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Abstract- New results are presented for the prediction of
secondary structure information for protein sequences
using Hidden Markov Models (HMMs) evolved using
a Genetic Algorithm (GA). We achieved aQ3 measure
of 75% using one of the most stringent data set ever
used for protein secondary structure prediction. Our
results beat the best hand-designed HMM currently
available and are comparable to the best known tech-
niques for this problem. A hybrid GA incorporating the
Baum-Welch algorithm was used. The topology of the
HMM was restricted to biologically meaningful building
blocks. Mutation and crossover operators were designed
to explore this space of topologies.

1 Introduction

Predicting the secondary structure of proteins is one of the
best studied problems in bioinformatics and consequently
presents a rigorous test of our techniques. The problem
tackled is to provide a label for each residue in a pro-
tein sequence depending on its secondary structure. That
is, whether the protein residue is part of an alpha-helix,
a beta-sheet or some other structure. This is a first step
towards predicting the structure and function of a protein
from its sequence. Many machine learning methods have
been applied to this problem including HMMs [1], neural
networks [2, 3, 4] and more recently support vector ma-
chines [5, 6].

Our approach is to this problem is to evolve an HMM
using a Genetic Algorithm. An Hidden Markov Model
(HMM) is a probabilistic finite state machine used to model
stochastic sequences. An HMM is defined by the set of
states, emission probabilities associated with each state, and
transitions that connect states. One can associate a proba-
bility with a sequence according to how likely it is for an
HMM to generate that sequence. To use an HMM to label a
sequence we associate a label with each state (or more gen-
erally a probability of a particular label given the state). The
label assigned to each element in the sequence depends on
which state is likely to have emitted that element. HMMs
have been widely used in bioinformatics because domain
knowledge can be encoded into the topology of the HMM
while still allowing other information to be learned through
training the emission and transition probabilities on data.
Hand-designed HMM structures have been developed for
sequence alignment, protein structure prediction, gene find-

ing and protein classifications [7]. The automation of HMM
design, particularly in the context of bioinformatics, has re-
ceived relatively little attention. The main reason for this
is probably the desire to build domain knowledge into the
topology of the HMM. This is the main attraction of HMMs
over neural networks or support vector machines. However,
for very complicated problems the human capacity to design
meaningful HMMs becomes much more questionable and
the use of automatic design becomes increasingly attractive.
Over the last two years we have developed a method for
evolving Hidden Markov Models (HMMs) for biological se-
quence analysis using Genetic Algorithms (GAs) [8, 9]. Our
preliminary investigations demonstrated that we are able
to obtain results that are competitive with hand-designed
HMMs.

Studies of using GAs to train HMMs are relatively rare,
particular in comparison with the large literature on apply-
ing GAs to neural network training. Chauet. alused a GA
to optimise the transition and emission probabilities for a
five-state HMM [10]. Subsequently, they considered evolv-
ing the HMM topology [11]. Other authors have also used
GAs to find good GA topologies [12, 13]. Direct compar-
ison of these approaches is difficult because there is not a
standard test set. However, Thomsen studied the same prob-
lem of secondary structure predication as we have [13]. His
prediction rate on the training set using the standardsQ3

measure is 49% compared with 75% which we achieved.
We believe that the results presented here are the most im-
pressive reported to-date on using GAs to find good HMMs
for a bioinformatics problem. The results we obtain are su-
perior to the best hand-designed HMM [1] and are compet-
itive with the best predictor developed for this problem [2].
These results are remarkable given that the GA is competing
with techniques that incorporate domain knowledge built-
up over many years.

In the next section, we briefly describe the use of HMMs
for labelling sequences. In section 3, we describe in detail
how we evolve an HMM. In particular, we focus on unique
aspects of our approach which we believe are responsible
for its success. Results are presented in section 4. Finally,
in section 5, we present our conclusions.

2 Hidden Markov Models with Labels

Hidden Markov Models are widely used learning machines
for modelling stochastic sequences. They are described in



many papers and books on speech recognition, machine
learning, and bioinformatics (see, for example, [7, 14]). In
this section, we discuss how HMMs can be modified to as-
sign a label to each element in a sequence according to its
class.

2.1 Class HMM

An HMM assigns a probability to an observed sequence of
symbols belonging to some alphabet,S. We denote a se-
quence byx = (x1, x2, . . . , xT ). In our application the
symbols represent the set of 20 amino acids that are the
building blocks of proteins. We denote the set of param-
eters that define an HMM byΘ. Given a sequencex, an
HMM returns a ‘probability’P (x|Θ), where

∑

x∈ST

P (x|Θ) = 1, (1)

so it is a probability distribution over sequences of lengthT
(we useST to denote the set of all sequences of lengthT ).

A class HMM (CHMM) is an HMM where the states
emit class labelsl from an alphabet,L, as well as a sym-
bol from the alphabet,S. That is, we can associate with
a sequencex a corresponding sequence of symbolsy =
(y1, y2, . . . , yT ). Denoting the set of states byQ, and let-
ting q = (q1, q2, . . . , qT ) be a sequence of states, then the
likelihood of a sequencex with class labelsy is given by

P (x, y|Θ) =
∑

q∈QT

P (x,y, q|Θ) (2)

where the sum is over all possible paths through the
states (paths without transition probabilities have probabil-
ity zero).

Traditionally HMMs are trained by choosing the transi-
tion and emission probabilities to maximise the likelihood
of some training data. That is, given a sequencex (or
set of sequence) and the corresponding labelsy, we find
a maximum-likelihood (ML) set of parameters

ΘML = arg max
Θ
P (x, y|Θ) . (3)

This can be calculated efficiently using the Baum-Welch al-
gorithm [14]. However, this guarantees that we only find a
local maximum-likelihood solution. As with other machine
learning techniques maximising the likelihood of the train-
ing examples will not generally provide the best parameters
for unseen data. This approach locally maximise the prob-
ability of the observed labelled sequences. In the case of
maximising the probability of correct labelling, conditional
maximum likelihood (CML) is used [15].

ΘCML = arg max
Θ
P (y|x, Θ) (4)

where

P (y|x,Θ) =
P (x, y|Θ)
P (x|Θ)

(5)

To maximise (5) the extended Baum-Welch algorithm is
used [16]. For more details on training labelled sequences
seee.g.[17].

2.2 Posterior Label Probability

The Viterbi algorithm is a well known decoding method for
HMMs. It finds the most probable path through the states of
the HMM. However, in the case where there are many sim-
ilar paths through the model the most probable path does
not provide the best result. We rather use the ‘posterior la-
bel probability’ (PLP) to maximise the number of correctly
predicted labels. The posterior label probability is the prob-
ability of a label at a certain position. Unlike the Viterbi
algorithm it sums the probabilities of being in each state at
a certain position of the sequence and assigns the dominant
label to that element of the sequence.

Then the PLP of a label at positiont is the sum of pos-
terior probability of all the states that emit the same label.
The PLP for labell at positiont is

P (yt = l|x,Θ) =
∑

i∈Q
P (yt = l, qt = i|x, Θ) . (6)

In our HMM, we assign each state to a particular class. That
is, we take the probability of a label given a state to be 1 if
the state is assigned to that class and 0 otherwise. Thus the
sum in equation (6) only gets contributions from states that
have been assigned to classl.

3 Evolving HMMs

In this section, we briefly describe the GA used to evolve
HMMs for our application. We have used a hybridised GA
that uses traditional GA operators to explore the space of
HMM topologies in combination with Baum-Welch to op-
timise the transition and emission probabilities. One diffi-
culty with evolving HMMs is that more complicated HMMs
with more states and more transitions between states will
always give superior results on any training set, but will
typically perform badly on unseen data. One of our key
aims in designing a GA for this task is to prevent this ten-
dency to over-fit the data. We have used two strategies to
accomplish this. Firstly, we impose a block structure on the
HMM topology which builds in some biological plausibil-
ity. Secondly, we divide our training set into a set used for
the Baum-Welch training and a set for fitness evaluation.

3.1 The Block-HMM

To constrain the search of HMM topologies to biologically
meaningful structures we confine our search to a subset of
topologies made up of blocks of states. We call these Block-
HMMs. We used four types of blocks for the HMM: linear,
self-loop, forward blocks and zero blocks. The self-loop
and forward block can be either tied (we follow the conven-
tion of shading tied blocks) or untied. When a block is tied
all the emission and transition probabilities inside the block
are set equal. A forward block can have a transition from
the first block to then last blocks in the chain. Zero blocks
have no state inside. They allows simpler structures to be
explored. Figure 1 shows three types of blocks.

The block models described in this paper are motivated
by applications of HMMs in biological sequence analysis.
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Figure 1: HMM blocks that compose the whole HMM
structure. (a) linear block (b) self-loop model (tying is op-
tional) (c) forward-jump block (tying is optional).

Biological sequences (DNA or protein) often contain “mo-
tifs”, which are more or less conserved words, and with
more or less homogeneous intervening sequence, which is
characterised by the composition of letters (amino acids or
nucleotides). Such a sequence can be modelled by an HMM
containing submodels for the motifs (linear chains of states)
and models for the intervening sequences if a length distri-
bution is modelled. Other types of sequences are changing
between various types of homogeneous sequences. An ex-
ample is membrane proteins that contain membrane helices
20–30 amino acids long, which are dominated by hydropho-
bic amino acids and an intervening sequence that is typi-
cally more hydrophillic [18]. Such sequences can be mod-
elled with a block of tied states, one block for each type of
sequence. Sometimes sequences contain periodic patterns.
Those HMM submodels work as a block in our scheme.

Initially, the blocks are fully linked to form the whole
HMM architecture as shown figure 2. After training, most
of these transition probabilities get driven to zero, so that
the final structure is typically much simpler than this picture
indicates.

H H H C C E E E

Figure 2: An example of HMM composed of blocks (Block-
HMM). Three blocks are used in this model and all the
blocks are fully connected to each other. For the protein
secondary structure prediction each block of an HMM is as-
signed with one of three protein structure classes ‘H’, ‘E’,
or ‘C’. The definition of each label is in chapter 4.1.

To use the Block-HMM to label sequences we assign
a label to each block depending on which of three protein
structure classes it belongs to.

3.2 Genetic Operators for the Block-HMM

We use a GA with crossover and mutation to search the
space of Block-HMM. The number of blocks is always kept
fixed. However, as the blocks can have variable lengths, the

number of states is not fixed. We also allow blocks consist-
ing of no states (zero blocks), which effectively allows us to
have a variable number of blocks up to some maximum.

In crossover, two parent strings are chosen at random.
Some number of randomly chosen blocks are then swapped
to create two children. When we swap blocks the transition
probabilities leaving the block are kept as they are. Since
the position of the blocks does not carry any meaning, we
do not impose any constraint on which blocks are swapped.
Fig. 3 shows an example of the crossover scheme. The last
block of the first child crosses with the first block of the
second child. To simplify the diagram, transitions between
blocks are not shown here. Under the crossover scheme the
properties of the interpretable blocks are not broken. This
allows us to exchange meaningful blocks without causing
too much disruption.

C C H H H H E EE E C C C

H H0 H C C H H HH E E E EH

crossover

C C H H H H E EE E

C C C

H H0 H

C C H H HH E E E E

H

Figure 3: Crossover in Block-HMM. The crossover swaps
the HMM states without breaking the property of HMM
blocks.

Mutations can take place in any block of the HMM.
There are a variety of different mutations that we allow. Mu-
tations can change the length of a block. For forward-jump
block mutations can change the number of transitions. For
example, in the case of a 4-state forward-jump block, there
are 6 different types of mutations possible. These are illus-
trated in Fig. 4. The outcome depends on which block is
added. In the cases of linear and self-loop blocks, there is
only one way to add and delete a state. These six different
types of mutation supply the Block-HMM with sufficient
variation without changing the properties of the block.

In addition to changing the length of the block and the
transitions, we also allow another form of mutations, called
type-mutations, that change the type of the block. For self-
loop and forward jump blocks, we can mutate between tied
and untied versions. We can also mutate the type altogether.
Mutations to a block of zero length are also allowed. The
labels are also changed under the type mutation.

3.3 Baum-Welch Training and Fitness Evaluation

At each generation we perform an iteration of Baum-Welch
learning to train the emission and transition probabilities.
To prevent over-fitting the learning data, we split our train-
ing data into two parts. One part is used for Baum-Welch
training and the other half for the fitness evaluation. (Note,
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Figure 4: Six possible types of mutations from a 4-state
jump forward block. (a) a transition from the first state to
forth state is deleted (b) a transition from the first state to the
third state is added (c) the second or the third state is deleted
(d) the fourth state is deleted (e) a state is added between the
fourth and the fifth state (f) a state is added between the first
and the fourth state

that in evaluating the performance of our algorithm we use
a completely separated dataset.) Over complex models
are disadvantaged because they tend to over-fit the Baum-
Welch training data, but then perform poorly on the fit-
ness evaluation set. Splitting of the training dataset set is
a unique feature of our approach which we believe is an im-
portant factor in our good performance.

We take as fitness values the reciprocal of the negative
log-likelihood

Eµ =
1

−∑
i log

(
P (xi|Θµ)

)
/li

(7)

whereli is the length of a sequencexi andµ labels the dif-
ferent HMMs (Θµ) of the population. Other researchers
have used a penalty term in proportion to the number of
states to prevent over-complex models being found. In early
trials we found that this mechanism was very sensitive to
the parameters being used. Although, using a penalty term
may be beneficial, a penalty term which accurately punishes
complexity is likely to be extremely complex function of the
topology and transition and emission probabilities. Our ap-
proach of splitting the learning data allows us to side step
this problem. A member of the population is selected with
a Boltzmann probability

Fµ =
mµ∑N

ν=1 mν

, mµ = esEµ/σ (8)

whereσ is the standard deviation in the distribution of fit-
nesses in the population. The parameters controls the se-
lection strength. Stochastic universal sampling is used to
reduce genetic drift in selection [19].

3.4 Parallel Genetic Algorithm

Evolving HMMs particular for this application is highly
CPU-intensive. To overcome this we used a Parallel Ge-
netic Algorithms (PGAs) [20] run on a cluster of comput-
ers. From the algorithmic point of view the parallel pro-
cessing is the computational realisation of natural parallel
evolutionary strategy.

We used a master-slave model to implement the Block-
HMM on the clustered computers. In the master-slave
model, a population is generated onP processors. The time
consuming training and evaluations are dealt with on slave-
processors. Because the computational time for the training
and evaluation is different depending on the size of HMM,
the sever waits until all the processes on the slaves finish.
The slaves send the fitness value and the trained HMM to
the master. Then the master applies the genetic operators on
the individuals and sends the individual information back to
each slave-processor. On the slave side the processor waits
for message from the server, evaluates the fitness, trains the
HMM, and returns the trained HMM and fitness value to the
master.

4 Protein Secondary Structure Prediction

In this section, we describe the test set and the results we ob-
tained for the prediction of the secondary structure of pro-
teins. There is no standard test set used in this area, in part
due to the constant growth of sequence data. Direct com-
parison between different techniques is therefore difficult.
Our aim was to perform the most stringent test possible of
our technique. We believe that we have made our test as
difficult as possible, so that in making any comparison with
other techniques the measure of performance of our tech-
nique is as conservative as possible.

4.1 Data Set

For the protein data we used the SABMark Twilight Zone
data sets [21]. The Twilight Zone set is divided into se-
quence groups that each represent a SCOP fold. Sequence
similarity is very low, between 0-25% identity, and a trace-
able common evolutionary origin cannot be established be-
tween most pairs even though their structures are distantly
similar. This set therefore represents the worst case scenario
for sequence alignment, as most related sequences share
less than 25% identity. These structures belong to about
236 folds.

We removed the sequences with unresolved chain breaks
and got 1662 protein sequences which are categorised to
234 folds (two folds are removed). With those 234 folds we
made a five cross-validation set. As a result, sequences with
the same fold do not appear in both the training and the test
set.

4.2 Definition of Protein Secondary Structure

According to the DSSP [22] definition there are 8 type of
structure in the protein secondary structure: H (α-helix), G
(310-helix), I (π-helix), E (extended strand), B (residue in



isolatedβ-bridge), S (bend), T (hydrogen bonded turn) and
C (others). Like most other prediction methods we used a
reduction scheme whereby H and G are converted to H, E
and B are converted to E, and all the other to C.

Figure 5 shows a protein sequence and its labels and
predictions. The widely usedQindex is the percentage of
residues predicted correctly as helix (QH ), strand (QE), coil
(QC) or for all three labels(Q3). In this exampleQ3 is 56%
= (14/25)× 100.

Figure 5: A protein sequence and its label and prediction

4.3 Training with Block-HMM

We initially tested a population with 15 blocks in the HMM.
We increased the number of blocks until the number of
blocks does not effect the performance. The best models
were found with 26–30 blocks. The initial labels are as-
signed evenly in order. The number of states in a block is
randomly assigned to be between 1 and 4. Table 1 shows
the parameters used in the simulation.

Table 1: Block-HMM parameters used in the experiment.
Parameter value

Population size 30
Iteration 400

Number of blocks in an HMM 15–30
The length of a block 1–4

Number of crossovers per iteration 2
Number of mutations per iteration 2

Number of type-mutations per iteration 2
Ratio of evaluation data 2/7

After the training we chose the best model by evaluating
the HMM with the test set. Because the GA over-fits the
structure and parameters of the HMM, the best model was
usually found before the end of iteration. The best model
is trained again using Baum-Welch algorithm and extended
Baum-Welch with the whole training dataset.

Evolving an HMM is slow. We used 31 2.4GHz P4 pro-
cessors with 512Mb RAM for the simulation. Under these
conditions, we could generate a new HMM within a day.

4.4 Prediction result

Figure 6 shows one of the results of Block-HMM. The sim-
ulation conducted with 25 blocks but the result showed 19
blocks because the other 6 blocks were zero blocks. Tran-
sitions between blocks are not shown here. Figure 7 is the
full HMM structure with 42 states. Transitions with a prob-
ability less then 0.1 are not shown in this figure.

H HC

H H H H

C C C

C C

E CC C C C C

E E E H H H

H H H C C E E E C C C

C

C

H H C C C

Figure 6: The result of Block-HMM. It is composed of 19
blocks and 42 states.

We used posterior label probability to decode the HMM.
The most probable label is selected as an output. The re-
sult of the cross-validation test is shown in table 2. To
get higher prediction rate we combined five HMMs for this
simulation. Combining several HMMs improves the over-
all performance. But, Combining more than five HMMs
did not contribute much to the performance. For the first
cross-validation we reachedQ3 accuracy of 68.0% with 5
HMMs whose individualQ3 accuracy is 67.25%, 67.34%,
67.85%, 67.72%, and 67.43%. TheQ3 accuracy of the 5-
fold cross-validation test is 68.0%. It is obvious that our
approach achieved far better result than Thomsen’s result of
49%. From several experiments, we found that adding and
deleting random transitions in the HMM does not make a
significant contribution in finding efficient structural model.

Table 2: The result of 5 cross-validation test. For each test
5 HMMs are combined.

Test Q3 QH QE QC

best mean stdev best best best

Test1 68.0 67.5 0.256 64.9 56.0 75.2
Test2 70.1 68.6 0.133 65.4 59.0 75.5
Test3 67.6 66.9 0.363 67.1 52.8 74.4
Test4 68.2 67.8 0.145 67.0 58.5 74.0
Test5 67.5 66.6 0.144 64.7 55.8 74.7
Total 68.0 64.9 56.0 75.2

4.5 Multiple Sequence Alignment and Combining mul-
tiple HMMs

The best protein secondary structure predictors use homol-
ogous sequences information to gain higher prediction ac-
curacy. We ran PSI-BLAST [23] against UniProt protein
sequence database [24] to obtain homologous sequences.
Each sequence from the PSI-BLAST search is weighted
with position-based sequence weight [25]. In the position-
based sequence weighting method the weight is given as

wκ =

∑T
t=1

1
r(κ,t)·s(κ,t)∑Γ

ι=1

∑T
t=1

1
r(ι,t)·s(ι,t)

(9)

whereΓ is the number of homologous sequence,r(h, t)
is the number of different residues in the positiont and
s(h, t) is number of times the particular residue appears in
the position. To exploit the homologous sequences we com-
puted the weighted average of PLP after alignment for each
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Figure 7: The full HMM structure with 42 states. Transitions less then 0.1 are not shown. This figure is drawn with the
drawing tool provided by L.G.T. Joergensen.



homologue to obtained an overall average PLP. As a final
enhancement we averaged the prediction over five HMMs.
The final procedure is illustrated in figure 8. We used this
final averaged PLP to make out prediction.

4.6 Comparison with Other Protein Secondary Struc-
ture Methods

Table 3 shows the result of 5 cross-validation tests after the
multiple alignment of homologous sequences and combin-
ing 5 HMMs. The averageQ3 accuracy is 75.0% with a
standard deviation of 9.12.

Table 3: The result of 5 cross-validation test after using the
multiple alignment of homologous sequences and combin-
ing 5 HMMs

Test Q3 QH QE QC

Test1 75.3 71.7 61.0 82.4
Test2 76.6 67.0 62.6 83.0
Test3 74.8 70.5 57.1 84.5
Test4 74.7 72.3 61.1 82.3
Test5 73.8 66.4 58.1 81.9
Total 75.0 69.4 60.0 82.9

HMMSTR [1] is the most successful predictor using an
HMM. It was constructed by linking I-sites (invariant or
initiation sites) motifs and representing them as a chain of
Markov states. Consequently, the topology of HMMSTR
is a collection of known structures which are transformed
into the HMM with over one hundred states. However,
the prediction accuracy (Q3) of HMMSTR is 74.3%. Even
though the Block-HMM method has fewer states and a sim-
ple structure, it could produce better result.

Psipred [2] is one of the best predictor algorithms with
a Q3 prediction rate of 76.5%. It was tested under a sim-
ilar stringent condition but using a 3-fold cross-validation.
They used 85 test sequences and 1100 training sequences.
Most of the other top predictors have similar prediction ac-
curacy with Psipred. They are tested using sequences with
less then 25% identity within the training set. Our method
was tested under more stringent condition in that any fold
of the sequences in the test set was not used in the training
set.

5 Conclusions

In this paper, we have demonstrated the power of Genetic
Algorithms to find HMM structures for biological sequence
analysis. The HMM structure had considerably few states
than the best hand-designed HMM and gave superior per-
formance. This is quite remarkable given that our GA had
no prior knowledge of protein structure. One of the ma-
jor advantages of our approach is its simplicity. All other
methods such as neural networks [2, 3, 4] or support vector
machines (SVMs) [5, 6] require a large amount of tuning to
reach the levels of performance we have achieved.

Relatively little work has been invested in tuning the GA.
We believe there is still potential for improvement both in

terms of improving the overall performance and in speeding
up search by modifying our proposed algorithm. In particu-
lar, introducing other mechanisms to control the complexity
of the models produce and using other block structures are
likely avenue of improvement. In this work, we used re-
ciprocal of the negative log-likelihood as a fitness function.
Alternatively, theQ3 for the evaluation set can be used di-
rectly as a fitness function. This is another future area of
research.

Here is an important application where GAs can make a
real contribution. Their flexibility allows us to incorporate
other optimisation schemes within them and to construct op-
erators which directs the search towards fruitful areas of the
solution space. Because of the computational complexity of
training HMMs this is an application area that is only now
becoming practical, however, as the power of computers in-
crease we can expect that the automatic discovery of HMMs
to become increasingly attractive.
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