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Abstract- New results are presented for the prediction of ing and protein classifications [7]. The automation of HMM
secondary structure information for protein sequences design, particularly in the context of bioinformatics, has re-
using Hidden Markov Models (HMMs) evolved using ceived relatively little attention. The main reason for this
a Genetic Algorithm (GA). We achieved a@Qs measure is probably the desire to build domain knowledge into the
of 75% using one of the most stringent data set ever topology of the HMM. This is the main attraction of HMMs
used for protein secondary structure prediction. Our over neural networks or support vector machines. However,
results beat the best hand-designed HMM currently for very complicated problems the human capacity to design
available and are comparable to the best known tech- meaningful HMMs becomes much more questionable and
nigues for this problem. A hybrid GA incorporating the  the use of automatic design becomes increasingly attractive.
Baum-Welch algorithm was used. The topology of the Over the last two years we have developed a method for
HMM was restricted to biologically meaningful building  evolving Hidden Markov Models (HMMSs) for biological se-
blocks. Mutation and crossover operators were designed quence analysis using Genetic Algorithms (GAs) [8, 9]. Our

to explore this space of topologies. preliminary investigations demonstrated that we are able
to obtain results that are competitive with hand-designed
1 Introduction HMMs.

Studies of using GAs to train HMMs are relatively rare,

Predicting the secondary structure of proteins is one of thgarticular in comparison with the large literature on apply-
best studied problems in bioinformatics and consequentigg GAs to neural network training. Cha. alused a GA
presents a rigorous test of our techniques. The probleta optimise the transition and emission probabilities for a
tackled is to provide a label for each residue in a profive-state HMM [10]. Subsequently, they considered evolv-
tein sequence depending on its secondary structure. Tliag the HMM topology [11]. Other authors have also used
is, whether the protein residue is part of an alpha-heliXx;As to find good GA topologies [12, 13]. Direct compar-
a beta-sheet or some other structure. This is a first steggon of these approaches is difficult because there is not a
towards predicting the structure and function of a proteistandard test set. However, Thomsen studied the same prob-
from its sequence. Many machine learning methods halem of secondary structure predication as we have [13]. His
been applied to this problem including HMMs [1], neuralprediction rate on the training set using the standépds
networks [2, 3, 4] and more recently support vector mameasure is 49% compared with 75% which we achieved.
chines [5, 6]. We believe that the results presented here are the most im-

Our approach is to this problem is to evolve an HMMpressive reported to-date on using GAs to find good HMMs
using a Genetic Algorithm. An Hidden Markov Model for a bioinformatics problem. The results we obtain are su-
(HMM) is a probabilistic finite state machine used to modeperior to the best hand-designed HMM [1] and are compet-
stochastic sequences. An HMM is defined by the set dfive with the best predictor developed for this problem [2].
states, emission probabilities associated with each state, afftese results are remarkable given that the GA is competing
transitions that connect states. One can associate a proiéth techniques that incorporate domain knowledge built-
bility with a sequence according to how likely it is for anup over many years.
HMM to generate that sequence. To use an HMM to label a In the next section, we briefly describe the use of HMMs
sequence we associate a label with each state (or more gén-labelling sequences. In section 3, we describe in detail
erally a probability of a particular label given the state). Théiow we evolve an HMM. In particular, we focus on unique
label assigned to each element in the sequence dependsaspects of our approach which we believe are responsible
which state is likely to have emitted that element. HMMdor its success. Results are presented in section 4. Finally,
have been widely used in bioinformatics because domain section 5, we present our conclusions.
knowledge can be encoded into the topology of the HMM
while still allowing other information to be learned through2 Hidden Markov Models with Labels
training the emission and transition probabilities on data.
Hand-designed HMM structures have been developed fétidden Markov Models are widely used learning machines
sequence alignment, protein structure prediction, gene finfibr modelling stochastic sequences. They are described in



many papers and books on speech recognition, machi@e Posterior Label Probability

learning, and bioinformatics (see, for example, [7, 14]). | o . : .
this section, we discuss how HMMs can be modified to an[he V|terb! algorithm is a well known decoding method for

: . . MMs. It finds the most probable path through the states of
sign a label to each element in a sequence according to {hs : :
class e HMM. However, in the case where there are many sim-
' ilar paths through the model the most probable path does
not provide the best result. We rather use the ‘posterior la-
2.1 Class HMM bel probability’ (PLP) to maximise the number of correctly
An HMM assigns a probability to an observed sequence ¢iredicted labels. The posterior label probability is the prob-
symbols belonging to some alphabét, We denote a se- ability of a label at a certain position. Unlike the Viterbi
quence byr = (x1,z2,...,27). In our application the algorithm it sums the probabilities of being in each state at
symbols represent the set of 20 amino acids that are thecertain position of the sequence and assigns the dominant
building blocks of proteins. We denote the set of paraniabel to that element of the sequence.

eters that define an HMM b@. Given a sequence, an Then the PLP of a label at positiagris the sum of pos-
HMM returns a ‘probability’P (z|©), where terior probability of all the states that emit the same label.
The PLP for label at positiont is
> Pxlo)=1, (1)
zeST P (y; = l|x, ©) :ZP(% =l,q =ilz,0). (6)

so it is a probability distribution over sequences of lerifth ieQ

(we useS” to denote the set of all sequences of lerif}h  In our HMM, we assign each state to a particular class. That
A class HMM (CHMM) is an HMM where the states s, we take the probability of a label given a state to be 1 if
emit class labels from an alphabetf, as well as a sym- the state is assigned to that class and 0 otherwise. Thus the
bol from the alphabetS. That is, we can associate with sum in equation (6) only gets contributions from states that
a sequencec a corresponding sequence of symbgls=  have been assigned to cldss

(y1,92,...,yr). Denoting the set of states 1§, and let-

tingg = (¢1,42,.-.,qr) be a sequence of states, then th% Evolving HMMs
likelihood of a sequence with class labelgy is given by
In this section, we briefly describe the GA used to evolve
P(z,y|0) = Z P(z,y,4/0) (2) ' HMMs for our application. We have used a hybridised GA
qeQ” that uses traditional GA operators to explore the space of
where the sum is over all possible paths through thEgMM topologies in combination with Baum-Weich to op-

states (paths without transition probabilities have probabifiMise the transition and emission probabilities. One diffi-
ity zero). culty with evolving HMMs is that more complicated HMMs

Traditionally HMMs are trained by choosing the transi-With more states and more transitions between states will
tion and emission probabilities to maximise the likelihood!Ways give superior results on any fraining set, but will
of some training data. That is, given a sequencéor typPically perform badly on unseen data. One of our key
set of sequence) and the corresponding lagelsve find ~&MS in designing a GA for this task is to prevent this ten-

a maximum-likelinood (ML) set of parameters dency to overfit the data. We have used two strategies to
accomplish this. Firstly, we impose a block structure on the
oML — arg mgxIP’(m, y|©). (3) HMM topology which builds in some biological plausibil-

ity. Secondly, we divide our training set into a set used for
This can be calculated efficiently using the Baum-Welch athe Baum-Welch training and a set for fithess evaluation.
gorithm [14]. However, this guarantees that we only find a
local maximume-likelihood solution. As with other machine3.1 The Block-HMM

learning techniques maximising the likelihood of the train- i ) i i
ing examples will not generally provide the best paramete;go constrain the search of HMM topologies to biologically

for unseen data. This approach locally maximise the progjeaningful structures we confine our search to a subset of

ability of the observed labelled sequences. In the case [Pologies made up of blocks of states. We call the§§ Block-
maximising the probability of correct labelling, conditional tMMs. We used four types of blocks for the HMM: linear,

; Al : self-loop, forward blocks and zero blocks. The self-loop
maximum likelihood (CML) is used [15]. and forward block can be either tied (we follow the conven-
O“ML = arg max P (y|z, ©) (4) tion of shading tied blocks) or untied. When a block is tied
© all the emission and transition probabilities inside the block
where are set equal. A forward block can have a transition from
P (y)x, ©) = P(z,y|©) (5) thefirst block to thex last blocks in the chain. Zero blocks
’ P (x|©) have no state inside. They allows simpler structures to be

To maximise (5) the extended Baum-Welch algorithm i§Xplored. Figure 1 shows three types of blocks.

used [16]. For more details on training labelled sequences The block models described in this paper are motivated
seee.g.[17]. by applications of HMMs in biological sequence analysis.



@ 1 2 3 4 number of states is not fixed. We also allow blocks consist-
ing of no states (zero blocks), which effectively allows us to

O O O O have a variable number of blocks up to some maximum.
() In crossover, two parent strings are chosen at random.
Some number of randomly chosen blocks are then swapped

to create two children. When we swap blocks the transition
© 1 3 4 probabilities leaving the block are kept as they are. Since
the position of the blocks does not carry any meaning, we
_ do not impose any constraint on which blocks are swapped.
Figure 1: HMM blocks that compose the whole HMMFig. 3 shows an example of the crossover scheme. The last
structure. (a) linear block (b) self-loop model (tying is op-lock of the first child crosses with the first block of the
tional) (c) forward-jump block (tying is optional). second child. To simplify the diagram, transitions between
blocks are not shown here. Under the crossover scheme the
Biological sequences (DNA or protein) often contain “mo_propemes of the mterpretablg blocks are no_t broken. T_h|s
. . - allows us to exchange meaningful blocks without causing
tifs”, which are more or less conserved words, and with) : .
. ) .. too much disruption.
more or less homogeneous intervening sequence, which'is

characterised by the composition of letters (amino acids or
nucleotides). Such a sequence can be modelled by an HMM ﬂ_ﬂ ﬁm mﬁ

. o . cHce] [WHrHrHH] [EHEHEHE] [eHEeHEe
containing submodels for the motifs (linear chains of states) el [HHHHH A [eEHeHe He ] [eHeHE)
and models for the intervening sequences if a length distri-
bution is modelled. Other types of sequences are changin
between various types of homogeneous sequences. An ex-

i . ; . crossover

ample is membrane proteins that contain membrane helices @

20-30 amino acids long, which are dominated by hydropho-
bic amino acids and an intervening sequence that is typi ﬁ
cally more hydrophillic [18]. Such sequences can be mod-
elled with a block of tied states, one block for each type of mﬁ ﬁ‘ﬁl‘
sequence. Sometimes sequences contain periodic patterns
Those HMM submodels work as a block in our scheme. ]

Initially, the blocks are fully linked to form the whole Figure 3: Crossover in Block-HMM. The crossover swaps
HMM architecture as shown figure 2. After training, mostN® HMM states without breaking the property of HMM
of these transition probabilities get driven to zero, so th&tlOcks.

the final structure is typically much simpler than this picture
indicates.

Mutations can take place in any block of the HMM.
There are a variety of different mutations that we allow. Mu-
tations can change the length of a block. For forward-jump
block mutations can change the number of transitions. For

:@I example, in the case of a 4-state forward-jump block, there
are 6 different types of mutations possible. These are illus-
% trated in Fig. 4. The outcome depends on which block is
added. In the cases of linear and self-loop blocks, there is
only one way to add and delete a state. These six different

types of mutation supply the Block-HMM with sufficient

Figure 2: An example of HMM composed of blocks (Block-Vvariation without changing the properties of the block.
HMM). Three blocks are used in this model and all the In addition to changing the length of the block and the
blocks are fu”y connected to each other. For the proteiﬁansitions, we also allow another form of mutations, called

secondary structure prediction each block of an HMM is adype-mutationsthat change the type of the block. For self-
signed with one of three protein structure classes ‘H’, ‘E’l0op and forward jump blocks, we can mutate between tied

or ‘C’. The definition of each label is in chapter 4.1. and untied versions. We can also mutate the type altogether.
Mutations to a block of zero length are also allowed. The

To use the Block-HMM to label sequences we assiglP€!s are also changed under the type mutation.

a label to each block depending on which of three protein o . .
structure classes it belongs to. 3.3 Baum-Welch Training and Fitness Evaluation

e

_ At each generation we perform an iteration of Baum-Welch
3.2 Genetic Operators for the Block-HMM learning to train the emission and transition probabilities.

We use a GA with crossover and mutation to search th@ prevel_ﬂt over-fitting the Iearning.data, we split our train-
space of Block-HMM. The number of blocks is always keptnd data into two parts. One part is used for Baum-Welch
fixed. However, as the blocks can have variable lengths, tif@ining and the other half for the fitness evaluation. (Note,



.I-' 3.4 Parallel Genetic Algorithm

Evolving HMMs particular for this application is highly
{} mutation CPU-intensive. To overcome this we used a Parallel Ge-

netic Algorithms (PGAs) [20] run on a cluster of comput-

ers. From the algorithmic point of view the parallel pro-

4] [1H2H3]
v \Jj cessing is the computational realisation of natural parallel

evolutionary strategy.

@ (b) .
We used a master-slave model to implement the Block-
HMM on the clustered computers. In the master-slave
l\# w model, a population is generated Brprocessors. The time
© ) consuming training and evaluations are dealt with on slave-
processors. Because the computational time for the training

6] 6] and evaluation is different depending on the size of HMM,

\_Jj 7 WJ the sever waits until all the processes on the slaves finish.

The slaves send the fitness value and the trained HMM to
the master. Then the master applies the genetic operators on

Figure 4: Six possible types of mutations from a 4-statthe individuals and sends the individugl information back to.
jump forward block. (a) a transition from the first state t€2ch slave-processor. On the slave side the processor waits
forth state is deleted (b) a transition from the first state to thi@" Message from the server, evaluates the fitness, trains the
third state is added (c) the second or the third state is deletB¥!M. and retumns the trained HMM and fitness value to the
(d) the fourth state is deleted (e) a state is added between {R8Ster-

fourth and the fifth state (f) a state is added between the first

and the fourth state 4 Protein Secondary Structure Prediction

© ®

In this section, we describe the test set and the results we ob-
that in evaluating the performance of our algorithm we usgined for the prediction of the secondary structure of pro-
a completely separated dataset.) Over complex modelsins. There is no standard test set used in this area, in part
are disadvantaged because they tend to over-fit the Baufize to the constant growth of sequence data. Direct com-
Welch training data, but then perform poorly on the fitparison between different techniques is therefore difficult.
ness evaluation set. Splitting of the training dataset set ur aim was to perform the most stringent test possible of
a unique feature of our approach which we believe is an ingyr technique. We believe that we have made our test as

portant factor in our good performance. difficult as possible, so that in making any comparison with
We take as fitness values the reciprocal of the negativgher techniques the measure of performance of our tech-
log-likelihood nigue is as conservative as possible.
1
E, (7) 4.1 Data Set

—>_;log (P($i|®u)) /i

For the protein data we used the SABMark Twilight Zone
wherel; is the length of a sequenag andy. labels the dif-  data sets [21]. The Twilight Zone set is divided into se-
ferent HMMs ©,,) of the population. Other researchersquence groups that each represent a SCOP fold. Sequence
have used a penalty term in proportion to the number @fimilarity is very low, between 0-25% identity, and a trace-
states to prevent over-complex models being found. In earhple common evolutionary origin cannot be established be-
trials we found that this mechanism was very sensitive tgyeen most pairs even though their structures are distantly
the parameters being used. Although, using a penalty tergiilar. This set therefore represents the worst case scenario
may be beneficial, a penalty term which accurately punish@sr sequence alignment, as most related sequences share
complexity is likely to be extremely complex function of thejess than 25% identity. These structures belong to about
topology and transition and emission probabilities. Our ap36 folds.
proach of splitting the learning data allows us to side step \We removed the sequences with unresolved chain breaks
this problem. A member of the population is selected wittynd got 1662 protein sequences which are categorised to

a Boltzmann probability 234 folds (two folds are removed). With those 234 folds we
m > made a five cross-validation set. As a result, sequences with
F, = Niﬂ, my = e’ ulo (8) the same fold do not appear in both the training and the test
2y My set.

whereo is the standard deviation in the distribution of fit-

nesses in the population. The parameteontrols the se- 4-2 Definition of Protein Secondary Structure

lection strength. Stochastic universal sampling is used ccording to the DSSP [22] definition there are 8 type of

reduce genetic drift in selection [19]. structure in the protein secondary structure:a=helix), G
(310-helix), | (m-helix), E (extended strand), B (residue in



isolatedB-bridge), S (bend), T (hydrogen bonded turn) and i v, < <
C (others). Like most other prediction methods we used a
reduction scheme whereby H and G are converted to H, E = ﬁ

<3 Q)
and B are converted to E, and all the other to C.

Figure 5 shows a protein sequence and its labels and
predictions. The widely use@;,.. is the percentage of ﬂ Q Q< O Q. <D ﬂ’}
residues predicted correctly as helix{), strand (), coll .
(Qc¢) or for all three labelsDs). In this example)); is 56%
= (14/25) x 100. Figure 6: The result of Block-HMM. It is composed of 19

blocks and 42 states.

> dlciy_2.ent

Seq I PIRTVSQLTREIYTNPVLENFDGSF . -
| abel . CCCCCCCCCCEEEECHHHHCCCCCC We used posterior label probability to decode the HMM.

Predict : CCCCCHHHHHHEECCCCCCCCCCCC The most probable label is selected as an output. The re-
sult of the cross-validation test is shown in table 2. To
get higher prediction rate we combined five HMMs for this

Figure 5: A protein sequence and its label and predictionsimulation. Combining several HMMs improves the over-
all performance. But, Combining more than five HMMs
did not contribute much to the performance. For the first

4.3 Training with Block-HMM cross-validation we reachegs; accuracy of 68.0% with 5

L . . . HMMs whose individual)s; accuracy is 67.25%, 67.34%,
We initially tested a population with 15 blocks in the HMM. 7.85%, 67.72%, and 67.43%. THg accuracy of the 5-

We increased the number of blocks until the number Id cross-validation test is 68.0%. It is obvious that our

blocks does not effect the performance. The best models . ;
were found with 26-30 blocks. The initial labels are as{fpproach achieved far better result than Thomsen'’s result of

. : . 49%. From several experiments, we found that adding and
signed evenly in order. The number of states in a block I(§eleting random transitions in the HMM does not make a

randomly assigned to be between 1 and 4. Table 1 shows ... Lo T .
! . . significant contribution in finding efficient structural model.
the parameters used in the simulation.

. . Table 2: The result of 5 cross-validation test. For each test
Table 1: Block-HMM parameters used in the experiment.c v 1vis are combined.

Parameter value Test Qs Qn | Or | Qo
Population size 30 best mean stdevy best| best| best
Iteration 400 Testl] 68.0 67.5 0.256 64.9] 56.0| 75.2
Number of blocks in an HMM 15-30 Test2| 70.1 68.6 0.133 65.4| 59.0 | 75.5
The length of a block 1-4 Test3| 67.6 66.9 0.363 67.1| 52.8 | 74.4
Number of crossovers per iteration 2 Test4| 68.2 67.8 0.145 67.0| 58.5| 74.0
Number of mutations per iteration 2 Test5| 67.5 66.6 0.144 64.7 | 55.8| 74.7
Number of type-mutations per iteration 2 Total | 68.0 6491560 75.2
Ratio of evaluation data 217

After the training we chose the best model by evaluating g Multiple Sequence Alignment and Combining mul-
the HMM with the test set. Because the GA over-fits the tiple HMMs

structure and parameters of the HMM, the best model was

usually found before the end of iteration. The best moddihe best protein secondary structure predictors use homol-

is trained again using Baum-Welch algorithm and extende@gous sequences information to gain higher prediction ac-

Baum-Welch with the whole training dataset. curacy. We ran PSI-BLAST [23] against UniProt protein
Evolving an HMM is slow. We used 31 2.4GHz P4 pro-Sequence database [24] to obtain homologous sequences.

cessors with 512Mb RAM for the simulation. Under thesd=ach sequence from the PSI-BLAST search is weighted

conditions, we could generate a new HMM within a day. With position-based sequence weight [25]. In the position-
based sequence weighting method the weight is given as

. . r(k,t)-s(k,t)
Figure 6 shows one of the results of Block-HMM. The sim- We = 5T T 1 ©)
D=1 2ot=1 T

ulation conducted with 25 blocks but the result showed 19
blocks because the other 6 blocks were zero blocks. Tra\W/hereF is the number of homologous sequencé), ¢)

sitions between blocks are not shown here. Figure 7 is the ihe number of different residues in the positiband
full HMM structure with 42 states. Transitions with a prob—s(h’ t) is number of times the particular residue appears in

ability less then 0.1 are not shown in this figure. the position. To exploit the homologous sequences we com-
puted the weighted average of PLP after alignment for each

4.4 Prediction result T 1
P
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Figure 7: The full HMM structure with 42 states. Transitions less then 0.1 are not shown. This figure is drawn with the

drawing tool provided by L.G.T. Joergensen.



homologue to obtained an overall average PLP. As a fins#rms of improving the overall performance and in speeding
enhancement we averaged the prediction over five HMMsip search by modifying our proposed algorithm. In particu-
The final procedure is illustrated in figure 8. We used thiar, introducing other mechanisms to control the complexity
final averaged PLP to make out prediction. of the models produce and using other block structures are
likely avenue of improvement. In this work, we used re-
4.6 Comparison with Other Protein Secondary Struc- ciprocal of the negative log-likelihood as a fitness function.
ture Methods Alternatively, theQs for the evaluation set can be used di-

L rectly as a fitness function. This is another future area of
Table 3 shows the result of 5 cross-validation tests after thgco o

multiple alignment of homologous sequences and combin- 0.0 is an important application where GAs can make a
ing 5 HMMs. The average); accuracy is 75.0% with & o5 contribution. Their flexibility allows us to incorporate
standard deviation of 9.12. other optimisation schemes within them and to construct op-
erators which directs the search towards fruitful areas of the
Table 3: The result of 5 cross-validation test after using thgolution space. Because of the computational complexity of
multiple alignment of homologous sequences and combitraining HMMs this is an application area that is only now

ing 5 HMMs becoming practical, however, as the power of computers in-
Test Q3 Qg Qr Q¢ crease we can expect that the automatic discovery of HMMs
Testl 75.3 717 610 824 to become increasingly attractive.
Test2 76.6 67.0 62.6 83.0
Test3 748 705 57.1 845 Acknowledgement
Test4 747 723 61.1 823
Test5 73.8 66.4 581 81.9 We would like to thank L.G.T. Joergensen for providing his
Total 75.0 694 600 829 nice HMM structure drawing tool.
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