

I. INTRODUCTION 

Go is an ancient game, which originated in China at 
least 2000 years ago and was known originally as Weiqi 
[1]. The name Go came from the shortened Japanese word 
Igo. Automated Go programs began appearing in the 1970s 
[2] and 1980s [3, 4, 5, 6]. Since that time, Go has been the 
subject of research areas such as machine learning [7, 8, 
9], cognitive science [10], and evolutionary computing 
[11, 12], but automated Go programs are still far from the 
standard of human experts [13].  

The games of Go, chess, and checkers are similar, in 
that they are finite, perfect information games, played 
between two players. One of the best-known chess 
programs, Deep Blue [14], achieved world champion 
status when, in 1997, it beat Garry Kasparov by a score of 
3.5-2.5. Utilising custom-built hardware [15], Deep Blue 
executed sophisticated search algorithms to analyse up to 
200 million positions per second. 

Chinook, a checkers program, developed by Jonathan 
Schaeffer’s team at The University of Alberta won the 
world checkers title in 1994 [16, 17].  Chinook used an 
opening, and endgame database and an extensive checkers 
knowledge base.  

Chellapilla and Fogel [18], also considered checkers, 
developing Blondie24 - a checkers player, which learned 
its strategy using a co-evolutionary approach. The current 
board position in Blondie24 is evaluated using an artificial 
neural network with the weights of the network being 
evolved via an evolutionary strategy. The output of the 
network is used in a minimax search. Blondie24 was not 
provided with any domain knowledge. It received points 
based on whether it won, lost, or drew games and was not 

even told how it had performed in each individual game. 
The conclusion of Fogel and Chellapilla is that, without 
any expert knowledge, a program can learn to play a game 
at an expert level using a co-evolutionary approach. 
Additional information about this work can be found in 
[19, 20, 21, 22]. 

Go is considered more complex than chess or checkers. 
One measure of this complexity is the number of positions 
that can be reached from the starting position which Bouzy 
and Cazenave estimate to be 10160 [23]. Chess and 
checkers are about 1050 and 1017, respectively [23].  

The size of the search space is the primary reason why a 
good automated Go player is difficult to produce. To 
reduce the search space, the board can be scaled down 
either by reducing the board size or by dividing the board 
into sub-boards (decomposition). These techniques can 
reduce the computational effort required for playing the 
game, which is one of the main constraints in producing an 
effective automated Go player. The early work for small 
boards can be found in [24, 25] and decomposition 
approaches are reported in [26].  

The game of Go can be divided into three general 
phases: the opening game, the middle game, and the 
endgame [27]. Researchers have applied a variety of 
techniques to the middle game, which is considered the 
most difficult – yet important – phase [27]. However, 
Ishigure [28] states that the opening game is the most 
important phase. In order to make territory, the best place 
to move is in a corner and the least valuable moves are 
those in the centre of the board. The number of plays in the 
opening is not predetermined [28]. Aggressive player may 
start to attack the opponent (thus entering the middle 
game) just a few turns after the start of the game, whilst 
other openings may last longer. 

Playing just the opening is the approach we adopt here. 
In this paper, we are not attempting to reduce the size of 
the search space or incorporate any Go knowledge. The 
objective of this research is to investigate a population of 
evolutionary neural networks, which play the opening of 
Go and compete to survive to the next generation. A 
feedforward neural network player is played against a 
static player, Gondo (written by Jeffrey Greenberg [29]). 
We play against Gondo for the first 30 turns (15 turns for  
each player). At that time Gondo takes the part of both 
players and plays out the remainder of the game to 

 



determine the outcome. An evolutionary strategy is used to 
evolve the networks. We use a 13x13 board. 

Previous authors have investigated evolving neural 
networks to play Go. Richard et al. evolved neural 
networks using the SANE1  (Symbiotic, Adaptive Neuro-
Evolution [30]) method [27]. Board sizes of 5x5, 7x7, and 
9x9 were used in evolving networks to play on small 
boards against a simple computer opponent called Wally2. 
Each intersection on the board has two input units and one 
output unit. Any positive output indicates a good move, the 
larger the value, the better the move. If none of its outputs 
is positive, the network will pass its turn. SANE required 
20 generations to defeat Wally on a 5x5 board, 50 
generations on a 7x7 board, and on a 9x9 board, 260 
generations were needed. Donelly et al. also evolved 
neural networks via self-play [31].    

Other researchers have used neural networks to learn to 
play Go using machine learning methods such as 
supervised learning (training on moves from professional 
games) [32] and reinforcement learning [33, 34]. 

Yen et al. took a different approach to learning to play 
Go openings with Jimmy 4.0, which has been ranked 4 
kyu3 when they adopted 100 questions from Go books to 
test the rank of their opening game [35]. Jimmy plays the 
opening stage by trying to occupy the corners (called 
joseki - a series of standard moves in corners or sometimes 
on edges), extending the edges, and dealing with Moyo 
(large potential territories). Pattern matching techniques 
are used to occupy the corners and generate the Moyo 
moves. In extending the edges, two techniques are used. 
Pattern matching generates moves near the existing stones 
on the board. A “split” method places a stone equidistant 
between two stones, which are near opposite corners.  

For an excellent review of the state of the art in 
computer Go programming, we recommend Müller [36] 
and as a starting point for further reading, Enzenberger’s 
online bibliography [37]. Other reviews focussing on AI 
approaches may be found in [38, 39]. 

II. RULES OF GO 

The aim of Go is to gain as much territory as possible. 
Players will try to capture an opponent’s stones and also 
define areas as their own territory. At the end of the game, 
the winner will be identified by counting territories using 
one of two scoring methods; territory scoring or area 
scoring. Japanese rules use territory scoring. Surrounded 
territory is counted, plus the number of captured opponent 
stones. In area scoring, used when playing under Chinese 
rules, surrounded territory will be counted plus the live 
stones on the board. We follow the Japanese scoring 
method. 

                                                 
1  For more details about SANE, please refer to [30]. The source code is 

available from www.cs.utexas.edu/users/nn/. 
2  A simple Go program written by Bill Newman. 
3  Human Go players are ranked by kyu (student) and dan (master). Players 

start at high kyu grades of 20 or more, and progress towards 1 kyu and 
then progress onto the lowest master grade of 1 dan and work upwards. 

Differences in playing strength can be balanced by a 
handicap system, which allows the Black player to place 
several stones on the board before the start of the game. 

Go is played between two players, Black and White. 
The game starts with an empty board.  Stones are placed 
on any empty intersection on the board with players 
making alternate moves. Black plays first. Go players can 
pass their turn at any time but consecutive passes ends the 
game.  

A stone on an intersection has a set of liberties (empty 
intersections next to a stone). Figure 1a shows a white 
stone with four liberties. When the opponent places a stone 
on any neighbouring intersection, white will lose one 
liberty. In Figure 1b, black stones surround the white 
stone, which means white has no liberties and is captured 
and removed from the board (Figure 1c). This territory 
now belongs to black.  

 
 
 
 
 
 (a) (b) (c) 

Figure 1: (a) White stone has 4 liberties, (b) Black stones are 
surrounding a white stone, (c) White stone has been removed and 
the black player gets 1 point of territory. 

 
Placing a stone that does not make a capture, and has no 

liberties, is illegal. For example, the white player cannot 
place a stone in the centre of black territory in Figure 1c. 
Placing a stone that results in a repeating position seen 
after the same player’s previous play is also illegal. This is 
called the ko-rule.  

Figure 2a shows a marked white stone that has only one 
liberty. Black captures the marked white stone by playing 
at position k. After the marked white stone has been 
removed from the board, the white player cannot place a 
stone on r, Figure 2b, before the board position has 
changed (i.e. white must play on another intersection 
before being able to place a stone on r).  
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(b) (a)  
Figure 2: Repeating position. 

 
Figure 3a shows a string, which is when a number of 

stones of the same colour are connected along edges or a 
set of connected stones. White’s string in Figure 3a, 
excluding a stone marked with 1, has eight liberties. To 

 



capture the string, black stones must surround it until the 
string has no liberties (Figure 3b). Figure 3c shows the 
position once the white stones have been removed from the 
board. The black player now has four points of territory. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: (a) String of white stones excluding stone 1, (b) String 
had been captured by opponent stones, (c) String of white stone 
have been removed from the board. 

 
When a string surrounds one or more empty 

intersections, it will form eyes. Figure 4a shows an eye, E, 
and Figure 4b shows two eyes, E and F for a white string. 
To be captured, the string must first be surrounded by the 
opponent and then the eye filled. Single eyes can be 
captured but two eyes cannot be captured because black 
player cannot place a stone either on E or F. If black tries 
to place a stone in E, it is forbidden because each white 
stone still has one liberty, i.e., F, and vice versa. Any 
string is considered to be dead if there is no way to stop it 
from being captured or considered alive if the opponent 
cannot capture it. The white stones in Figure 4b are alive. 

 
  
 
 
  
 
 
 
 
 

Figure 4: Eyes in Go. 

Of course, the game of Go has many strategic elements 
and good introductions can be found in [40, 41]. 

III. METHOD 

We instantiate a population of neural networks and each 
one plays against a static player (Gondo) for the first 15 

turns (30 turns in total). After this time, the current 
position for the neural network player is copied to another 
version of Gondo and it plays against itself until end of the 
game. Figure 5 shows the structure for our evolving 
system. 

 1 1
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NN plays against 
Gondo for the first 30 
turns of the game 

 
Figure 5:  Go, evolutionary model. 

 
Each intersection on the board is represented by –1, 0, 

or +1 which indicates a black stone, an empty intersection 
or a white stone respectively. An evaluation function is 
structured as a feed forward neural network, which is used 
to evaluate the current board position. A hyperbolic 
tangent (tanh, bounded by ±1) function is chosen as a non-
linear function for each hidden and output node.  

At the end of each game, the difference in score 
between the neural network player and Gondo will be used 
as a fitness for that neural network player. At the end of 
each generation, players will be sorted in descending order 
according to their fitness. Half the players, those with the 
highest fitness, are selected and survive to the next 
generation. Copies of these players are mutated to create 
the new population. 

Two experiments are presented. Firstly, a Go program 
that uses a minimax search tree as a look ahead to predict 
possible moves, and secondly, a Go program that does not 
use minimax as a look ahead. The methods used in this 
research are inspired from [18, 19, 20, 21, 22], with some 
minor modifications. 

A. Neural Network with Minimax 
 

In the first experiment, a feed-forward neural network is 
used to evaluate the current board position and a minimax 
search tree is used to look ahead two-ply.  The neural 
network consists of 169 input nodes (i.e the intersections 
on a 13x13 board), 55 hidden nodes, and an output node.  
The number of hidden nodes (55) was chosen to be about 
one third of the number of input nodes. This appears to be 
a good rule of thumb in the absence of any other data. 
Figure 6 shows this architecture.  
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plays against itself until 
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Figure 6: A structure of the feed-forward neural network. 

The algorithm for this first experiment is as follows: 

1. Build a search tree to two-ply, starting from the current 
board position. 

2. Assign a value to the leaf nodes using the output of the 
neural network. 

3. Propagate the values to the root of the tree (using 
minimax and alpha-beta pruning) 

4. Choose the best move. 
 

B. Spatial Neural Network without Minimax 
 
In a second experiment, we do not use a minimax search 

tree. Three-layer, feed-forward neural networks are used. 
The networks have 169 nodes in the input layer, 286 and 
95 nodes in the first and second hidden layer respectively. 
The networks have a single output node. The first and 
second hidden layers, and the output node are fully 
connected.  

The first hidden layer is structured to cover m x m 
overlapping subsections of the board, i.e. 3x3, 5x5, 7x7, 
9x9, 11x11, and 13x13 (full board). The 3x3 subsections 
provides input to the first 121 neurons in the first hidden 
layer; it is followed with 81 neurons from the 5x5 
subsections, and so on to one subsection of the 13x13 
board. These resulted a total node for the first hidden layer 
is 286 and the total node for the second hidden layer is 
about one third of the first hidden layer.  

Figure 7 shows an example of overlapping 3x3 and 5x5 
subsections. This idea of using spatial information is taken 
from Fogel’s work on the co-evolution of a checkers 
player [22].  

Figure 8 shows a spatial neural network with a part of 
subsection from Figure 7. Node p in the first hidden layer 
will receive inputs from intersections indexed 0a, 0b, 0c, 
1a, 1b, 1c, 2a, 2b, and 2c (9 intersections from one 3x3 
subsection), and their associated weights. Node q then will 
receive inputs from intersections indexed 0b, 0c, 0d, 1b, 
1c, 1d, 2b, 2c and 2d, and their associated weights. 
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Figure 7: Example of 3x3 and 5x5 subsection intersection. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8:  The architecture of the “spatial” neural network with 
example connections for a 3x3 subsection intersection. 

The algorithm for the second experiment is given below: 
 
1. Place a stone on any available and legal intersection. 
2. The current board state is input to the neural network, 

which outputs a value. 
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3. Remove the stone placed in step 1. 
4. Repeat step 1 to 3 until no more legal intersections are 

available. 
5. Select the intersection with the highest output value 

from the neural network. Select randomly from equal 
values. 

 
All weights in the neural network for both experiments 

are mutated at each generation using an evolutionary 
strategy. Each weight has an associated self-adaptive 
parameter, σ, which serves to control the step size of the 
search for the mutated parameters of the neural network 
[22].  

Initially, a Gaussian random generator is used to 
generate all weights. The self-adaptive parameter and the 
weights are then adapted by 

 
σ’j = σj . exp (τ . Nj(0,1)),  (1)

   
w’j = wj + σ’j.Nj(0,1) ,   (2) 

j = 1, …, Nw  
Where: 

Nw is a number of weights, wj, in the neural network  
Nj(0,1) is a standard Gaussian random variable 
resampled anew for every j  
τ is a learning rate, which is τ = (2Nw

0.5)-0.5 
 
In fact, formula (1) is taken from [19, 20, 21, 22]. 

IV. EXPERIMENTS AND RESULT 

Below we present the results from the above two 
experiments. Both were run on a Pentium 4, 512 MB 
RAM. 

A. Experiment on Evolved Neural Network with 
Minimax Search Tree 

 
In the first experiment, a population of 10 networks was 

evolved, with the best 5 (copies and mutations) from one 
generation surviving to the next. The experiment ran for 
20,000 generations with an elapsed time between two 
generations being about 228 seconds. This experiment ran 
for about two months. Every 1000th generation, the best 
player was kept and these were played against each other 
at the end of the experiment. This resulted in 21 “best” 
players (0th to 20,000th generation).  

Table I shows the results, with x being the generation 
for each 1000th generation, and y is the total points after 
the best player from that generation has played against the 
best player from all other generations. 

 
 
 
 
 
 
 

TABLE I. TOTAL POINTS FOR EACH BEST PLAYER WITH MINIMAX 
x (x103) y x (x103) y 

0 14 10 8 
1 17 11 44 
2 32 12 44 
3 -1 13 23 
4 15 14 8 
5 26 15 26 
6 26 16 14 
7 14 17 29 
8 5 18 23 
9 35 19 20 
  20 26 

 
Based on Table I, we can plot a graph (Figure 9). Each 

point in the graph represents the total points for each best-
evolved player after playing against each of the other 
players when played as black and white, i.e. each player 
played 40 games in total. The total points are based on +2 
points for win, -1 for a loss and 1 for a draw. This points 
mechanism is only used to calculate the winning, losing 
and drawing points for each player. It is never used for 
parent selection. We did try other scoring mechanisms but 
the results were similar. 
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Figure 9: Total points every 1000th generation against each other 

The graph, although looking chaotic, does indicate a 
gradual improvement, as shown by the trend line.  

We noted that some players could not beat players from 
previous generations. For example, a player from the 
10,000th generation won against a player from the 9,000th 
generation but lost when playing against the 11,000th 
generation. This is what we would expect (at least what we 
would hope for). However, the 10,000th player lost against 
the 2,000th player when playing as black. This, we believe, 
is due to the fact that, due to the complexities of Go, we 
are only at the very early stages of the learning process and 
there is not yet a significant difference between players 
just a few thousand generations apart.  
 
 
 
 

 



B. Experiment on Evolved Spatial Neural Network 
without Minimax 
 

In the early stages of the second experiment, we did try 
to use the spatial neural network with the minimax search 
tree (with a population size of 10). The elapsed time 
between two generations was approximately about 1548 
seconds. Due to this slower processing time, we decided to 
remove the minimax search tree from the program. The 
objective was now to investigate whether learning will 
occur without any look ahead. 

In this second experiment, the size of the population is 
20 and we ran for 60,000 generations, where the elapsed 
time between two generations was approximately about 
117 seconds. We can increase the population size and the 
number of generations as there is no look ahead (i.e. 
minimax search). This experiment ran for about three 
months.  

At each generation, copies of the best 10 players were 
mutated and competed in the next generation. Every 
10,000th generation, the best-evolved player was kept and 
these were played against each other at the end of the 
experiment. This resulted in seven best players (0th to 
60,000th generations). Table II shows the results based on 
the total number of points at each generations (using the 
same scoring mechanism as the first experiment). 

 
TABLE II. TOTAL POINTS FOR EACH BEST PLAYER WITHOUT 
MINIMAX 

x(x104) y 
0 -7 
1 3 
2 12 
3 15 
4 1 
5 10 
6 11 

 
Based on Table II, we can plot a graph as Figure 10 and a 
linear regression line.  
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Figure 10:  Total points every 10,000th generation against each 
other. 

The trend line indicates a process of learning is taking 
place. Without any look ahead, the program is totally 
dependent on the evaluation function. There is no 
significant difference between players just a few thousand 
generations apart and because of that, in the second 
experiment, we only kept best player at every 10,000th 
generation.  

V. CONCLUSION AND FUTURE WORK 

Based on the results from above, some learning has 
occurred even though no Go knowledge or information 
was given to the program. A positive linear regression 
gradient in both experiments indicates learning has taken 
place, even though the learning appears erratic. This, we 
believe, is due to the fact that we are only at the initial 
stages of the learning process.  

We only collected data at every 1,000 games (first 
experiment) and 10,000 games (second experiment). The 
data, as the graphs show (figures 9 and 10) appears 
chaotic, although there is an underlying upward trend. 
However, due to the small number of data points collected, 
we cannot calculate if these results are statistically 
significant. For our future work we will collect data at 
more frequent intervals so that valid statistical tests can be 
conducted. Unfortunately, we cannot collect data for this 
paper due to excessive run times involved. 

Evolving neural networks has the potential as a 
technique for evolving automated Go players. However, 
more generations are needed to determine whether the 
program can become a good player. We are continuing to 
run our experiments and we are also seeking access to 
faster machines. 

Of course, a search depth of two is unlikely to be 
enough to predict good moves, but deeper searches come 
at the cost of increased computational time. One of the 
ways to reduce the running time for each generation is by 
taking out the minimax search from the program, as we did 
in the second experiment. The program can still learn even 
without look ahead, but the program probably needs more 
generations to do so. 

This research also shows that the program can learn 
through experience via playing against a static player.  The 
program might learn more efficiently if we had access to 
more than one static player or adopted a co-evolutionary 
approach by allowing the players to play against each other 
at some point in the learning process. 

In addition to addressing the questions that we have 
raised as part of this work (e.g. more computation time 
(i.e. generations), deeper searches, whether we require 
look-ahead, co-evolution, playing against other static 
players, network architecture etc.), we would also like to 
investigate the following: 
Passing mechanism: If the automated player makes an 
illegal move we currently consider that a pass. We would 
like to give the automated player another chance to choose 
a move.  

 



Play the middle game and end game: If we can make 
further progress on evolving good opening game strategies 
then we would like to apply similar techniques to the 
middle and end game. The middle game would be 
particularly challenging, as there is a lot of strategic play in 
this part of the game. For example, can the player learn 
how to attack an opponent or how to save/protect its 
stones? 
Play with handicap: We would like to experiment with 
starting with an automated player that starts with a high 
handicap, which is gradually reduced as it improves its 
play. 
Determine strength differences among the players: The 
results we have presented are only based on each player 
playing against each other as black and white (i.e. two 
games against each other player). We would like to carry 
out more work to determine if there is a statistical 
difference between the best players at each generation. 
 
In summary, we have provided some evidence that an 
evolutionary approach can produce learning for an 
automated Go player. Considering that Deep Blue [15] and 
Chinook [17] utilised custom-built hardware to achieve 
their landmark results, and given that Go, is considered 
more complex, this can be seen as an achievement. At the 
present time, no computer program can play Go at human 
levels and perhaps an evolutionary approach may be one 
way to achieve this goal. 
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